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An Experimental and Modelling Investigation of the Effect 
of the Flow Regime on the Photocatalytic Degradation of 

Methylene Blue on a Thin Film Coated Ultraviolet 
Irradiated Spinning Disc Reactor 

Irina Boiarkina, Simon Pedron and Darrell Patterson 

Abstract 

In this work, the impact of wave regime and operational parameters on the 
photocatalytic degradation of methylene blue was investigated on a thin film coated 
ultra-violet spinning disc. In the employed experimental setup, the wave regimes of 
spiral, unstructured and crisscross waves as well as smooth film could be observed at 
disc rotational speeds of 50 to 200rpm and flow rates of 5 to 20mL/s with a calculated 
average thickness of 160 to 450µm. The glass discs were coated with anatase TiO2 by 
a sol-gel procedure followed by heat treatment at 500 ◦C for one hour. The reactor 
was irradiated by a low pressure mercury UV lamp producing an irradiance of 12 to 
23W/m2 on the disc surface. The reactant was saturated with oxygen and the effect 
of spinning speed, flow rate and the resulting wave regime on the degradation rate 
and kinetics of methylene blue and its reaction intermediates determined. Reactions 
followed pseudo-second-order kinetics, suggesting dimerisation and/or mass transfer 
limitations given that the two reactions with the highest conversion observed at 
15mL/s and 100 and 200rpm and were pseudo-first-order. The spinning disc reactor 
was, however, not photon transfer limited. The wave regimes showed no impact on 
the reaction rate, since the flow was mainly laminar with no interfacial mass transfer 
of oxidant required. 

1 Introduction 

Photocatalytic degradation of pollutants in wastewater, employing light and a semicon­
ductor catalyst, has received significant attention in the last three decades [1] due to its 
ability to fully mineralise a wide variety of compounds. However the industrial applica­
tions have remained limited due to the slow kinetics and difficulty in scale up [2, 3, 4]. 
Investigating the use of fixed thin film catalysts has become more popular to overcome 
the post separation step required with powders, however this results in mass transfer 
limitations. 

One area which has gained considerable interest over the past few years is pro­
cess intensification. The principal targets of this strategy are to improve efficiency and 
productivity, reduce the capital cost of process systems, improve their intrinsic safety 
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and minimise their environmental impact [5, 6]. A spinning disc reactor (SDR) is one 
such technology, whereby a liquid is fed onto the centre of a horizontally rotating disc, 
causing it to spread out into a very thin film with thicknesses in the order of 20-200µm 
[7, 8]. The high centrifugal acceleration causes the films to be highly sheared and this 
reactor shows enhanced heat and mass transfer characteristics [7, 9, 10], which makes 
the SDR of interest for mass transport limited reactions [7]. The thin film thickness 
is well controlled by these reactors, allowing high ultraviolet (UV) pentration of the 
photocatalyst throughout the liquid, potentially opening up photocatalytic reactions to 
more highly coloured, turbid liquids. A short and narrow residence time distribution 
is an attractive attribute for liquid-solid reactions such as the radical polymerisation of 
styrene [7] and crystallisation of pharmaceuticals [5]. 

Several flow regimes can form on the surface of the disc, depending on the liquid’s 
physical properties, the flow rate and rotational speed. The flow regimes change from 
smooth to concentric waves, spiral waves, irregular waves and film break-up [8]. There 
have been few experiments investigating whether the flow across the spinning disc is 
laminar or turbulent in nature, however Butuzov and Pukhovoi found, through dye 
injection studies, that several flow regime zones formed across the surface of the disc. 
The first is the injection zone where the liquid is being accelerated to the rotational 
speed of the disc, followed by the turbulent acceleration zone, finally the flow becomes 
laminar in nature again towards the edge of the disc [11]. 

The only previous study employing an SDR for photocatalytic treatment of wastew­
ater is by Yatmaz et al. [12], who investigated the degradation of 4-cholorophenol and 
salicylic acid using titanium dioxide as the photocatalyst. They focused on evaluat­
ing the performance of the reactor based on the UV irradiation source and found that 
shorter wavelengths were better. They did not investigate the effect of flow regime or 
operational parameters on the reaction rate. 

