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Abstract 

An atlas or catalogue of mechanisms provides a useful aid in the synthesis of 
mechanisms for new applications. The atlas stores mechanisms together with 
their coupler paths. Fourier techniques can be used as a convenient means for 
representing, in normalized form, curves for planar mechanisms. This paper 
looks at the extension to spherical four-bar mechanisms. In particular, a 
means for projecting a spherical curve onto a plane is discussed which depends 
only on the geometry of the curve and not on the choice of world coordinate 
system. 

Keywords: spherical mechanism, four-bar mechanism, mechanism 
synthesis, atlas, catalogue, Fourier series 

1. Introduction 

Mechanisms and, in particular spherical mechanisms, have a wide range 
of uses. These include function and motion generation, possibly between 
given precision points [1, 2] or to achieve given spatial re-orientations of an 
object [3]. Spherical mechanisms can be used as grippers [4] or wrists [5, 6] 
within robotic systems; and a recent extension of this is to robotic surgery 
[7, 8]. They have also been proposed as means of establishing orientations 
in aerospace [9] and of creating flapping wings for emulating natural flight 
[10, 11]. 

One area of design interest is that of mechanism synthesis. Here mech
anisms which can potentially achieve a given task are sought. Many search 
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methods have been proposed to deal with the synthesis problem (for example 
[12, 13, 14, 15]). These use optimization techniques to change a given mech
anism to one which more accurately generates a prescribed path, usually a 
coupler path. 

The success of these approaches depends upon the mechanism selected 
to start the search process. One approach to obtaining a good start point 
is the use of some form of atlas or catalogue of mechanisms. Before easy 
access to computer systems was available, such atlases were provided in the 
form of printed books [16]. Today, computer-based atlases are possible. In 
use, the curve to be generated is specified. The atlas is then searched and 
the best ten or so mechanisms are made available [17]. This allows the 
designer some choice of which to use as the starting point for finding a more 
optimal solution and, if required, additional constraints on performance can 
be imposed [18, 19, 20, 21]. In setting up an atlas, some means of recording 
the properties of the coupler curve needs to be employed. Methods that have 
been investigated include the use of wavelets [22], and the purely geometric 
properties of the curve [23], in particular its curvature [24]. 

Much of the previous work on atlases has been concerned with planar 
mechanisms. There has however been recent interest in atlases for spherical 
mechanisms, in particular four-bar linkages [25, 26]. The approach used is 
to describe the coupler curve in terms of Fourier coefficients, an approach 
which works well for planar curves [27, 28]. The task is more difficult when 
the curve lies on a spherical surface. The solution previously adopted [25, 26] 
is to project the curve onto a plane perpendicular to the x-axis of the world 
coordinate system. The choice of a specific axis seems somewhat arbitrary 
(although any four-bar mechanism can be re-oriented so that the fixed pivot 
for the crank link lies on this axis). There appears also to be the possibility 
that some detail of the coupler curve may lost. This occurs, for example, if 
the curve is distant from the x-axis and so presents a projected profile which 
is roughly a circular arc rather than a closed curve. 

The purpose of this paper is to present an alternative means of projection 
which takes account of the purely geometric properties of the curve and so 
does not depend on the particular orientation of the axes. This new approach 
is also different in that it fits the given curve to a sphere as a separate part of 
the process. This is useful as it provides a measure of how closely the curve 
lies on a sphere. Furthermore it can be used to normalize the curve so that 
it lies on a unit sphere centred at the origin. This helps during comparison 
with the curves generated by mechanisms in the atlas. 
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Section 2 reviews the use of Fourier coefficients for describing a planar 
curve. Geometric meaning can be assigned to the coefficients for low harmon
ics, and this allows curves to be normalized to remove the effects of differences 
due to scaling, translation and rotation. Section 3 gives an overview of the 
approach used here for creating and then using an atlas of spherical four-bar 
mechanisms. The procedure for projecting a closed curve onto a plane depen
dent upon its geometry is given in section 4, and the method for finding the 
best sphere fitting the given curve is given in section 5. Section 6 discusses 
how optimization techniques can be used to improve the match between a 
curve from the atlas and the required path. Section 7 provides an example 
of using an atlas to find spherical mechanisms to generate a given curve, and 
section 8 draws some conclusions. 

