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Shape Change Along Geodesics with Application to
Cleft Lip Surgery

Julian J. Faraway∗and Carroll-Ann Trotman†

April 28, 2011

Abstract

Continuous shape change is represented as curves in the shape space. A method for check-
ing the closeness of these curves to a geodesic is presented. Three large databases of short
human motions are considered and shown to be well-approximated by geodesics. The mo-
tions are thus approximated by two shapes on the geodesic and the rate of progress along the
path. An analysis of facial motion data taken from a study of subjects with cleft lip/palate is
presented that allows the motion to be considered independently from the static shape. Infer-
ential methods for assessing the change in motion are presented. The construction of predicted
animated motions is discussed.

Keywords: facial motion, functional data analysis, geodesics, landmarks, principal component
analysis, shape analysis

1 Introduction
Shapes can be described by a set of landmarks and can change in two different ways. The shape
as a whole can translate and rotate and possibly change in overall size or the internal relationship
between the landmarks can change. Our application concerns facial soft tissue motion — thus we
are interested in the motion of the face, but not the motion of the head. Hence, we are interested
only in the change in the shape of the landmarks on the face relative to one another and not in
rotations or translations of the landmarks as a whole that would be caused by head motion. Per-
forming statistics on shape data is not easy because shapes lie in a nonlinear space making even
simple operations like averaging difficult. Introductions to shape statistics can be found in Small
(1996), Dryden and Mardia (1998), Bookstein (1991) and Kendall et al. (1999)

Facial motion produces shapes that change continuously in time. Consider a three dimensional
shape specified by k landmarks changing in time as Y (t), which can be viewed as a particular kind
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of 3k-dimensional function of t. In practice, Y (t) will be recorded on a relatively dense grid of
timepoints . We are interested in collections of n shape curves, Y1(t), . . . ,Yn(t) and how they relate
to covariate information in vectors xi for i = 1, . . . ,n. For example, we might want to investigate
the differences between two groups or predict how the shape curve will change as a given predictor
varies. This can be viewed as shape-valued functional data analysis.

Shape changes are represented by curves in the nonlinear shape space (formally Σk
3 as described

in the references above). A geodesic is the shortest curve between two points in this space. We
shall show that the shape curves in our particular data are well approximated by geodesics. We
also show that the shape curves in two other large databases of short human motions are well
approximated by geodesics. Thus a single motion is approximated by a geodesic (which can be
described by its endpoints) and the rate of progress along the geodesic. With this reduction in
dimensionality, modelling becomes substantially easier. Thus we make no claim of a universal
approach to modelling this type of data, rather we present a method that will be effective for some
datasets. In particular, it is only likely to be effective where the variation in the shape space is
relatively small.

We present the context behind our application and the form of the data in Section 2. In Sec-
tion 3, we show how geodesics fitted to the data can form satisfactory approximations. In Sections 4
and 5, we describe the modelling of the reduced data and give our conclusions in Section 6.

2 Facial Motion Data
Cleft lip and/or palate is one of the most common birth defects. Treatment can involve a sequence
of surgeries starting in infancy and extending into the teenage years. The initial surgeries aim to
correct the most severe problems while later surgeries further refine the appearance of the face.
Naturally, much attention is paid to the aesthetics of the face as this is crucial for social interac-
tion. However, the functionality of the face with respect to speaking, eating and expression is also
important, but has received less research attention. There is some concern that surgery designed to
improve the static view of the face might damage muscles and nerves and thus damage function-
ality. See Bardach and Morris (1990), Bardach et al. (1987) and Marsh (1990). Indeed this is a
concern with other types of facial surgery.