The aim of this work is to fill this gap and evaluate the performance of an SDR as a 
photocatalytic process intensification technology and establish whether the wave regimes 
and operational parameters affect photocatalytic degradation of methylene blue. Methy­
lene blue was chosen since it has well established kinetics and reaction mechanisms in 
conventional photocatalytic reactors, which can be used to benchmark the SDR perfor­
mance against[13]. As titanium dioxide is a well-established photocatalyst, the experi­
ments will be carried out with a TiO2 coated glass disc. 

2 Materials and Method 

2.1 Materials 

Pure azure A and B were obtained from Acros Organics and the methylene blue was 
obtained from Sigma-Aldrich (85% pure). 99.5% pure oxygen by BOC gases was used 
for saturation of the reactant solution. 

The reagents used for TiO2 sol preparation were glacial acetic acid (Univar, 99.7%), 
acetylacetone (Sigma-Aldrich, 99%), isopropanol (Univar, 99.7%), titanium isopropoxide 
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(Aldrich, 97%) and deionised water (from an ELGA Maxima Ultra purifier system). All 
reagents were used as received. 

2.2 Analytical Methods 

The degradation of methylene blue was analysed using a Shimadzu LC-20AT high per­
formance liquid chromatography (HPLC) instrument with an SPL-20A UV-vis detector 
and an Agilent Eclipse XDB-C18 column. A gradient method was used where sol­
vent A comprised of deionised water with 0.1(v/v)% trifluoroacetic acid (Sigma-Aldrich, 
99%) and Solvent B comprised of 0.01(v/v)% trifluoroacetic acid, 80(v/v)% acetonitrile 
(Merck, 99.8%) and 20(v/v)% deionised water. A detection wavelength of 662nm was 
used. The gradient method employed was 95% solvent A at 0min, 90% solvent A at 
5min, 10% solvent A at 40min and 95% solvent A at 45min. A flow rate of 1mL/min 
was used with an injection rate of 50µL, oven temperature of 25◦C and total analysis 
time of 50min. The method was based on the work of Ali et al. [3]. 

The UV light intensity was measured using a SUV 20.IA2Y2 photometer by IML, 
which was connected to a TENNA 72-7765 multimeter. 

2.3 Catalyst Immobilisation 

The sol-gel coating process was used to immobilise the titanium dioxide on the surface of 
the glass discs. The sol was made according to the method described by Ling et al. [14]. 
The glass discs were extracted from the sol at 1mm/s, allowed to air dry for 5 minutes 
in the fume-hood and then transferred to an oven at 100 ◦C for 30 minutes. This process 
was repeated once more before the discs were transferred to a furnace (F.E. Kiln with an 
RTC 1000 Bartlett Instruments Co. controller) for calcination at 500 ◦C for one hour to 
obtain the photocatalytically active anatase crystal structure. The furnace was ramped 
up at a rate of 2 ◦C/min to minimise cracking. Once the discs had cooled the process 
was repeated once more to obtain a total of four TiO2 layers, of which two were calcined. 

2.4 Experimental Set Up and Procedure 

A process flow diagram of the experimental setup is shown in Figure 1a. The experiment 
was run in batch mode. The reactant was pumped from a stirred tank reservoir, a 500mL 
glass beaker, to the reactor with total reflux and was oxygenated at a flow rate of 
450mL/min. The employed norprene (Masterflex 064042) piping had an inner diameter 
of 8mm. The liquid was pumped with a peristaltic pump (Cole-Parmer, 7553-75) from 
the stirred tank into a tightly sealed glass flask, which acted as a buffer to dampen 
the flow pulsations. The beaker and buffer flask were wrapped with aluminium foil to 
prevent photolysis of methylene blue. The liquid was cooled with tap water with a Liebig 
cooler before entering the reactor from below. The SDR was specially built on-site at the 
University of Auckland. The inlet design was different from reactors used in the past in 
that the inlet pipe came in from the bottom of the reactor and went through the centre 
of the shaft (for rotating the disc) before coming out of the centre of the disc. This was 
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to ensure no shadowing of the UV light, which would have been unavoidable with the 
more traditional top feed tube. The inlet nozzle diverted the flow, so that the liquid 
hit the disc from above at a radius of 21mm through an annular-shaped gap. The disc 
diameter was 200mm. The whole SDR was enclosed in an UV tight enclosure to ensure 
no exposure to the operators. The reactor lid was fitted with a low pressure mercury 
UV lamp inside a quartz tube (20W, monochromatic, λ=254nm, Steriflow, supplied by 
Davey Water Products NZ, part nr. GPH369N/S), with the lamp being situated at the 
focus of a parabolic mirror to improve the homogeneity of the irradiation. After reaction, 
the liquid was collected in a basin below the disc. The reactor was situated above the 
stirred tank, so that it could return back by gravity to the stirred reactant reservoir. 
Photographs of the experimental setup are shown in Figure 1. 