2. Fourier representation 

The use of Fourier coefficients to represent closed planar curves [28] is 
here briefly reviewed. For convenience, the curve is regarded as being made 
up of discrete points and these are taken to lie in the complex plane. This 
means that the typical point is a complex number of the form 

z(t) =  x(t) +  iy(t) 

where i is the square root of −1 and  t  is a parameter (which might for 
example represent time). For simplicity, it is assumed that the parameter is 
normalized to run between 0 and 1 as the curve is traced out, with z(0) = 
z(1). 

The standard Fourier theory (assuming that z(t) satisfies Dirichlet’s con
ditions [29]) says that z(t) can be represented as the doubly infinite series 

z(t) =  cm exp(2�imt) 
m=−� 

where the constant coefficients cm are normally non-real and are given by 

� 1 
cm = exp(−2�imt)z(t) dt (1) 

0 

with the integral being over a full cycle. 
For convenience, the coefficient c0 is called the fundamental, coefficients 

c1 and c−1 are regarded as forming the first harmonic, coefficients c2 and c−2 

the second harmonic, and so on. 
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It is unlikely, in practice, that a required output curve is available as an 
explicit function. It is often more convenient to describe the curve in terms 
of a sequence of points lying along it. This means that the integrations need 
to be carried out numerically. Suppose that N points are prescribed along 
the curve 

z0, z1, z2, . . . , zN−1  

and this sequence is treated as being circular in the sense that zk+N is the 
same point as zk. 

There are two cases that can be considered. Suppose that the points 
correspond to equally spaced values of the parameter t, which is regarded as 
representing the time taken in travelling along the curve. The step length 
for numerical integration is (1/N). The trapezium rule gives the following 
approximation for the Fourier coefficients. 

N−11 � 
cm = zk exp(−2�imk/N)  (2)  

N 
k=0 

This is the time dependent case. If some of the points are given close 
together, then progress around the curve is slowed down. If others are spaced 
out, then the speed is greater. The time independent case, in which the points 
simply represent the geometry of the path, can be dealt with similarly [28]. 

There are certain properties of the Fourier coefficients which can be drawn 
out. When m = 0, equation (1) states that the fundamental coefficient, c0, is  
simply the average of all the points along the path. It thus represents their 
centroid. When dealing with a path defined by discrete points, equation (2) 
shows that this coefficient is the average of the given points. 

This means that z(t) − c0 is a closed curve whose centroid is at the origin 
of the complex plane. 

The first harmonic terms form the function 

z1(t) =  c1  exp(2�it) +  c−1  exp(−2�it) 

which can be rewritten as 

z1(t) = exp(i�)[(r1 + r−1) cos(2�t + �) +  i(r1  −  r−1) sin(2�t + �)] 

where 
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r1 = |c1| 
r−1 = |c−1|

� = [arg(c1) + arg(c−1)]/2 

� = [arg(c1)  −  arg(c−1)]/2 

In the expression for z1(t), the term in the square brackets generates an 
ellipse. Its centre is at the origin of the complex plane and its semi-major 
and semi-minor axes are of lengths (r1 +r−1) and  (r1  −r−1) respectively. The 
ellipse is multiplied by the complex exponential exp(i�) which has the effect 
of rotating it through an angle � anticlockwise. 

If r1 > r−1, then the semi-major axis has positive length and this means 
that the ellipse is traced out anticlockwise as t varies from 0 to 1. If r1 < r−1,  
then the ellipse goes clockwise. If r1 = r−1, then the ellipse reduces to a 
straight line lying at angle � to the real axis. 

The same idea also applies to the higher harmonics. The expression 

zm(t) =  cm  exp(2�imt) +  c−m  exp(−2�imt) 

again represents an ellipse centred at the origin. However, as the parameter 
t goes from 0 to 1, this ellipse is traced out m times. 

Figure 1 shows an example of building up a given closed curve from its 
harmonics. The main part of the figure shows the original curve itself. Part 
1 shows the ellipse formed by c0 and the first harmonic terms. In part 2, 
the second harmonic terms are added in, and so on, with part 5 giving the 
result of the partial sum of the Fourier series up to and including the fifth 
harmonic. It is seen that the original curve is reproduced accurately with just 
three harmonics (except for the sharp corner which is not well represented 
until higher harmonics are introduced). Table 1 gives the complex Fourier 
coefficients of the fundamental and first five harmonics. What is seen is that 
the (absolute) values of these decrease for the higher harmonics. 