Trotman et al. (2007) describes an observational clinical trial designed to measure the effects
of surgery on the facial soft tissue motion of children with cleft lip/palate. Some of the statis-
tical methods developed for this study and referred to in Trotman et al. (2010) are described in
detail in this article. During the trial, three groups of subjects were followed longitudinally for
15 months. One group was comprised of subjects with repaired cleft lip/palate who received lip
revision surgery (revision), a second group included subjects with repaired cleft lip/palate who
did not have a lip revision, and the third group were non-cleft control subjects. Motion data were
collected from all subjects at four time points. For the revision group this data collection occurred
at 3 months and just before lip revision surgery, and then again at 3 and 12 months after surgery.
Data collection for the non-revision and non-cleft groups occurred at similar times. For each of the
four visits, the subjects were instructed to perform six standardised motions - cheek puff, grimace,
lip purse, mouth open, natural and maximal smile. Each motion was repeated five times.
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The data were collected using motion capture technology. Thirty eight small reflective markers
were attached to the face at the locations shown in Figure 1. The 3D locations of the markers were
recorded at 1/60 second intervals for four seconds (five seconds for natural smiles). Thus each
motion is described by 38×3×240 = 27,630 numbers. Testing with known rigid objects reveals
that there are usually relatively small measurement errors. However, some missing data does arise
due to the difficulty in distinguishing markers that are close or other technical problems. Some
larger errors are also observed in these circumstances. Another difficulty is that although anatomy
helps determine the placement of some of the markers, there is some variation in the placement
between subjects and within subjects over successive visits. Indeed, we have some essentially
“pseudo-landmarks”. An analysis of changes in static shape over time would be sensitive to this
variation. However, the adjustment described in Section 4.1 removes much of this variation.
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Figure 1: Location of the 38 face markers. The average static face is shown. Lines suggest the
location of the eyebrows, nose, lips and chin.

Example movies of facial motions can be found in the supplementary material referred to in
the Appendix.

3 Motion on geodesics
A continuous shape change maps out a trajectory in shape space. For example, when k = 3, the
shape space of triangles can be identified with the surface of a sphere. The simplest form that
this trajectory could take is a geodesic, that is the shortest path connecting two points in the shape
space. In practice, we would not expect any observed trajectory to follow a geodesic exactly, but
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we may wish to check whether a geodesic forms a satisfactory approximation. In Euclidean space,
a principal components analysis (PCA) with a dominant first component indicates data that lie
close to a straight line, which would be a geodesic in this space. We project shape data onto a
tangent space with an origin at the mean shape as described in Dryden and Mardia (1998), p. 76
ff. and justified in detail in Kent and Mardia (2001). The PCA is then performed in the tangent
space. Only geodesics in the shape space that pass through the origin will map to straight lines in
the tangent space. If the data lie close to a geodesic passing close to the origin of the tangent space
projection, the first component will be strongly dominant.

An alternative approach to checking for geodesics is found in Le and Kume (2000) where a
multidimensional scaling of the pairwise distance matrix between shapes is performed. Again, a
dominant first component indicates that the shapes lie close to a geodesic. We have chosen to use
the PCA here because it is faster to compute with the large number of shapes in our examples. In
Kenobi et al. (2010), two more sophisticated methods of geodesic fitting based on minimizing the
sums of squares of Procrustes distances are presented. The authors remark that their methods will
agree closely with PCA for shapes that do not vary much, as is the case with the data of interest
here. Kume et al. (2007) presents a spline based method for fitting shape curves beyond geodesics,
but this applies only to planar shape data. In Huckemann and Hotz (2009), the geodesics are
fitted in the shape space, not the tangent space. Again this applies only to planar data, but there
is evidence that fitting the PCA in the tangent space provides good approximations. Kaziska and
Srivastava (2007) describes the fitting of curves to 2D gait data. Because the data take the form
of human silhouettes, the shape space is different, although related issues arise in the analysis.
Another 2D approach to gait modelling that uses statistical ideas about shape can be found in
Veeraraghavan et al. (2005) which also contains extensive references to human motion modelling
in the computer science literature. Fletcher et al. (2004) develop a method called principal geodesic
analysis with application to shapes that are described by boundaries rather than landmarks.