The employed reactant volume was 550mL of aqueous 10mg/L (26.74µmol/L) 
methylene blue solution. Of it, 150mL were poured into the buffer tank (Fig. 1a) before 
starting the experiment. The buffer flask was closed so as to be gas-tight. The remaining 
liquid was poured into the stirred reservoir (Fig. 1a). The desired rotational speed of 
the disc was adjusted. In order to blow out any air bubbles in the nozzle, a flow rate of 
35mL/s used for 20s before re-setting to the desired flow rate. The reactor was closed 
with the lid. 

The setup was run for 20 minutes in the dark to allow for the adsorption of 
methylene blue to reach equilibrium, before the lamp was switched on and the reaction 
started. The reactor was run for three hours. The temperature of the reactant was kept 
at 27 ◦C during the reaction. 

The error was calculated from the average standard deviation of repeat experi­
ments and was used to plot the error bars in the figures. 

3 Modelling 

3.1 Reaction Kinetics 

It is generally agreed that the main reaction mechanism defining the photomineralisation 
of organic compounds with O2 on TiO2 is of the Langmuir-Hinshelwood type (Equation 
1). It successfully describes the reaction rate of several species between substrate and 
hydroxyl radical with at least one species adsorbed on the catalyst surface [1, 15, 16]. 

dCi kKCi
Ri = − = kθ = (1)

dt 1 + KC 
Where Ri is the initial rate of substrate removal, Ci the initial substrate concentra­

tion, θ is the surface coverage, t the reaction time, K the Langmuir adsorption constant 
of species C and k a proportionality constant which quantifies the intrinsic reactivity of 
the photoactivated surface with C. 

K is therein not identical with the dark Langmuir adsorption isotherm for C on the 
semiconductor; the latter values are usually much smaller. k is found to be dependent on 
light intensity and correlating with the fraction of O2 adsorbed on the catalyst surface 
[1]. For high concentrations of substrate, the degradation is pseudo-zero order. For low 
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concentration reactions which are not oxygen limited, the reaction is pseudo-first order. 
In this case, the kinetics are described by Equation 2 [15, 17]. 

Ri = kapp,vCi (2) 

Where kapp,v is the pseudo-first-order reactor volume based reaction rate constant, 
which encompasses the rate of light absorption as well as the oxidant and catalyst con­
centration. Side reactions are supposed to occur slowly and have to be taken into account 
only at higher conversions [17]. The surface area based reaction rate constant can be 
calculated from the volume reaction rate constant using Equation 3. 

V 
kapp,s = kapp,v (3)

S 
Where S is the illuminated surface area of the catalyst and kapp,s is the pseudo-first 

or second order reaction rate constant. 
The efficiency of the photoreaction can be described by the overall quantum yield, 

φoverall, which is defined in Equation 4. 

rate of reaction 
φoverall = (4)

rate of absorption of radiation 

However, the rate of photon absorption is difficult to measure, thus an alternative 
parameter, the photon efficiency, ξ, is preferred. It is defined for monochromatic light as 
the number of transformed molecules divided by the number of photons incident from 
the UV light source and has been used in this work [1, 15]. 

reaction rate 
ξ = (5)

incident monochromatic light intensity 

3.2 Flow Modelling Across the Disc 

In order to be able to model the SDR, the film height distribution across the surface 
needs to be known. For simplicity, the Nusselt model is the most commonly used. This 
model assumes fully developed laminar flow across the surface of the disc with no shear 
at the gas-liquid interface. One of the implied assumptions with fully developed flow is 
that the liquid hitting the disc surface reaches the disc rotational speed instantaneously, 
there is no accelerative zone. Hence, this model works best with viscous Newtonian 
fluids. The mean film thickness as derived by the Nusselt model is given in Equation 6 
[9, 18]. The film thickness, as predicted by the Nusselt formula, generally over predicts 
the film height and does not account for surface waves. Though since it is in the same 
order of magnitude, it would be a good indicator of the expected film thickness. There 
are other models for modelling the film height, such as that presented by Charwat et al. 
[8] or Matar et al. [19], however they are either empirical (and hence the validity has to 
be question for a different reactor set up) or complex to solve. 
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33Qν

hN = 
2πr2ω2 (6)


The Ekman number, Equation 7, characterises the ratio of the viscosity to the 
coriolis force. 