It is possible to use the Fourier coefficients to perform normalization on 
the curve [28]. As noted above, the centroid can be moved to the origin by 
translating through −c0. For the new curve c0 becomes zero. The coefficients 
for the first harmonic are next used. The curve is rotated through angle −� 
which tends to align the largest diameter across the curve with the real axis. 
This has the effect of multiplying the Fourier coefficients by exp(−i�). 
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Figure 1: Approximations to a closed curve using partial sums of harmonics 

If |c1| > |c−1|, then the curve is traced out in the anticlockwise sense. 
If this inequality does not hold, then all the cm and c−m are interchanged. 
The value of |c1| can be regarded as a scaling factor. The curve is further 
normalized by dividing all the Fourier coefficients by |c1|. 

The next step is to adjust the point of the curve where the parameter is 
zero. The normalization undertaken so far has reduced c1 to exp(i�). If the 
parameter t is replaced as follows 

t �� t + �/2� 

then the Fourier coefficient cm becomes cm exp(−i�). In particular, the coef
ficients for the first harmonic become purely real, with c1 = 1 and  c−1  =  r−1.  

The final piece of normalization relates to the coefficient c−2 which is re
lated to the second harmonic. Its real and imaginary parts are both made 
positive as follows. If its real part is negative, then the signs are reversed of 
the real parts of the even coefficients and the imaginary parts of the odd coef
ficients. This corresponds to a reflection in the imaginary axis (although it is 
more convenient to obtain it by a reflection in the real axis and incrementing 
� and � by �). If the imaginary part of c−2 is negative, then the signs of 
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m cm 

-5 −0.027 − 0.080i 
-4 0.096 − 0.103i 
-3 0.315 + 0.151i 
-2 0.301 + 0.006i 
-1 −2.875 − 5.511i 
0 2.445 + 4.261i 
1 0.212 + 1.138i 
2 −0.336 + 0.157i 
3 −0.120 − 0.097i 
4 0.073 − 0.037i 
5 0.029 + 0.071i 

Table 1: Fourier coefficients for closed path in figure 1 

the imaginary parts of all the coefficients are reversed. This is equivalent to 
a reflection in the real axis. 

These various normalization steps leave the curve and its Fourier param
eters in a standard form. The overall normalization process represents a 
transformation of the plane. Of course, the original curve can be recovered 
by applying the inverse transform to the normalized points. 

3. Approach 

The typical spherical four-bar mechanism is shown in figure 2. It com
prises three moving links: the crank AB, the coupler BC, and the driven 
link CD. The pivots A and D are fixed on a sphere. The sphere is assumed 
to have unit radius with its centre at the origin. The links can be regarded 
as arcs of great circles and their lengths are equal to the angles subtended at 
the centre of the sphere. Let |DA| = a0, |AB| = a1, |BC| = a2, |CD| = a3. 

The point P is an offset point which moves with the coupler link BC. As  
the mechanism cycles, P traces out a coupler curve. The position of P can 
be specified in a number of ways. One way is shown in figure 3. This shows 
the coupler link (in its own local coordinate system) lying on a sphere with 
centre O with the link itself represented by the arc BC lying in the (local) 
xy-plane. End B lies on the x-axis. Plane OPF is perpendicular to plane 
OBC. The angles π and θ shown in the figure then determine the position 
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of P . The lengths of the great arcs BP and CP are given as follows [30]. 

b1 = |BP | = cos  −1[cos(θ) cos(π)] 

b2 = |CP | = cos  −1[cos(θ) cos(a2  −  π)] 

A 

B D 

b2 C 
P 

a1 

a2 

a3 

b1 

Figure 2: Notation for spherical four-bar mechanism 

To construct an atlas of mechanisms, a means is required for obtaining a 
normalized form of the coupler curve for a given mechanism. An overview 
is given here and more details are added in later sections. In order to apply 
the Fourier technique of section 2, the coupler curve needs to be converted 
to a planar curve. A central axis is constructed (as discussed in section 4) 
which passes through the “middle” of the curve. This depends purely upon 
its geometry and is independent of the coordinate system used. Figure 4 
shows a curve (part 1) and its central axis (part 2). It is straightforward to 
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Figure 3: Notation for coupler link 

find a rotation (about an axis through the origin) of the sphere which brings 
the central axis into the positive z-direction (part 3 of figure 4). The curve is 
now projected onto the xy-plane as shown in part 4 of the figure (cf. section 
4). 

