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Baseline-free estimation of residual fatigue life using a third
order acoustic nonlinear parameter
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Prediction of crack growth and fatigue life estimation of metals using linear/nonlinear acousto-ultra-

sound methods is an ongoing issue. It is known that by measuring nonlinear parameters, the relative

accumulated fatigue damage can be evaluated. However, there is still a need to measure two crack

propagation states to assess the absolute residual fatigue life. A procedure based on the measurement

of a third-order acoustic nonlinear parameter is presented to assess the residual fatigue life of a me-

tallic component without the need of a baseline. The analytical evaluation of how the cubic nonlin-

ear-parameter evolves during crack propagation is presented by combining the Paris law to the

Nazarov–Sutin crack equation. Unlike other developed models, the proposed model assumes a crack

surface topology with variable geometrical parameters. Measurements of the cubic nonlinearity pa-

rameter on AA2024-T351 specimens demonstrated high sensitivity to crack propagation and excel-

lent agreement with the predicted theoretical behavior. The advantages of using the cubic

nonlinearity parameter for fatigue cracks on metals are discussed by comparing the relevant results

of a quadratic nonlinear parameter. Then the methodology to estimate crack size and residual fatigue

life without the need of a baseline is presented, and advantages and limitations are discussed.
VC 2011 Acoustical Society of America. [DOI: 10.1121/1.3621714]

PACS number(s): 43.25.Dc, 43.35.Zc, 43.40.Le [PEB] Pages: 1829–1837

I. INTRODUCTION

In the last few decades, there has been an extensive

amount of research aimed at reducing operative costs for me-

chanical, civil, and aerospace systems. Aerospace engineer-

ing, in particular, is actually trying to optimize maintenance

inspections of brand new aircraft as well as to extend the life

of old but still valuable assets.1 In this context, structural

damages could lead to catastrophic and expensive failures;

therefore the aerospace industry has potentially one of the

highest payoffs for structural health monitoring (SHM).

The classical maintenance approach is time consuming

and not cost-effective because it is based on inspection of

structures at regular interval. In the last decade, novel techni-

ques to be implemented in a SHM concept have been subject

to extensive research. SHM can be defined as a system able

to detect and interpret adverse “changes” in a structure to

improve reliability and reduce life-cycle costs.

Structural health is usually estimated by using a network

of transducers that measure and interpret some physical enti-

ties such as displacements, accelerations, etc. Sensing meth-

ods are usually classified in two categories: passive and

active. Passive sensing methods measure data generated from

external unknown events even such as crack propagation,

impact loading, etc. This method needs a high sensor density

because the source is usually unknown and is generally used

for detecting acoustic emissions or impact events.2–4 Active

sensing method relies on a controlled excitation signal col-

lected by a number of sensors. Due to dispersion effects and

multimode propagation, the use of a linear guide is compli-

cated in complex structures, being difficult to apply to inho-

mogeneous materials and in particular to damaged materials

where the crack size is comparable with the wavelength. It

has been demonstrated that the presence of microcracks, rup-

tures, and cohesive bonds generates strongly nonlinear

dynamic phenomena accompanying the elastic wave propa-

gation.5,6 These non-linear effects are observed in the course

of the degradation process much sooner than any degrada-

tion-induced variations of linear parameters (propagation ve-

locity, attenuation, elastic moduli, rigidity, etc.).

In Refs. 5–7, it was shown that nonlinear methods are

very sensitive to the progressive degradation of the material

structure, and cracks may lead to ultrasonic wave distortion

along the wave propagation path and the generation of harmon-

ics of the initial waveform.8 These phenomena allow using

nonlinear ultrasound spectroscopy for early damage detection.9

These phenomena can be used to monitor the progressive dam-

age progression by analyzing the material nonlinear elastic

behavior caused by the presence of cracks,10–13 These works

showed that nonlinear techniques can provide early signs of

material degradation long before changes of linear acoustic

properties.6 In the presence of both linear and nonlinear scatter-

ers, ad hoc techniques must be developed to discern the pres-

ence of linear damage from nonlinear cracks.14,15

Nazarov and Sutin16 proposed a physical model of a me-

dium with cracks to evaluate linear and nonlinear acoustic con-

stants of a fractured medium. They showed that the appearance
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of macrocracks in the material produces large increases in the

quadratic, G2, and cubic, G3, nonlinearity parameters. In addi-

tion, they highlighted that the cubic nonlinearity parameter

should be several orders of magnitude larger than the quadratic.