ν 
E = . (7)

ωh2 

For E > 10, the film thickness can be approximated by the Nusselt model. How­
ever, for low values of E, inertial contributions dominate and the film thickness deviates 
markedly from the Nusselt model [8, 9]. In the current work the Ekman number range 
of the experiments was between 1.8 and 7.2, which although are lower than the cut off, 
are still on the same order of magnitude. This means that there will be some error in 
the film thickness estimated using Equation 6. 

3.3 Overall Reactor Modelling 

A mass balance can be performed on the system by treating the reactor and the substrate 
reservoir separately, as shown in Figure 1a. The reactant reservoir is assumed to behave 
like an ideal CSTR; perfect mixing and the outlet concentration equal to the bulk volume 
concentration. This leads to the expression shown in Equation 8. 

dCINSDR Q 
= (COUT SDR − CINSDR) (8)

dt VCST R 

For modelling the flow across the disc the local film thickness is calculated with 
the Nusselt formula presented in Section 3.2, which can be rearranged into the form 
shown below, Equation 9. The constants have been combined into one variable, A, for 
simplicity: 

h(r) = Ar−
2 
3 (9)


Assuming that the SDR behaves like a plug flow reactor, which is a good assump­
tion if the flow is shown to be laminar, with no mass transfer resistance to the disc 
surface leads to the following expression for the change in concentration with respect to 
radius: 

dC 2πA

= r 

dr Q 

1 
3Ri (10) 

Where Ri is the reaction rate. For a pseudo-first order reaction Ri = −kC and can 
be solved analytically, in combination with Equation 8 to yield the following expression 
for the change of concentration with respect to time in the reactant reservoir: � � � � � � 

Q 3πAk 
C = C0exp exp (R− 

44 
3 − R
3 

0 ) − 1 t (11)

V
 2Q 
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Where R is the outer radius of the disc and R0 is the inlet nozzle radius. A plot 
of ln(C/C0) versus time should yield a straight line relationship for a pseudo-first order 
reaction and allow for the calculation of the reaction rate constant. 

However, Rauf et al. [20] found that the degradation of methylene blue followed 
pseudo-second order kinetics possibly due to the dimerisation of the methylene blue. For 
a pseudo-second order reaction Ri = −kC2 . Substituting this into Equation 10 leads to 
Equation 12, however when the integrated result of this is substituted into Equation 8, 
the final reactor model cannot be solved analytically. 

dC 2πA 1 
= − r 3 kC2 (12)

dr Q 
Equation 12 was therefore solved and fitted iteratively with Equation 8 to exper­

imental data in MATLAB. In modelling the reactor in this way, it is assumed that no 
reaction occurs in the pipes and buffer connecting the reactor to the reactant reservoir. 
This assumption is good, since significant reaction rates should not occur in the absence 
of both UV irradiation and photocatalyst. 

4 Results and Discussion 

4.1 Study of Flow Regimes 

Flow regimes are peculiar to the type of SDR. Since this SDR is unique, the flow char­
acteristics of the spinning disc and liquid film needed to be characterised. 

On the spinning disc, flow regimes were investigated for flow rates of 5 to 35mL/s 
and a rotational speed of 50 to 400rpm with water only. The high-speed camera image 
stills are shown in Figure 2 and an overview of the boundaries between the observed 
wave regimes is given in Figure 3. The defined boundaries in Figure 3, which show 
the transition from smooth to spiral, or smooth to unstructured means that at those 
conditions, the first spiral or unstructured waves respectively were observed when the 
rotational speed was increased. 

The transition between spiral and unstructured was difficult to define, as the un­
structured waves still possessed some form of spiral element in them. What was char­
acterised as ‘unstructured’meant that the spiral front was broken down, from its initial 
smooth front. Therefore an increase in either the flow rate or rotational speed caused 
the spiral front to be more irregular in shape. This can be seen clearly in Figure 2 when 
the flow rate is adjusted from 10mL/s to 15mL/s at 150rpm. 