The Fourier normalization is now applied to the planar curve. Impor
tantly, no translation of the curve can be allowed as this would move it away 
from the sphere. So the central axis is chosen so that the centroid of the 
curve lies at the origin of the plane and no translation is needed. The nor
malizing transform requires a rotation of the curve (about the central axis) 
as shown in part 5 of figure 4. It may also require a scaling and a reflection 
as discussed in section 2. 

The curve and the mechanism that creates it can now be added to the 
atlas. The mechanism parameters a0, a1, a2, a3, π, θ are stored together with 
details of the normalizing transform and the first few Fourier coefficients of 
the curve. For the examples used here, the fundamental and the first five 
harmonics are used. Since the dyad formed by the coupler and driven links 
can assemble in either of two ways, it is also necessary to record which one is 
used. This can be done by storing, for one position in the cycle, the angular 
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orientations of the crank and driven links with respect to the base arc AD, 
and the orientation of the coupler with respect to the crank. 

1 2 3 4 

8 7 6 5 

Figure 4: Normalizing a curve and unnormalizing a mechanism 

The full atlas is created by building a parametric model of the spherical 
four-bar mechanism and then running this over combinations of variations 
in the values of the six parameters a0, a1, a2, a3, π, θ. Since part of the 
normalization process is the rotation to bring the central axis into the z-
direction, there is no need to consider variations in the positions of the pivots 
A and D. It is sufficient to take (say) A along the positive x-axis and for D 
to lie in the xy-plane. 

When each variant mechanism is run, it is checked to see that it completes 
a full cycle and that the coupler curve returns to its start point. If these tests 
fail, then of course the mechanism is not entered into the atlas. Other tests 
for suitability can be applied: for instance, that the transmission angles 
between pairs of links lie in acceptable ranges. 

When the atlas is used, the procedure is similar. A closed curve is spec
ified. It assumed that this lies on (or close to) a sphere. The centre and 
radius of this sphere are found using a least squares technique (cf. section 
5). The path is translated so that the centre of the sphere lies at the origin, 
and scaled so that the radius is unity. 

The curve is then normalized by finding its central axis, rotating this into 
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the z-direction, projecting the curve onto the xy-plane, and applying the 
Fourier normalization (parts 1-5 of figure 4). Suppose that Tc is the overall 
transform applied to the curve. 

The Fourier coefficients of the curve cm are now found. These are now 
compared with the coefficients cm 

� of each entry in the atlas. The measure of 
closeness is 

|cm − c � |2 
m

(where the sum is for the first few harmonics that are used) and the en
tries with the lowest scores are extracted. Part 6 of figure 4 shows such a 
mechanism and the curve it generates. If Te is the transform applied to the 
extracted mechanism when it was stored, then the transform Tc 

−1Te is applied 
to the mechanism (in its original coordinate system) to obtain a mechanism 
generating approximately the given path (in its original coordinate system). 

The purpose of the atlas is not to find a perfect match with a given curve, 
but instead to provide a starting point from which to search for a suitable 
mechanism. Optimization techniques can be applied to improve the match 
(part 8 of figure 4). Many methods are available for such optimization and 
their use is discussed in section 6. 

As seen in parts 6 and 7 of figure 4, the approximating curve may not lie 
on a unit sphere because of the scaling applied when it was stored. So it is 
necessary during the optimization process, to reset this radius to unity. 

It is of course possible, when the atlas is created, not to invoke the scal
ing part of the Fourier normalization so that the radius is always correct. 
However, allowing scaling to take place gives potentially a greater selection 
of possible approximations and, for this reason, scaling is used in the atlas 
here. 

Rather than just finding the closest match in the atlas, it is also worth 
selecting the closest first few and presenting these to the user. It is likely these 
alternative mechanisms are different and some may be more acceptable (as 
starting points) than others in view of additional constraints that need to be 
taken into account, perhaps regarding positions of the pivots and avoidance 
of clashes. 

4. Creating a planar curve 

This section considers the projection of a closed curve on the surface of a 
sphere onto a plane. It is assumed that the sphere has unit radius and that 
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its centre lies at the origin O. If  a  point  Q  on the surface of the sphere is 
chosen, then a gnomonic or central projection [31] can be used, mapping the 
sphere onto the plane through Q perpendicular to the radial line OQ. Figure  
5 shows the projection. If r is the position vector of a point on the sphere, 
then its image R is 

⎢ � 
1 

R = r 
r · q 

where q is the position vector of Q relative to the origin. It is radial line OQ 
that is used as the central axis in the approach given in section 3. Care in 
the choice of Q is needed as is now discussed. 