3.1 Closeness to the geodesic for short motions
We computed the PCA on the facial shape motions described earlier using the R shapes package of
Dryden (2009). Each facial motion Y (t) is composed of f shapes Y1, . . . ,Y f where f = 240 (except
for the natural smiles where f = 300). Some preprocessing of the data is necessary. Short gaps of
missing values are interpolated while larger gaps result in the motion being discarded. Erroneous
measurements due to technological deficiencies are screened out. Some care is important here
because PCA for shapes is very sensitive to outliers. Facial motion is smooth and continuous so
there should not be any true outliers. Because each PCA is performed on shapes from a single
individual, there is no reason to expect a change in size during the motion. Therefore, only the
rotation and translation effects were scaled out. We have Yi → Zi in the tangent space and then
PCA on the f ×3k matrix Z where k is the number of landmarks.

The median percentage variance explained in the first two principal components(PC) are given
in Table 1. We see that the first PC is strongly dominant. The dominance of the first PC varies
across the type of motion. The first PC was somewhat more dominant for the control subjects
than the cleft subjects. Given the large sample size, the difference is statistically significant and
may reflect greater irregularity in the motion of cleft subjects. However, no significant longitudinal
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change was observed in those cleft subjects who had surgery.

Cheek Grimace Lip Mouth Natural Maximal Control Cleft
Puff Purse Open Smile Smile

1st PC 82.1 93.6 91.9 98.7 93.6 94.9 94.8 93.0
2nd PC 10.2 3.4 4.3 0.7 3.4 2.9 2.7 3.7

Table 1: Median percentage of variance explained from a PCA of facial motion shape curves.

One might wonder if only the motions in this particular dataset are close to a geodesic so we
investigated two other large databases of short duration human motions. In the first, a seated subject
sits in a chair and uses the right hand to grasp a block in various locations where the position of the
thumb and index finger in grasping the block is also varied. The orientation of the upper body is
described by 17 markers and the average sequence of motion has 60 frames lasting 3 seconds. 20
subjects were used in the experiment and 8496 motions were analyzed. The data and motivation
behind the experiment are described in more detail in Faraway and Choe (2009). The median
percentage variation explained by the first PC was 97.3% while the second PC was 2.1%.

Another experiment involved standing subjects who were asked to place objects with one or
two hands onto shelves. The shelves ranged from ankle to shoulder height and were placed in
front and to the side of the subject. 20 subjects were used making a total of 7075 motions. The
motions were described using 22 markers taking an average of 76 frames which is about 4 seconds
of motion. The data and experiment are described in more detail in Faraway (2004). The median
percentage variation explained by the first PC was 93.8% while the second PC was 4.8%.

Of course, we do not suggest all shape motion curves are well approximated by geodesics. The
motions we have analysed are simple and short in duration. More complex motions over a longer
period of time could not be expected to follow a geodesic. However, more complex motion of
shapes could be approximated by piecewise geodesics.

3.2 Variation around the geodesic
Although the first component is dominant in these analyses, it is still possible that some interesting
structure may lie in the second component. In particular, there may be some commonality in
the second PC across different motions. It is difficult to compare the direction of the second PC
because each of the PCAs on the individual motions are computed independently. The different
coordinate systems generated by these PCAs are then difficult to compare directly. However, we
can more easily compare the PC scores. In Figure 2, we see the PC scores for a single subject
performing a maximal smile. The first PC score represents the progress along the direction of the
first PC. This corresponds to the major direction of motion. The score function demonstrates how
the face starts in a rest pose, moves into a smile, holds and then returns to a rest pose. The score
functions are quite smooth. One minor problem is that the sign of the score function is arbitrary
from the eigendecomposition for the PCA. We have inverted the score function where necessary
so that the initial value is always negative.