Under the examined conditions, no film break-up was observed, which was ex­
pected, as the minimum absolute layer thickness achieved according to the Nusselt model 
was 82µm, thus higher than that required for film break up (20µm, as found by Charwat 
et al. [8]). Concentric waves could not be observed in the range where they were observed 
by Charwat et al. [8]. This might be due to strong inlet effects on the disc caused by 
the nozzle design. 

At low flow rate and rotational speed, a smooth film covered the disc with accu­
mulation occuring at the disc edge, shown in Figure 2 at flow rates of 5 and 10 mL/s and 
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spinning speed of 50rpm. However, even at the lowest flow rate, liquid drops falling off 
the spinning disc caused perturbations of the liquid film by being point sources of waves 
on the disc’s edge which propagated inward to the disc centre. At flow rates higher than 
15mL/s, the smooth film was additionally perturbed by nozzle inlet effects, which acted 
as point sources for waves propagating outward on the disc. Compared to images of spin­
ning disc experiments at the same flow conditions from literature, the latter effect was 
very prominent as the disc employed in this work had a significantly smaller diameter 
[8, 21, 18]. These inlet and outlet perturbations caused crisscross waves to perturb the 
surface at flow rates above 15mL/s (Fig. 2), across the entire studied range of rotational 
speeds. This may at least in part explain the differences in flow regimes to others in the 
literature. 

It was observed that generally the liquid film close to the disc’s centre was smooth 
and, depending on the flow rate, with or without inlet perturbations. Increasing the 
rotational speed at constant flow rate resulted in the transition from a smooth film to 
spiral or unstructured waves, which propagated from the edge of the disc towards the 
centre (Fig. 2: 10mL/s, change from 50rpm to 150rpm and 300rpm). 

The transition between any two wave regimes was clearly visible for flow rates 
equal and lower than 10mL/s. For flow rates higher than 10mL/s, the smooth film at 
low rotational speed was totally perturbed by crisscross waves and the nature of the 
spiral waves became less clear. 

The distance between the wave fronts decreased with increasing rotational speed. 
From the images, the amplitude of the waves cannot clearly be deduced. 

Ink injection experiments at 5, 20 and 35mL/s and 50, 150 and 300rpm revealed 
that the liquid film for all observed flow regimes under the observed conditions appeared 
laminar; clear, well defined streaklines of the injected dye can be seen in Figure 4. The 
injected dye follows the wave fronts sharply, as shown by Figure 4 at 5mL/s and 300rpm, 
and 35mL/s and 50rpm; the waves do not seem to contribute to the mixing outside of 
diffusion. Figure 4 5mL/s and 150rpm shows diffusion and the dye injected fluid volume 
being stretched as the film thickness decreases going across the radius of the disc. 

Figure 4 (for example 50rpm and 35mL/s, 300rpm and 5mL/s) shows the dye 
following the wave fronts - without significant mixing in front. The streaklines are 
sharp, such as those visible for 300rpm and 35mL/s, 150rpm and 5mL/s in Figure 4. No 
significant dye mixing was observed, however any ‘micro’mixing within the generated 
dye streaklines would not have been visible. 

The photocatalytic experiments were run at flow rates of 5 to 20mL/s and ro­
tational speeds of 50 to 200rpm, as all observed flow regimes were represented in this 
experimental range. 

Note that these wave regimes are observed and filmed in the absence of UV light. 
There is evidence that the TiO2 surfaces become more hydrophilic when irradiated by 
UV light due to band-gap excitation [22]. This effect may have some influence on the 
flow regimes during reaction that are not measured in this non-UV light exposed anal­
ysis. However, any differences in flow regimes cannot be precisely quantified, since it is 
impossible to film the flow regimes on the disc when it is irradiated with UV light in 
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the reactor enclosure used as the high speed camera employed in this work is too large. 
However, since the disc is always fully covered with a film of fluid when exposed to UV 
light, the loss of intensity through the liquid film would minimise the change in surface 
energy, possibly minimising any significant influence on the wave regime. 

4.2 Characterisation of the TiO2 Film 

The TiO2 coating from sol-gel deposition was imaged by SEM and by x-ray diffraction. 
The x-ray diffraction spectrum is shown in Figure 5 and the spectrum shows character­
istic TiO2 anatase peaks according to the standard spectrum JCPDS #84-1286 and [23]. 
No rutile peaks are present. 