Figure 5: Gnomonic projection 

Suppose that the given curve on the sphere is r(s) where  s  represents arc 
length along that curve. Then for the corresponding projected curve R(s), 

dR 1 � � = [(r · q)r − (r · q)r]
ds (r · q)2 
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where the dash denotes differentiation with respect to s. Using the facts that 
r · r = 1 =  r�  ·  r�  and r · r� = 0, it follows that 

(r · q)4 R� · R� = (r  ·  q)2  + (r  �  ·  q)2  

Let S denote arc length along the projected curve. Then |R�| = dS/ds, 
and hence 

⎡ ⎤dS 
= 

1
(r · q)2 + (r  �  ·  q)2  

1
2  

ds (r · q)2 

The projection used needs to ensure that the Fourier coefficient c0 of the 
projected curve is zero, so that no translation is required in its normalization 
(cf. section 2). Since c0 represents the centroid of the curve by equation (1), 
consider C the position vector of centroid of the projected curve relative to 
Q. If  L  is the total length of the projected curve, then 

� ⎣ � ⎦ 

LC = [R(s) − q] dS  =  R(s) dS  −  Lq  

and 

dS 
L(q + C) =  R(s) ds  

ds  

�  1 ⎡ ⎤1 
=

(r · q)3 
(r · q)2 + (r  �  ·  q)2 2  r  ds  (3) 

The requirement that C = 0 leads to the following eigen-problem whose 
solution is q. 

� 1 ⎡ ⎤ 
Lq = 

1
(r · q)2 + (r  �  ·  q)2 2  r  ds  (4)

(r · q)3 

It is possible to solve equation (4) directly by numerical methods. An 
alternative is to minimize the right hand side of equation (3) with respect to 
variation in the unit vector q. 

However, as the atlas is only intended to provide starting points for mech
anism searches, great accuracy in the choice of q is not necessary. So consider 
the following approximation. Assume that the curve is “small” and lies close 
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to the point Q. Then for all points r(s) on the given curve, r · q � 1 and  
r�  ·  q  �  0. Equation (4) now becomes 

Lq = r(s) ds  (5) 

Thus the vector q can be found by evaluating the integral in equation 
(5), and this only involves the given curve. 

If the curve is specified as a sequence of N discrete points ri for 0 � i � 
N − 1, then the integral can be evaluated using the trapezium rule. This 
leads to the following expression for q 

N−1 

q = α 1 (ri+1 + ri) |ri+1 − ri| (6)
2 

i=0 

where the sequence is regarded as being circular, so that rN = r0, and  α  is 
the scalar factor required to make q a unit vector. This provides the central 
axis OQ for normalizing the given curve. 

5. Spherical fitting 

It is necessary to consider how to find a best fit sphere through a given 
collection of 3D points. Suppose that n points are given with coordinates 
(xi, yi, zi) for 1 � i � n. If the best fit sphere through these points has radius 
R and centre at (X, Y, Z), then its equation is 

(x − X)2 + (y  −  Y  )2  + (z  −  Z)2  −  R2  = 0  

So a measure ei of the error at point i is 

ei = ri 
2 − 2Xxi  −  2Y yi  −  2Zzi − K 

where 

2 2 2 2 ri = xi + yi + zi 

and 

K = R2 − X2 − Y 2 − Z2 

Then the total error E can be measured as 
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� � 

� 

� 

� 

� 

n n 

E = e 2 
i = [ri 

2 − 2Xxi  −  2Y yi  −  2Zzi − K]2 

i=0 i=0 

Following the usual least squares approach, E is treated as a function of 
X, Y , Z and K. When E is minimal, its partial derivatives are zero. 

βE n 

= −4 [ri 
2 − 2Xxi  −  2Y yi  −  2Zzi − K]xi = 0  

βX i=0 

βE n 
2 = −4 [ri − 2Xxi  −  2Y yi  −  2Zzi − K]yi = 0  

βY i=0 

βE n 

= −4 [ri 
2 − 2Xxi  −  2Y yi  −  2Zzi − K]zi = 0  

βZ i=0 

βE n 
2 = −2 [ri − 2Xxi  −  2Y yi  −  2Zzi − K] = 0

βK i=0 

These represent a system of linear equations for finding the four un
knowns. The system can be rewritten in matrix form 