The second PC score shows no such clear pattern. The functions are still somewhat smooth but
are rougher than for the first PC. The curves all start with a negative and end with a positive value
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because of the arbitrary inversion standardisation mentioned above and the roughly linear trend.
They show no interesting consistent pattern even though the curves come from the same control
subject performing the same motion. The plot is representative of the second PC scores that are
seen for other subjects. A plot of the first against the second PC score also reveals no particular
structure. We conclude that while the motions may diverge from a geodesic, they do so in no
consistent way and so we conclude there is just smooth random variation around the geodesic.
This random variation is still important as omitting it from simulated or predicted motions will
result in unnaturally smooth animations.
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Figure 2: Principal components scores for a control subject. The first plot shows the scores for the
first PC plotted against time (frames) while the second plot shows the scores for the second PC.

3.3 Filtering effect of projection to the geodesic
The shape trajectory and geodesic lie in a high dimensional space (over 100 in this example)
making it difficult to visualise how they relate in full, but we can observe some lower dimensional
projections. In the first panel of Figure 3, we see a plot of the relative change in distance between
the lip corners (markers 24 and 29 in Figure 1) for all maximal smiles for the same control subject
as in Figure 2 during one of the four visits. The rest position is computed as the median over the
first ten frames of motion. We see a common pattern, but there is some local noise as well as
larger scale variations from this pattern. Now we project the shape trajectory onto the geodesic
and recompute this same relative distance as seen in the second panel of Figure 3. We see that
some smoothing has occurred at both the smaller and larger scales. Furthermore, we can see that
this smoothing is not what we would expect from directly smoothing the curves in the first panel.
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We have filtered out the components of variation due to all but the first PC. By projecting onto
the geodesic, we are able to smooth over the whole facial trajectory which is more effective than
trying to smooth parts of the motion individually. We also see that projection onto the geodesic
still retains substantial variability.
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Figure 3: Relative percentage change in the distances between the lip corners over time. Plot on
the left shows the observed data. Plot on the right shows the projection onto the geodesic.

3.4 Decomposition of the motion
We can now decompose the motion into two parts. We have the geodesic and the rate of motion
along that geodesic which we propose to model independently. The geodesic can be described by
any two distinct points along the curve. We will choose the starting pose and the pose when the
particular facial expression is maximally realised. We considered two ways of doing this:

1. Let the first PC scores function be s1(t) and let tmax = argmaxt s1(t). We take Y (0) and
Y (tmax) as the starting and extremal poses.

2. Let the first eigenvector of the PCA be e1, then the fitted geodesic is represented by Z̄ +
s1(t)e1 in the tangent space. The projections back to the shape space for t = 0 and t = tmax
represent the starting and extremal poses.

The first uses observed shapes to describe the geodesic while the second uses shapes from the
fitted geodesic. We find that the latter method produces less variable results and is used in the
analysis to follow.
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4 Shape Comparison
Now we consider only the amount of shape change as represented by the starting and extremal
pose. The rate of this change is considered in the next section. The reduction of the shape curve
Y (t) to just two shapes has greatly simplified the analysis, but some difficulties remain.

4.1 Adjustment for initial pose
When comparing extremal poses for different individuals, we are interested in differences in mo-
tion much more than differences in static shape. Individuals naturally have differently shaped
faces, but these differences are not immediately interesting for our purposes. We wish to scale
out these differences so we adjust all motions to start from a common mean initial shape. For the
collection of starting and initial shapes that will be compared, we compute the tangent space at the
mean shape. In contrast to the tangent spaces for individual motions, we now scale out the size as
well as the translation and rotation because different individuals are being compared. We compute
the mean over the starting poses as Z̄(0). In this tangent space:

Zi(tmax)→ Zi(tmax)+(Z̄(0)−Zi(0))

which can be projected back to the shape space as needed. This reduces the information for a single
motion to one shape, which is the adjusted pose at the extreme. This adjustment will be effective
provided there is not too much distortion from the tangent space projection, but this assumption
has already been made in the prior analysis.