Cantrell18 applied the Paris–Erdogan6 equation for crack prop-

agation to the Nazarov–Sutin16 crack nonlinearity equation to

assess the change in G2 as a function of crack growth during

the fatigue process, demonstrating that these variations corre-

late well with the amount of damage. The model proposed by

Cantrell assumed constant crack geometrical parameters.

In this paper, we extent the work of Cantrell to the deri-

vation of G3 with (1) constant crack geometrical parameters

and (2) crack geometrical parameters varying with the crack

size. Comparison between the above-mentioned cases will be

presented, and the discussion will also be extended to the

quadratic nonlinearity parameters to highlight theoretically

the possible advantages of using G3 instead of G2. Then per-

turbation methods will be used to solve the third order nonlin-

ear wave equation to obtain an expression that could relate

the cubic nonlinearity parameter to experimental measure-

ments of the amplitudes of the harmonics evaluated from the

frequency spectra of the recorded time domain waveforms.

Measurements on AA2024-T351 specimens, containing fa-

tigue fracture of different sizes, will be presented to validate

the cubic nonlinearity parameter model. The same measure-

ments will be carried out for the quadratic nonlinearity pa-

rameter to compare quantitatively the crack sensitivity of G3

and G2 for the analyzed structure. The proposed approach

allows the possibility of determining the residual fatigue life

of metallic structures without the need to know a previous

material/crack state or baseline, and the procedure to deter-

mine it is described with the relative limitations.

II. CUBIC ORDER NONLINEARITY PARAMETER
AS A FUNCTION OF CRACK SIZE

In this section, the relationship between the cubic order

nonlinearity parameter and the crack size is derived. The fol-

lowing model is based on the hypothesis of stable propaga-

tion fatigue phase, thus the initial nucleation and final failure

stages are not taken into account. Nazarov and Sutin16

derived an expression for the quadratic, G2, and cubic, G3,

nonlinearity parameters for non-interacting penny-shaped

cracks in bulk material:

G2 ¼
bN0G2

1

7
(1)

G3 ¼
cN0G3

1 1� 27G1b
2N0

49c

� �
9

(2)

where,

G1 ¼ 1þ aN0

5

� ��1

N0 is the cracks concentration, while a, b, and c are the lin-

ear and nonlinear elastic constants of the crack,

a ¼ phsR
2 E

r0

� �
1þ hs

d0

� ��1

(3)

b ¼ phsR
2 E

r0

� �2

1þ hs

d0

� ��3

(4)

c ¼ phsR
2 E

r0

� �3

2� hs

d0

� �
1þ hs

d0

� ��4

(5)

hs ¼
ffiffiffi
2
p

h0 where h0 is the characteristic height of the crack

surface irregularities, R is the crack radius, E is the Young

module, r0 is the internal stress, equal in amplitude but oppo-

site in sign to the external stress and d0 is the distance

between the middle lines of the crack surfaces. To derive the

cubic nonlinearity parameter as a function of crack growth

during the fatigue process, we employ the Paris–Erdogan19

equation where the variation in the crack radius R is

expressed as a function of percent fatigue life to final fracture

dR

dn
¼ CDKm (6)

where the material dependent constants C and m are the

crack growth intercept and the crack growth exponent, n is

the number of fatigue cycles, and DK is the stress intensity

range defined by

DK ¼ r0F Rð Þ
ffiffiffiffiffiffi
pR
p

(7)

where F Rð Þ is the shape factor, and it was assumed as a con-

stant in the fatigue stable propagation phase. The derivation

of the shape factor F, also known as geometry factor, for a

circular hole in a plate can be found in Ref. 17 where it is

reported how the geometry factor changes when the crack

size increases from a circular hole. In detail, for stable crack

propagation phase, that behavior is almost constant: for a

crack size 5 mm< a <20 mm, F varies between 1 and 0,8.

This justifies the assumption of constant F.