� n n n n � � n � 

� 
� 

x 2 
i 

� 
xiyi 

� 
xizi 

� 
xi � � 

� 
r 2 
i xi � � i=1 i=1 i=1 i=1 � � i=1 � � � � � � � � � 2X � � � � � � � n n n n � � � � n � � � � � 

� 

i=1 

xiyi 

� 

i=1 

y 2 
i 

� 

i=1 

yizi 

� 

i=1 

yi 
� � � � 

� � � � 2Y 
� � � � 

� � � � 

� 

i=1 

r 2 
i yi 

� � � � � � 
� � 
� � 

� � = � � 
� � (7) � � � � 

n � 
xizi 

n � 
yizi 

n � 
z 2 

i 

n � 
zi 

� � � � 

� � � � 
2Z 

� � � � 

� � � � 

n � 
r 2 
i zi 

� � � � � i=1 i=1 i=1 i=1 � � � � i=1 � � � � � � � K � � � � � � � n n n n � � n � � � 
xi 

� 
yi 

� 
zi 

� 
1 � � � 

r 2 
i 
� 

i=1 i=1 i=1 i=1 i=1 

where 
� n 

i=1 1 =  n, the  number  of  points.  
As an example, consider the set of 64 points around the 3D path given in 

Table 3 of [25]. Setting up and solving equation (7) yields: X = 10, Y = −5, 
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Z = −6, and R = 2.7. Furthermore, evaluation of the error at each point 
shows that they lie exactly on this sphere (at least to the accuracy with which 
the points themselves are given). So the proposed path can be “normalized” 
by translating the centre of the sphere to the origin and then applying a scale 
factor of 1/R to create a unit sphere. Table 2 gives the resultant points and 
they are also shown in figure 6. 

1 ( 0.85737, -0.18481, 0.48037 ) 33 ( 0.7887, -0.60370, 0.11578 ) 
2 ( 0.82985, -0.20167, 0.52030 ) 34 ( 0.80152, -0.59270, 0.07900 ) 
3 ( 0.80241, -0.21996, 0.55478 ) 35 ( 0.81378, -0.57959, 0.04311 ) 
4 ( 0.77567, -0.23967, 0.58389 ) 36 ( 0.82552, -0.56433, 0.00841 ) 
5 ( 0.75011, -0.26056, 0.60785 ) 37 ( 0.83678, -0.54700, -0.02478 ) 
6 ( 0.72607, -0.28244, 0.62693 ) 38 ( 0.84759, -0.52763, -0.05611 ) 
7 ( 0.70381, -0.30515, 0.64152 ) 39 ( 0.85807, -0.50641, -0.08530 ) 
8 ( 0.68352, -0.32833, 0.65193 ) 40 ( 0.86819, -0.48344, -0.11200 ) 
9 ( 0.66533, -0.35185, 0.65844 ) 41 ( 0.87804, -0.45889, -0.13596 ) 

10 ( 0.64933, -0.37537, 0.66144 ) 42 ( 0.88763, -0.43304, -0.15689 ) 
11 ( 0.63559, -0.39867, 0.66115 ) 43 ( 0.89704, -0.40611, -0.17448 ) 
12 ( 0.62415, -0.42159, 0.65781 ) 44 ( 0.90626, -0.37837, -0.18848 ) 
13 ( 0.61504, -0.44389, 0.65167 ) 45 ( 0.91537, -0.35022, -0.19867 ) 
14 ( 0.60833, -0.46541, 0.64293 ) 46 ( 0.92433, -0.32193, -0.20481 ) 
15 ( 0.60396, -0.48596, 0.63170 ) 47 ( 0.93322, -0.29396, -0.20667 ) 
16 ( 0.60196, -0.50548, 0.61819 ) 48 ( 0.94196, -0.26667, -0.20400 ) 
17 ( 0.60230, -0.52381, 0.60241 ) 49 ( 0.95052, -0.24048, -0.19667 ) 
18 ( 0.60485, -0.54085, 0.58448 ) 50 ( 0.95885, -0.21581, -0.18441 ) 
19 ( 0.60959, -0.55656, 0.56448 ) 51 ( 0.96685, -0.19315, -0.16707 ) 
20 ( 0.61637, -0.57081, 0.54244 ) 52 ( 0.97430, -0.17289, -0.14452 ) 
21 ( 0.62500, -0.58363, 0.51844 ) 53 ( 0.98096, -0.15541, -0.11656 ) 
22 ( 0.63530, -0.59489, 0.49248 ) 54 ( 0.98652, -0.14104, -0.08315 ) 
23 ( 0.64700, -0.60456, 0.46467 ) 55 ( 0.99052, -0.13007, -0.04430 ) 
24 ( 0.65989, -0.61259, 0.43507 ) 56 ( 0.99244, -0.12263, -0.00019 ) 
25 ( 0.67370, -0.61896, 0.40378 ) 57 ( 0.99174, -0.11870, 0.04874 ) 
26 ( 0.68811, -0.62363, 0.37093 ) 58 ( 0.98774, -0.11822, 0.10185 ) 
27 ( 0.70293, -0.62652, 0.33674 ) 59 ( 0.98000, -0.12085, 0.15807 ) 
28 ( 0.71789, -0.62759, 0.30133 ) 60 ( 0.96819, -0.12626, 0.21604 ) 
29 ( 0.73274, -0.62678, 0.26500 ) 61 ( 0.95226, -0.13415, 0.27426 ) 
30 ( 0.74737, -0.62404, 0.22800 ) 62 ( 0.93252, -0.14411, 0.33115 ) 
31 ( 0.76167, -0.61933, 0.19059 ) 63 ( 0.90956, -0.15600, 0.38515 ) 
32 ( 0.77544, -0.61256, 0.15307 ) 64 ( 0.88422, -0.16959, 0.43519 ) 