4.2 Paired comparison of shapes
Consider the set of Zi(tmax), i = 1, . . . ,n, of initial position-adjusted shapes at the extreme pose. We
again make a tangent space projection at the mean shape. This is now the third variety of projection
made here. We can average over subgroups in the tangent space and then project back to the shape
space.

We will focus on a subset of the full data: the maximal smile motions of the revision group
subjects for visits one and four as presented in the Appendix. Readers interested in the substantive
conclusions for cleft lip/palate surgery should refer to Trotman et al. (2010). We apply the proce-
dures described above, plotting the mean outcomes in Figure 4. As can be seen, there is almost no
difference in mean extremal poses. It is also possible to animate these poses, but this requires an
estimation of the relative progress along the geodesics to be considered in the next section.

More formal testing is problematic. A method for comparing two independent groups of shapes
is described in Goodall (1991), but we require a paired comparison. In Mardia and Walder (1994),
such a method is presented, but is suitable only for 2D data. The repeated measures structure of
the data presents a further difficulty as there is little research on modelling shape data of this type.
Barry and Bowman (2008) present an approach for linear mixed modelling of 3D shapes that might
provide an answer. Unfortunately, the method is only practical for relatively small numbers of
landmarks (up to 10 or so) while we have 38 markers. A related problem concerning the symmetry
of faces can be found in Bock and Bowman (2006). We will follow a different approach here.
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Figure 4: The mean effect of surgery on the maximal smile of patients. The face is viewed from
the front. The mean initial pose is marked by the points of the “pins”. The mean extremal position
before surgery is marked with an open square and the mean position after surgery with a closed
square. Lines connecting the extremal positions with the initial positions are drawn.
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Although the shape space is high dimensional, we might expect that observed variation lies
mostly in a lower dimensional space. We consider the percentage of variation explained by each
component of the PCA in the relevant tangent space. For the particular example here, the first five
values are 36.5%, 27.0%, 6.1%, 3.6% and 3.3% respectively. The percentage of variation explained
by the first component is much lower than that seen in the PCA of the shape curve trajectories. The
current PCA is of adjusted extremal poses so there substantial variation between subjects. We
consider the first two components as sufficient to represent the variation in the shapes.

After selecting the number of components, each shape is now represented by a short vector
of scores s. In the example, we can examine how these scores change after surgery. Let w be a
vector of covariate information and c identify the principal component. In our example, w is a
binary factor representing before and after surgery while c is a binary factor distinguishing the two
principal components. We construct a mixed effects model taking the form:

si = β0 +βcc(i)+βww(i)+βwcw(i)c(i)+ subject(i)+visit(i)+ component(i)+ εi

Suppose that the data are arranged such that a single score value appears in each row with the
corresponding coded values of c and w. The parenthesised subscripted i indicates the level of
the variable in that row of data. The interaction of c with w allows a different effect for each
component of the score. Appropriate generalization is necessary for c with more levels or mul-
tivariate w. The term subject(i) ∼ N(0,σ2

s ) is a random effect representing the subject while
visit(i) ∼ N(0,σ2

v) represents the nested visit effect. For the component nested within the visit
effect, we have component(i) ∼ N(0,σ2

c). The final term εi ∼ N(0,σ2
ε) represents the lowest level

of variation from motion to motion. This is a relatively simple model containing all elements, but
some elaboration might be considered to allow unequal variances or correlations structures for the
random effects. This model was fitted using the nlme R package of Pinheiro and Bates (2000).
A comparison to a model without w to test for the effect of surgery yielded a p−value of 0.92,
confirming earlier impressions of little difference due to surgery.

The random components estimates are σ̂s = 3.9, σ̂v = 0.0, σ̂c = 8.7 and σ̂ε = 5.2 where only the
relative size of these values is of much interest. There are only two levels of visit and component in
this example, and so these two constituents of the variability are difficult to distinguish. The larger
size of the latter relative to the former should not be taken at face value. This estimated effect for
surgery is 0.3 which is much smaller than the estimated natural variation. The relative size of the
random effect components demonstrates the variability in motion from one visit to the next and the
necessity for substantial replication in such studies.