Figure 6 shows SEM images of the TiO2 film before and after reaction; no clear 
catalyst degradation is observed. The texture of the film is non-porous, and the cross-
sectional images (Fig. 6 (a) and (b)) show that the film is coherently attached to the 
surface of the glass discs. 

4.3 Kinetics of the Degradation of Methylene Blue 

4.3.1 Control Experiments 

Control experiments (Fig. 7a) showed that methylene blue does not react with UV light 
and without TiO2 in the employed reactor confirming the assumption made in Section 
3.3. This comparatively slow photolysis rate was similarly found by Houas et al. [24] 
and Ali et al. [3]. Quantifiable adsorption of methylene blue in the system takes place 
only in the first 20 minutes of the reactant solution in the reactor. The uncatalysed 
photolytic degradation of methylene blue was thus found to be negligible and was not 
accounted for during the modelling of the reactor. 

4.3.2 Thin Film Photocatalysis of Methylene Blue in the SDR 

During reaction, the identified intermediates were azure A and azure B. As the kinet­
ics of methylene blue degradation were found to be independent of the intermediates’ 
concentration, a detailed photocatalytic reaction pathway analysis will not be presented 
here. 

In heterogeneous catalysis with immobilised catalyst, the kinetics can also be ex­
pressed on a UV light irradiated surface area basis (Equation 3). The effect that there 
is a different reaction volume per surface area ratio at different flow conditions in the 
SDR can thereby be computationally eliminated. However, it should be noted that the 
surface area used is the illuminated surface area, not the surface area of the catalyst; 
the surface area of the catalyst in this configuration is difficult to quantify and will vary 
based on the quality of the coating from disc to disc, which will contribute to an increase 
in the scatter of the data. 

Kinetic analysis of the methylene blue concentration versus time data showed that 
the degradation of methylene blue mainly followed pseudo-second order reaction kinetics 
- example concentration versus time plots are shown in Figure 7. The surface reaction 
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rate constants are shown in Figure 8a. In this, two maxima become evident: the data 
points at 15mL/s. However, those reactions followed pseudo-first order kinetics. The 
fitted pseudo-first order surface area reaction rate constants are given in Table 2, as 
distinct from from the pseudo-second order rate constants detailed in Table 1. The 
average error confirms that the 15mL/min reaction rates were real data points that were 
significantly higher than expected. 

Figure 8a also shows that the surface reaction rate is otherwise independent of the 
film height, again showing that the reaction is not photon transfer limited. However, 
when calculating the reaction rate on a volume basis (Fig. 8b), it can be seen that the 
reaction rate decreases with increasing film height. This implies that the reactor volume 
increases with increasing film height, approximately the same quantity of molecules 
still get degraded per unit surface area. This implies that the best reaction conditions 
become the highest flow rate for the same film height as the residence time decreases, thus 
recycling unreacted molecules to the surface faster. This can be achieved by increasing 
the rotational speed. However, the 15mL/s reactions are the exception to this, implying 
that another effect is taking place. 

In order to compare reactions of different orders, the reaction rates at 26µmol/L 
and 13µmol/L are shown in Figures 9a and 9b respectively. It becomes evident that 
in the observed concentration range, the two pseudo-first order reactions show higher 
reaction rates and thus higher conversions after a specified time than pseudo-second 
order reactions. The lower the concentration of substrate, the higher is the difference 
between first- and second order reaction rates. A change in reaction mechanism occurs 
from pseudo-second to first order, which is enhancing the reaction kinetics. 

Figure 10 shows a slight local reaction rate maximum at 5mL/s and 50rpm, which 
can be explained by the slightly inaccurate modelling of the reactor volume on the disc 
with the Nusselt film thickness model; in reality there was visible accumulation of liquid 
at the disc’s edge, enlarging the reaction volume. Also, the liquid film on the SDR did 
not exhibit clear turbulent flow characteristics in the range of the tested parameters. 
However, it is possible that special fluid dynamic effects take place when the wave 
regime changes from helical waves at lower flow rates to unstructured (Fig. 3). Further 
investigation is required to confirm this. 