Substituting Eq. (7) into Eq. (6), separating the variables

and integrating, we obtain an expression for the generic

number of fatigue cycles,

n ¼ 1

C r0F
ffiffiffi
p
p

½ �m
ðR

R0

R�m=2dR: (8)

Here R0 is the initial size of the defect. Then the integral cal-

culation leads to the calculation of the total number of cycles

n provided by the following equation

n ¼ 1

C r0F
ffiffiffi
p
p

½ �m
1� m

2

� ��1

R1�m=2 � R
1�m=2
0

� �
: (9)

When the size the final crack length is considered, Rf , the

number of cycles becomes:

ntot ¼
1

C r0F
ffiffiffi
p
p

½ �m
1� m

2

� ��1

Rf
1�m=2 � R

1�m=2
0

� �
(10)

The fatigue life percentage can be expressed as the ratio of

Eq. (9) to Eq. (10),
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f ¼ n

ntot

¼
R1�m=2 � R

1�m=2
0

� �
Rf

1�m=2 � R
1�m=2
0

� � : (11)

Then from Eq. (11) the crack size in function of the fatigue

life percentage can be obtained as

R ¼ f Rf
1�m=2 � R

1�m=2
0

� �
þ R

1�m=2
0

h i 1�m=2ð Þ�1

(12)

Finally, substituting Eq. (12) into Eq. (2) leads to the evalua-

tion of the cubic nonlinearity parameter as a crack size func-

tion. It is straightforward then to evaluate also G2 by

substituting Eq. (12) into Eq. (1), obtaining a result similar

to Cantrell.18 G3 and G2 curves as a function of fatigue life

are shown in Fig. 1.

Adopting typical material values for AA2024-T35114,19

the Nazarov-Sutin16 suggested value of crack-related con-

stants, and some parameters from the used experimental set up:

E¼ 73:1�107 g

cm2
; v¼ 0:33; C¼ 4;36�10�9 cm

cycle
;

m¼ 3:45; hs¼ 10�6 cm; d0¼ 3�10�6 cm;

N0¼ 2:5�10�1 cm�3; r0¼ 3�105 g

cm2
;

R0¼ 5�10�6 cm; Rf ¼ 2 cm:

G3 and G2 curves have as expected similar trends, and G3

values are about four orders of magnitude higher. This fea-

ture highlights that the cubic nonlinearity parameter is more

sensitive to cracks and could therefore be preferably used for

damage detection and residual life estimation.

III. FATIGUE CRACK MODEL WITH VARIABLE
GEOMETRICAL PARAMETERS

In the previous section, the irregularities of a fatigue

fracture surface and the distance between the middle lines of

the crack surfaces are assumed constant; however, it should

be pointed out that crack geometrical parameters are not

constant with damage size but vary with it.20 Nonetheless it

is extremely difficult to find an analytic expression that could

consider the complex interactions that take place for each

different combination of load, frequency, material, etc. Thus

an approximate mathematical model is suggested by taking

in account some simply morphological observations: Fatigue

fracture surfaces are characterized by subsequent stria-

tions,21 Fig. 2, each of them corresponding to a load cycle.

Such geometrical features could be viewed in section and

schematized as isosceles triangles, Fig. 3, that increase in size

as the crack grows. Hence the height of the tops of the fracture

surface could be estimated as equivalent to 20% of the local

spacing between striations22 and therefore using Eq. (6),

H ¼ 0:2CDKm: (13)

Similarly the distance between the middle lines of the frac-

ture surface should be considered variable by using the fol-

lowing equation,23

d ¼ 16r0R
1� v2

3pE
(14)

where v is the Poisson ratio. By substituting Eqs. (13) and

(14) into Eqs. (3), (4), and (5),

a ¼ p
ffiffiffi
2
p

0:2CDKmð ÞR2 E

r0

� �
1þ

ffiffiffi
2
p

0:2CDKmð Þ

16r0R 1� v2

3pE

� �
2
64

3
75
�1

; (15)

b ¼ p
ffiffiffi
2
p

0:2CDKmð ÞR2 E

r0

� �2

1þ
ffiffiffi
2
p

0:2CDKmð Þ

16r0R 1� v2

3pE

� �
2
64

3
75
�3

; (16)

c ¼ p
ffiffiffi
2
p

0:2CDKmð ÞR2 E

r0

� �3

2�
ffiffiffi
2
p

0:2CDKmð Þ

16r0R 1� v2

3pE

� �
0
B@

1
CA

� 1þ
ffiffiffi
2
p

0:2CDKmð Þ

16r0R 1� v2

3pE

� �
2
64

3
75
�4

; (17)

FIG. 1. (Color online) Quadratic

nonlinearity parameter, G2 (lower

curve), and cubic nonlinearity pa-

rameter, G3 (upper curve), plotted as

functions of the fatigue life. The

model shows that G3 is about four

order larger than G2 for almost all

the fatigue life.
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it is finally possible to predict theoretically G2 and G3 for

variable geometrical crack parameters (VGCP) using Sec. II

findings, Figs. 4 and 5.