4.3 Individual changes
In Figure 5, we show the change in the scores averaged within subjects. As can be seen, the
average change is around zero, but some subjects do show considerable variation. We estimate the
standard error of these means as 9.0. There is some evidence of a change in at least two of the
subjects which are labelled in the plot.

The differences for the two subjects are shown in Figure 6. For the first subject, the difference
is that before surgery, the subject made a closed mouth smile while after surgery the subject smiled
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Figure 5: Change in mean principal component scores by subject due to surgery. Subjects showing
some evidence of change are labelled.
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with an open mouth. This kind of variation is also observed in control subjects and so it likely has
nothing to do with surgery. In the second subject, the difference is more in the magnitude of the
smile, with a larger smile after surgery. Again, this kind of variation is seen in control subjects, but
it is plausible that surgery might affect this. The analysis is not intended to make definite decisions,
but to point to cases where further expert judgement may be required
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Figure 6: Change in pose before and after surgery for subject RR31 on the left and RR15 on the
right. Mean before pose is denoted by an open circle with the arrow ending at the after surgery
mean pose.

5 Score Profiles
An examination of the first PC scores in Figure 2 shows that the rate of motion can be readily
described by the four transition times marking the move from rest to the expression and back again.
Although more sophisticated methods for curve alignment are available such as found in Ramsay
and Li (1998), we found that a simpler ad hoc method produced subjectively more effective and
robust results.

We set the starting value as the median of the first ten observations and the ending value as the
median of the last ten. We compute the maximum and the range. We set the first cutpoint as the
last time before the maximum that the curve is within 5% of the range above the starting value.
The second point is the first time the curve is within 10% of the range below the maximum. The
third and fourth cutpoints are defined symmetrically.
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We define three times of interest. The first is the reaction time, that is the time to the first
cutpoint. The second is the move time, that is the time between the first and second cutpoints. The
third is the hold time, that is the time between the second and third cutpoints. We compared these
times to the scores from the PCA of the adjusted extremal positions as computed in the previous
section. We saw no relationship, reinforcing the assumption that the profiles and the extremal poses
can be treated independently.

We can test for an effect due to surgery on these times with mixed effect models of the form:

ti = β0 +βww(i)+ subject(i)+visit(i)+ εi

with random effects defined as before. This model reveals no significant effect for any of the three
times of interest.

Furthermore, a comparison of these times ti with scores si in the previous section shows no
evidence of a dependence between progress along the geodesic and the direction of that geodesic.
This justifies the independent treatment of these two constituents of the motion.

Given that there seems to be little distinction between the score profiles, we may reasonably
average them to produce a profile for constructing predicted motions. We map a score profile
s(t)→ s(h(t)) where h(t) is a piecewise linear function that maps the cutpoints for this score to the
mean cutpoints across the data. Now given an initial pose and an extremal pose, we can construct
the geodesic using this mean score profile for the rate of progress. The mean motion over the data
constructed in this manner is shown as a movie as described in the appendix.

6 Conclusions
The conclusions regarding the cleft lip data are described in detail in Trotman et al. (2010). Surgery
is often motivated by a desire to improve the static appearance of the face. At the same time, the
appearance of the face during movement or function is equally, if not more, important. We found
no significant evidence that surgery had an effect on average on the facial function of patients.
However, there was evidence that the function of some individual patients improved and some
deteriorated.