In literature, only cases of pseudo-first order photocatalytic decomposition of 
methylene blue at similar concentrations as used in this work and employing pure TiO2 

as photocatalyst are reported. However, Rauf et al. [20] found pseudo-second order ki­
netics for the photocatalysed degradation of methylene blue on Cr-Ti binary oxide with 
10% molar Cr3+ content (Ti-10Cr). They explained the kinetics of their experiments 
with the tendency of methylene blue to aggregate or dimerise antecedent to the photo­
chemical reaction due to strongly attractive electrostatic forces between the ionic dye 
molecules with increasing methylene blue dye concentration [25]. On the other hand, the 
results of Ghandazadeh et al. [25] reveal that dimerisation and aggregation become less 
significant at decreasing concentration and thus the reaction gets mainly monomolecu­
lar. However in the current work the starting concentrations used were equal, therefore 
it is more likely that an enhancement of mass transfer is occurring at 15mL/s. 

10 



� � 

A plot of the reaction rate constant over the average height of the SDR liquid film, 
Figure 10, shows that wave regimes do not have an influence on the reaction kinetics. 
The two points at maximum reaction rate are in the unstructured wave regime, the 
other point assigned to unstructured wave regime lies within the range of the other wave 
regimes. The rate constant of the experiment at 15mL/s and 200rpm on a volume basis 
is 3.3min−1, which is 55 times the value detected by Houas et al. [24]. One reason for 
the enhanced reaction rate is that in this work the reactant solution was consistently 
saturated with oxygen, meanwhile in the study carried out by Houas et al. [24] the 
solution was oxygenated through mass transfer with the ambient air, which may have 
resulted in less than saturated conditions. However, it should be noted that Houas et 
al. used a suspension, as opposed to immobilised catalyst, which means the surface area 
available for reaction would have been significantly larger. The average quantum yield 
obtained in our reactor at 26µmol/L was 0.4%, which was higher that found by Houas 
et al. of 0.14% at the start of the reaction 72µmol/L, supporting the use of the SDR as 
a photocatalytic reactor. 

4.4 Photon Flux and Photonic Efficiency 

The UV irradiance was measured at eight points inside the reactor level at the height 
of the glass disc’s surface. OriginPro 8.1G was used to plot the irradiance distribution 
profile as shown in Figure 11. The irradiance profile is symmetric about the UV lamp 
axis with the maximum occurring at the centre of the disc. The irradiance profile is 
not completely homogeneous, with the measurements varying between 12 and 23W/m2 . 
However, the difference between the maximum and minimum in the same order of mag­
nitudes, unlike the results achieved in the work of Dionysiou et al. [26], with values of 
0.3 to 15W/m2 . Therefore the UV irradiation in this work is the most uniform yet for a 
photocatalytic SDR. The parabolic mirror with the UV lamp in its focus is responsible 
for the relatively uniform irradiance of the disc. 

Figure 11 and the reaction data was used to calculate the photon flux reaching 
the catalyst surface and hence the photonic efficiency of the process, which is shown is 
Figure 12b. The average photon flux was 3.8x10−5 Einsteins/m2s. It can be seen that the 
photonic efficiency for the process remains approximately constant with the film height, 
with the exception of two outliers, as shown previously; these are reactions carried out at 
15mL/s and displayed atypically high reaction rates, with reaction order also switching 
from second to pseudo-first order. The average photonic efficiency, as calculated at a 
concentration of 10µmol/L, of 0.054% (excluding the outliers) was comparable to that 
documented by Tschirch et al. [27] for methylene blue at the same concentration. 

The fact that Figure 12b shows no obvious trend of decreasing photonic efficiency 
with increasing film height is also a good indication of that the reaction is not photon 
transfer limited. The Beer-Lambert law, shown below in Equation 13, can be used to 
quantify the light irradiance absorbed by the solution. 

I0
log10 = εlC (13)

I 
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Where I0 is the intensity before absorption, I the intensity after absorption, ε the 
molar absorptivity of the absorbing species (Lmol−1 m−1), l the path length through 
the material containing the absorbing species (m) and C is the concentration of the 
absorbing species (mol/L) [2]. 

If the reaction was photon transfer limited due to strong absorption of light by 
the methylene blue, then we would expect to see a strong dependence of the photonic 
efficiency on the film height, which is not apparent. Consequently, the decrease in 
reaction rate with film height observed in Section 4.3 is not attributable to increasing 
absorption by the increased film thickness. 