Table 2: Points around 3D path from [25] normalized to lie on unit sphere 

6. Improving the match 

The interest of this paper is in how to obtain mechanisms which are close 
to what is required by a design task so that they can be used as starting points 
for seeking better design solutions. However, simply to illustrate what can 
be done, this section briefly reviews the use of optimization techniques to 
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Figure 6: Views of points around 3D path from [25] normalized to lie on unit sphere 

improve the match between the path that is obtained by the selection from 
the atlas and what is required. The improvement step is that suggested in 
part 8 of figure 4. 

A number of methods for undertaking such improvement have appeared 
in the literature (for example [12, 13, 14, 15]). These use various optimization 
schemes to try to improve a suitable measure of the goodness of fit between 
the path generated by a candidate mechanism and given precision points. 

It might be argued that such methods are over-elaborate when the mech
anism is as simple as a spherical four bar linkage. The number of design 
variables is just nine: six are the parameters of the mechanism, and three 
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are those associated with a general rotation (about an axis through the centre 
of a the sphere). This means that any of the standard optimization methods 
(cf. [32]) is usable provided a good “seed” mechanism is available to start 
the search (and this is what the atlas provides). In particular, direct search 
methods are attractive as they do not require (explicit) information about 
derivatives. 

The measure of fit can be a comparison of Fourier coefficients. Effectively 
this is an extension of the approach used to make the selection from the 
atlas. An alternative measure is the root mean square (rms) of the distances 
between corresponding points on the given and approximating curves. 

It is this second measure that is used with the example in section 7. It 
has the advantage that it deals with the actual geometry of the situation 
and so reduces dependency on the assumptions made using the Fourier rep
resentation. These include the use of a limited number of Fourier coefficients 
and the approximation inherent in regarding the curve as being small (sec
tion 4). (Such assumptions are of course of no consequence when the atlas 
is used to select a mechanism as the aim then is simply to find a close ap
proximate match.) The other reason for the choice of measure is that in the 
implementation used to deal with the examples here, the final improvement 
stage was undertaken separately from the use of the atlas. It was carried 
out using a constraint modelling environment (discussed in [33]) and it was 
more straightforward to evaluate the rms measure in the user language of 
that environment. The optimization method used (within the environment) 
was Powell’s direct search method [32] (but other methods work as well). 

7. Example of using the atlas 

An example is given of using an atlas to find spherical four-bar mecha
nisms which can generate a given curve. The atlas is constructed as discussed 
in section 3. For simplicity, the atlas used here is created fairly coarsely with 
the variations in the values of the links lengths being 15 degrees. It is of 
course straightforward to create a more refined version at the expense of a 
larger size. 

The example uses the same curve as given in [25]. It is specified by 64 
points. The first stage here is to find a sphere upon which the points lie. 
This is done in section 5 and it allows the curve to be translated and scaled 
so that it lies on a unit sphere whose centre is at the origin. The resultant 
points are given in table 2. 
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The central axis is found using equation (6) and q is the vector with 
components (0.8836, −0.3920, 0.2560). When the Fourier coefficients of the 
projected planar curve are found, the fundamental is c0 = (8 + 95i)  ×  10−6 , 
which is small and so shows that the approximation inherent in equation (5) 
is justified in this case. 