These were compared to the results of Fig. 1, G3 and G2

as calculated with constant geometric parameters. Consider-

ing the VGCP model, G3 and G2 values are lower during

almost all the propagation except for the last part when the

unstable rupture is approaching. Also in the VGCP model

the distance between G3 and G2 remains constant at about

four orders of magnitude, confirming that measures of G3

could lead to a greater sensibility.

IV. DERIVATION OF THE THIRD ORDER
NONLINEARITY PARAMETERS

Cantrell23 used the second order solution approximation

of the non linear wave equation to obtain the following

expression of the quadratic nonlinearity parameter,

G2 ¼
8A2

A2
1k2a1

; (18)

where A1 and A2 are, respectively, the frequency amplitudes

of first and second harmonics of the recorded time domain

waveforms, k is the wavenumber and a1 is the propagation

distance. Thus by means of Eq. (18), it is possible to experi-

mentally evaluate the quadratic nonlinearity parameter. A

similar approach will be used to find the third order nonli-

nearity parameter. Starting the nonlinear third order stress

strain relationship and substituting it

r ¼ Eeþ EG2

2
e2 þ EG3

6
e3 (19)

in the nonlinear wave equation,

q
@2u

@t2
¼ @r
@a1

(20)

where e ¼ @u=@a1 is the strain and q is the material density

leads to

@2u

@t2
� c2 @

2u

@a2
1

¼ c2 G2

@u

@a1

@2u

@a2
1

þ G3

2

@u

@a1

� �2@2u

@a2
1

 !
; (21)

where c ¼
ffiffiffiffiffiffiffiffiffi
E=q

p
is the wave speed. Equation (21) can be

solved using the perturbation method that admits the general

solution,

u ¼ u 1ð Þ þ u 2ð Þ þ u 3ð Þ þ � � � � (22)

A solution of the Eq. (21) at a1 ¼ 0 is

u 1ð Þ ¼ u1 sin ka1 � xtð Þ: (23)

FIG. 3. Fatigue striations model schematization, section view.

FIG. 2. Typical fatigue striations.

FIG. 4. (Color online) G2 model

comparisons: constant geometrical

crack parameters and variable geo-

metrical crack parameters.
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Considering now only the contribution to the second order of

the Eq. (21),

@2u

@t2
� c2 @

2u

@a2
1

¼ c2G2

@u

@a1

@2u

@a2
1

: (24)

Substituting Eq. (23) into the right side of the Eq. (24), we

obtain,

@2u 2ð Þ

@t2
� c2 @

2u 2ð Þ

@a2
1

¼ � c2u2
1

2
G2k3 sin 2 ka1 � xtð Þ: (25)

Solution to the Eq. (25) is obtained by assuming a general

solution in the following form,24

u 2ð Þ ¼ f a1ð Þ sin 2 ka1 � xtð Þ þ g a1ð Þ cos 2 ka1 � xtð Þ: (26)

Substituting Eq. (26) in the left side of the Eq. (25),

�4k
dg

da1

þ d2f

da2
1

� �
sin2 ka1 � xtð Þ

þ d2g

da2
1

þ 4k
df

da1

� �
cos2 ka1 � xtð Þ

¼ � u2
1

2
G2k3sin2 ka1 � xtð Þ: (27)

By equating coefficients of the sinusoidal terms in Eq. (27),

we obtain,

� 4k
dg

da1

� d2f

da2
1

� �
¼ u2

1

2
G2k3: (28)

d2g

da2
1

þ 4k
df

da1

� �
¼ 0: (29)

Assuming that d2g=da2
1 ¼ 0 and df=da1 ¼ 0, turns Eqs. (28)

and (29) into consistent solution that leads to the determina-

tion of

u 2ð Þ ¼ � u2
1k2

8
a1G2cos 2 ka1 � xtð Þ: (30)

Now u 3ð Þ will be evaluated by repeating the same process for

the third order. Thus, considering the third order contribution

to the nonlinear wave equation,

@2u

@t2
� c2 @

2u

@x2
¼ c2 G3

2

@u

@x

� �2 @2u

@x2
(31)

and substituting Eq. (23) into the right side of the Eq. (31),

@2u

@t2
� c2 @

2u

@x2
¼ �c2 G3

8
u3

1k4

� sin ka1 �xtð Þ þ sin 3 ka1 �xtð Þ�: (32)½

The solution to Eq. (32) is obtained by assuming a general

solution in the following form,

u 3ð Þ ¼ w a1ð Þsin 3 ka1 � xtð Þ þ y a1ð Þsin ka1 � xtð Þ
þ q a1ð Þcos 3ðka1 � xtÞ þ p a1ð Þcos ka1 � xtð Þ: (33)