Continuous shape change data is naturally high-dimensional. Interpretable data analysis re-
quires the identification of the low-dimensional structure in the data. For the data presented here,
the shape change occured mainly along a geodesic in the shape space. We have also shown how
this approximate geodesic feature can be seen in other datasets involving human motion. When
considering shape changes in collections of objects, it is also important to distinguish between the
static or initial shape and the manner in which it changes. We have demonstrated how the shape
change can be considered independently. Further dimension reduction in the description of these
shape changes was then possible to the extent that a single instance of shape change (a motion in
our example) could be reasonably described with just two numbers. Once this reduction is made,
we may apply well-known statistical methods for one or low-dimensional responses.

The methods described here are more likely to work for data where the changes in shape are
not extensive. For more complex shape change data, such as the motion of a dancer for example,
geodesic approximation may not suffice. In Faraway et al. (2007) a method of modelling 3D
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trajectories relying on a small number of Bézier control points is presented. This method could be
extended to modeling the higher dimensional curves in the tangent space for such shape curves.
With a small number of control points, the subsequent parametric mixed effect models used in this
article would still be tractable.
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Appendix
Supporting materials may be found at www.bath.ac.uk/∼jjf23/face/shapcurve/. The con-
tents are:

1. Motions from the subset of data analyzed in detail in the article.

2. Animated motions including:

(a) Raw data

(b) Mean motions
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application to hand motion. Applied Statistics 56, 571–585.

Fletcher, P., C. Lu, S. Pizer, and S. Joshi (2004). Principal geodesic analysis for the study of
nonlinear statistics of shape. IEEE Transactions On Medical Imaging 23, 995–1005.

Goodall, C. (1991). Procrustes methods in the statistical analysis of shape. Journal of the Royal
Statistical Society. Series B (Methodological) 53, 285–339.

Huckemann, S. and T. Hotz (2009). Principal component geodesics for planar shape spaces.
Journal of Multivariate Analysis 100(4), 699–714.

Kaziska, D. and A. Srivastava (2007). Gait-Based Human Recognition by Classification of Cy-
clostationary Processes on Nonlinear Shape Manifolds. Journal of the American Statistical
Association 102(480), 1114–1124.

Kendall, D., D. Barden, T. Carne, and H. Le (1999). Shape and Shape Theory. Chichester: John
Wiley.

Kenobi, K., I. Dryden, and H. Le (2010). Shape curves and geodesic modelling. Biometrika 97,
567–584.

Kent, J. and K. Mardia (2001). Shape, Procrustes tangent projections and bilateral symmetry.
Biometrika 88(2), 469–485.

Kume, A., I. Dryden, and H. Le (2007). Shape-space smoothing splines for planar landmark
data. Biometrika 94(3), 513–528.

Le, H. and A. Kume (2000). Detection of shape changes in biological features. Journal of Mi-
croscopy 200(2), 140–147.

Mardia, K. and A. Walder (1994). Size-and-shape distributions for paired landmark data. Ad-
vances in Applied Probability 26(4), 893–905.

Marsh, J. (1990). When is enough enough? Secondary surgery for cleft lip and palate patients.
Clinics in plastic surgery 17(1), 37.

Pinheiro, J. C. and D. M. Bates (2000). Mixed-Effects Models in S and S-PLUS. New York:
Springer.

Ramsay, J. and X. Li (1998). Curve registration. Journal of the Royal Statistical Society, Series
B 60, 351–363.

Small, C. (1996). The Statistical Theory of Shape. New York: Springer.

Trotman, C.-A., J. Faraway, C. Philips, and J. van Aalst (2010). Effects of lip revision surgery
in cleft lip/palate patients. Journal of Dental Research 89, 728–732.

Trotman, C.-A., C. Phillips, G. Essick, J. Faraway, S. Barlow, J. van Aalst, and L. Rogers
(2007). Functional outcomes of cleft lip surgery. Part I: Study design and surgeon ratings of
lip disability and need for lip revision. The Cleft Palate-Craniofacial Journal 44(6), 598–
606.

15



Veeraraghavan, A., A. Roy-Chowdhury, and R. Chellappa (2005). Matching shape sequences in
video with applications in human movement analysis. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence 27(12), 1896–1909.

16