The planar curve is used as the basis of a search of the atlas. Table 3 gives 
three selections, and these are shown in figures 7, 8 and 9. In the lower part 
of the table, R is the radius of the sphere, and Ax, Ay, Az, Dx, Dy, Dz are 
the coordinates of the pivot points A and D. Mechanism 1 is the best match 
found in the atlas. Mechanism 2 is the next closest match. Mechanism 3 is 
a somewhat poorer match but is chosen here for illustration since its radius 
is significantly different from unity. 

Also shown in the table is the result of improving each of the mecha
nisms by varying their link sizes (a0, a1, a2, a3, π, θ) and orientations (nine 
degrees of freedom in total) and minimizing the root mean square (rms) of 
the distances between corresponding points on the given and approximate 
curves. As noted in section 6, Powell’s direct search method was used for 
this improvement stage. Before the improvement, the rms values are not 
small (partly because the mechanisms have a radius other than unity), but 
after improvement, the values drop to less than 0.02. 

As is clear, the original mechanisms from the the atlas and their im
proved versions are very dissimilar. This is a case where offering the designer 
more than one option from the atlas is helpful as it can allow other design 
considerations to be taken into account. 

8. Conclusions 

When creating an atlas of mechanisms and their coupler curves, a method 
is required to describe the curve and to normalize it (and its mechanism) so 
that duplicates are not stored and the size of the atlas is reduced. The 
use of Fourier coefficients is one way to achieve this for planar curves, and 
this allows normalization to remove the effects of translation, rotation and 
scaling. 

This paper has considered the case of spherical four-bar mechanisms: here 
the coupler path is no longer planar. It has been seen that it is possible to 
find a sphere which is the best fit to a given curve and this allows the curve 
to be normalized (by translation and scaling) so that it lies on a unit sphere 
whose centre is at the origin. 
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1 1 2 2 3 3 
atlas imp’d atlas imp’d atlas imp’d 
90.00 63.22 90.00 50.80 60.00 88.38a0 

90.00 24.88 30.00 25.71 15.00 26.26a1 

90.00 65.07 60.00 42.63 60.00 39.94a2 

90.00 55.64 75.00 35.83 75.00 99.05a3 

π 30.00 31.17 30.00 15.50 30.00 18.11 
θ 0.00 29.32 0.00 15.33 -30.00 -4.90 

30.00 41.75 30.00 21.67 41.41 18.74b1 

30.00 43.64 30.00 30.88 41.41 22.35b2 

R 0.9075 1.0000 0.9055 1.0000 1.6090 1.0000 
0.8550 0.9704 0.5166 0.7383 1.0209 0.7615Ax 

-0.2175 0.1120 -0.4532 -0.3314 0.0013 -0.3613Ay 

-0.2130 -0.2140 0.5897 0.5874 1.2437 0.5382Az 

0.2786 0.4511 0.4412 0.8323 0.2994 0.1093Dx 

0.8149 0.8139 0.7647 0.4695 1.3673 0.8696Dy 

0.2862 0.3661 0.2013 0.2947 0.7936 0.4816Dz 

rms 0.1115 0.0090 0.1180 0.0157 0.6359 0.0170 

Table 3: Three mechanisms selected from atlas and their improved versions 

It has also been shown how to construct a central axis, dependent only 
upon the geometry of the curve, so that the curve can be projected onto a 
plane normal to this axis, independent of the world coordinate system. This 
allows the Fourier technique to be used on the resultant planar curve which 
provides further normalization of the curve (by rotation and scaling). 

An atlas of spherical four-bar mechanisms has been created using these 
techniques and its application to finding mechanisms to generate a given 
curve has been demonstrated. 

The atlas deals with path of the coupler point and matching this with a 
design requirement. Spherical mechanisms have the property of generating 
motions within three dimensional space. So there may be a need not only to 
follow a given path but also to achieve a given orientation (of the local refer
ence frame) at each step: thus it is the full motion that needs to be matched. 
Future work is to consider how to hold both position and orientation within 
the atlas (possibly in Fourier form), and then how to extract good matches 
to meet given motion requirements. A difficulty here is the fact that posi
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Figure 7: Improved version of mechanism 1 from atlas 

tion and orientation are inherently not comparable. For example, position 
involves units of length, whereas an orientation angle is dimensionless. 
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