Substituting Eq. (33) into the left side of the Eq. (32),

� dw

da1

6k cos 3 ka1 � xtð Þ � dq

da1

6k sin 3 ka1 � xtð Þ
�

þ d2w

da2
1

sin 3 ka1 � xtð Þ þ d2q

da2
1

cos 3 ka1 � xtð Þ

þ dy

da1

2k cos ka1 � xtð Þ � dp

da1

2k sin ka1 � xtð Þ

þ d2y

da2
1

sin ka1 � xtð Þ þ d2p

da2
1

cos ka1 � xtð Þ
�

¼ �G3

8
u3

1k4 sin 3 ka1 � xtð Þ þ sin ka1 � xtð Þ½ �: (34)

By equating coefficients of the sinusoidal terms in Eq. (34),

it can be followed that

FIG. 5. (Color online) G3 model

comparisons: constant geometrical

crack parameters and variable geo-

metrical crack parameters.
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dy

da1

2k þ d2p

da2
1

¼ 0; (35)

dp

da1

2k� d2y

da2
1

¼ G3

8
u3

1k4; (36)

� dw

da1

6k� d2q

da2
1

¼ 0; (37)

dq

da1

6k� d2w

da2
1

¼ �G3

8
u3

1k4: (38)

Assuming that d2p=da2
1 ¼ 0, dy=da1 ¼ 0, d2q=da2

1 ¼ 0, and

dw=da1 ¼ 0, allows us to evaluate q a1ð Þ and p a1ð Þ as,

p ¼ �G3

16
u3

1k3a1; (39)

q ¼ �G3

48
u3

1k3a1: (40)

Using Eqs. (22), (23), (30), (39), and (40), it is possible to

build the third order solution of the nonlinear wave equation,

u ¼ u1sin ka1 � xtð Þ � u2
1k2

8
a1G2 cos2 ka1 � xtð Þ

� G3

16
u3

1k3a1

1

3
cos3 ka1 � xtð Þ þ cos ka1 � xtð Þ

� �
: (41)

Equation (38) provides a relation between the experimental

measurement of the frequency spectra harmonics of the

recorded time domain waveforms and the solution of the Eq.

(18), indeed,

A1 ¼ u1 �
G3

16
u3

1k3a1; (42)

A2 ¼ �
u2

1k2

8
a1G2; (43)

A3 ¼ �
G3

48
u3

1k3a1: (44)

Equations (42) and (44) suggest that, considering A1 � u1,

G3 may be obtained as

G3 �
A3

A3
1

48

k3a1

: (45)

Then using Eq. (45), it is possible to experimentally assess

the cubic nonlinearity parameter and validate the model pre-

sented in Sec. II.

V. EXPERIMENTAL VALIDATION

Five AA2024-T351 specimens were fatigued at a rate of

10 Hz under uniaxial, stress-controlled load at 10 KN and

stress ratio rmin=rmax ¼ 0. The geometry of the samples

with four holes is shown in Fig. 6. To initiate fatigue the

crack, 500 lm notches were made in correspondence to the

hole no. 1 in direction of the hole no. 2. The ultrasound

wave propagation area is 3 mm thick.

Purely sinusoidal ultrasonic waves of amplitude 30 Vpp

(amplified from 10 Vpp) and frequency 5 MHz were used

and recorded using a 1 cm diameter piezoelectric transducer.

The signal generation was performed by a TTI 1200 series

signal generator. Signals were recorded by Picoscope 4000

series digital oscilloscope. Time-domain and frequency do-

main signals were obtained by Picoscope relevant software.

Measurements of G2 and G3 were made in the manner

described in Sec. IV. at five different crack lengths: 2, 5, 10,

15, and 20 mm, corresponding to 67%, 86%, 94%, 97%, and

�100% of the fatigue life and, respectively, to 10%, 25%,

50%, 75%, and �100% of damage; therefore the initiation

stage represents, as expected, the preponderance of the fa-

tigue lifetime.25 Results are presented in Figs. 7 and 8 and

are compared with the models proposed.

Thus experimental data show good agreement with the-

oretical models, confirming the predicted higher values of

G3 in comparison to G2, therefore making the cubic nonli-

nearity parameter preferable for higher sensitivity to fatigue

crack. Moreover, constant parameter model seems to

describe adequately G3 and G2 progression up 50% of dam-

age, then the VGCP model highlights a better agreement to

the experimental data.

In particular, the experimental data show that good

agreement with CGCP model in the initial propagation phase

until 25% of the crack size for the G3 while about 50% for

G2. In the last phase of the crack propagation stage, the

experimentally measured CGCP model of G2 and G3 under-

estimates the model derived. On the other hand, the VCGP

FIG. 6. (Color online) Specimens

geometry and experimental setup,

dimensions in mm.
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model underestimates the initial propagation phase; how-

ever, it better describes the final propagation stage of the

rupture mechanism with a very good correlation. This is

more pronounced for G2 than G3 model.

This excellent correlation shows that it is possible by

using the CGCP and VGCP models to estimate the remain-

ing fatigue life by measuring experimentally measuring the

G2 and G3 as discussed in the following section.

VI. RESIDUAL LIFE PROCEDURE

The procedure to estimate the residual life of a metallic

structure is as follows (Fig. 9):

(1) Estimate the type of fatigue loading of the component,

i.e., rmin/rmax.

(2) Measure the crack size in function of the fatigue life per-

centage using the following equation

R ¼ f R
1�m=2
f � R

1�m=2
0

� �
þ R

1�m=2
0

h i 1�m=2ð Þ�1

:

(3) Use the following equation to obtain the theoretical quad-

ratic and cubic nonlinearity curve as a function of crack

size and fatigue life,

G2 ¼
bN0G2

1

7
and G3 ¼

cN0G3
1 1� 27G1b

2N0

49c

� �
9

:

(4) Then measure experimentally the second and third order

nonlinearity parameter. Then using the curve shown in

the following text, enter the measured value to get an esti-

mation of the residual fatigue life and crack size.

The proposed approach has clearly some limitations that

are discussed in the following text.

FIG. 7. (Color online) Experimental

results and model predictions for G2.

FIG. 8. (Color online) Experimental

results and model predictions for

G3.
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(1) For the structure investigated, the crack locations was

known. Therefore this approach is suitable to assess re-

sidual life of a hot-spot where the location and possibly

the crack propagation direction is known.

(2) The cyclic loading was defined, and consequently the

stress experienced by the material. However, real life

structures experience random and unknown loads, and

therefore the value of the measured nonlinearity parame-

ter could differ from the theoretical value calculated

using a zero rmin/rmax ratio.

(3) Because the amplitude of the second and third order har-

monics are smaller than the excitation signal, the presence

of material attenuation and equipment noise could yield

an unclear signal, therefore the sensors should be located

within a sensible distance from the actual crack location.

Moreover, high signal amplification may be needed.

(4) The present model is valid for non-interacting crack,

therefore the presence of multiple cracks, crack branch-

ing, etc., cannot in principle be used with this approach,

and new methods are needed to be developed to cope

with these failure cases.

(5) For some materials, the value of the third harmonic may

be much smaller than the second harmonic. This poses

significant challenges on the experimental equipment to

be used. However, for material with hysteretic type of

damage, this approach would be preferable because the

material may generate only third harmonics.

(6) Because the initial nucleation phase and final breakdown

phases are not taken into account in this procedure, the

relationship between the quadratic and cubic nonlinear-

ity and crack size/fatigue life is valid mainly for the fa-

tigue stable propagation phase.

VII. CONCLUSIONS

In this paper, a procedure is presented to predict the resid-

ual fatigue life and crack propagation of a metallic structure

using nonlinear guided waves. The method is based on the

measurement of the third order acoustic nonlinearity. A math-

ematical derivation was presented to estimate the cubic and

quadratic nonlinearity parameter by combining the Paris law

to the Nazarov–Sutin crack nonlinearity equation for cracks

that evolve during fatigue mechanisms in metals with variable

and constant crack geometrical parameters hypothesis.

Experimental tests conducted on AA2024-T351 speci-

mens, containing fatigue fracture of different lengths,

showed very good correlation was obtained for the CGCP

model up to 50% crack size for G2 and 25% for the G3 pa-

rameter. The VCGP provided better correlation in the final

phase of the crack propagation. The results showed different

order of magnitude of G2 and G3. The latest parameter pos-

sesses a higher sensitivity than G2 making it a better experi-

mental parameter to measure fatigue life.

The overall results showed clearly that by measuring the

G3 nonlinearity parameters, it is possible to estimate crack

size and residual fatigue life. Finally, advantages and limita-

tions of the procedure were also discussed.
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