The photonic efficiency found by Dionysiou et al. [26] for the degradation of 4­
chlorobenzoic acid on a horizontally rotating disc photocatalytic reactor was on the 
order of 2.7%, which is several orders of magnitude higher than that found in this work. 
This discrepancy can be attributed to several factors, of which the most important is the 
average reaction rate at which the photonic efficiency is calculated. Equation 4 shows 
that the photonic efficiency is calculated from the average reaction rate, however this 
changes as the reaction proceeds, hence the calculated photonic efficiency is a function 
of the concentration at which the reaction rate is calculated. Dionysiou et al. [26] 
calculated his reaction rate based on the number of molecules converted in the first 30 
minutes of the reaction, with a starting concentration of 288µmol/L. This is an order 
of magnitude higher than the starting concentration of 10µmol/L used in this work of 
10µmol/L, and hence would result in a correspondingly higher photonic efficiency. Using 
a concentration of a similarly high magnitude is not possible, as this is well outside 
of the experimental parameters, however when calculating the photonic efficiency at 
a concentration of 24µmol/L, the experimental starting concentration, the calculated 
average photonic efficiency is much higher, at 0.4%, and this is with a doubling of 
concentration only. This implies that the photonic efficiency of this reactor may be on 
par if not comparatively higher than that achieved by Dionysiou et al. [26]. 

4.5 Improving SDR Performance - Mass Transfer Limitations 

Taking into account the previous analysis, mass transport limitations are occurring. 
The key indicator of this is that the order of the reaction is different for a flow rate of 
15mL/s to the other employed flow rates. This is shown more clearly in Figure 12a, when 
calculating the photonic efficiency at the start of the experiment, at 26µmol/L, there is 
no obvious correlation in the photonic efficiency with the film height. However, when 
calculating it at half the starting concentration, 10µmol/L (Fig. 12b), the calculated 
photonic efficiency for the 15ml/s reactions is an order of magnitude higher as compared 
to the rest, indicating that some mass transfer effect must be affecting the reaction 
rate (as the irradiance is remaining constant). Consequently, future work will focus on 
increasing mixing and turbulence on the disc in order to eliminate the mass transfer 
perpetrated reaction rate drop. 
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5 Conclusions 

It was found that the thin film photocatalytic SDR reduces photon transfer limitations, 
this is probably the result of the thickness of the film formed across the surface of 
the disc; with calculated average thicknesses between 160 and 450µm. However, the 
wave regimes did not impact the reaction rate and mass transfer limitations are still 
occurring. The flow across the disc is laminar as shown by dye injection studies, and the 
wave regime did not have an effect on this. However, two reactions with much higher 
than expected conversions were observed at 15mL/s and 100 and 200rpm with pseudo-
first order constants of 8.8 and 8.9x10−6 m/s respectively. The other reactions followed 
pseudo-second order kinetics, suggesting that the switch in reaction order occurs due 
to a mass transfer limitation, most likely due to the laminar flow on the disc. The 
significant enhancement in the reaction rates for the two pseudo-first order reactions 
will be investigated further, as the mechanism was not elucidated in this study. 
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7 Nomenclature 

ν Kinematic viscosity m2s−1


ρ Density kg m−3


ω Rotational speed of spinning disc rads−1


Q Volumetric flow rate m3s−1


h Height of the liquid film at radius r m

Ri Reaction rate molL−1s−1


C Concentration of substrate molL−1


V Reactor volume m3


S Illuminated surface area of catalyst m2


kapp,v Pseudo-first or second order reaction rate constant s−1 or

based on reactor volume m3mol−1s−1


kapp,s Pseudo-first or second order reaction rate constant ms−1 or

based on surface area m4mol−1s−1 

φoverall Overall quantum yield 
ξ Photon efficiency 
E Ekman-number 

5 
A Nusselt film height equation constant m 3


R Inlet nozzle radius m

R0 Inlet nozzle radius m

I0 Irradiance before absorption Wm−2


I Irradiance after absorption Wm−2


ε Molar absorptivity of the absorbing species Lmol−1m−1


l The path length through the material containing the m

absorbing species


t time s
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Figure 1: Photographs of the employed experimental set-up (a) process flow diagram of 
the thin film photocatalytic SDR (b) overall experimental assembly and (c) inside the 
reactor. 
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Figure 2: High speed camera images of the spinning disc fed water at various flow rates 
and disc rotational speeds. 
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Figure 3: Flow regimes on the spinning disc reactor at different flow rates and rotational 
speeds. 
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Figure 4: High speed camera images of the spinning disc with dye injected at the inlet.
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Figure 5: XRD spectrum of the TiO2 coating. 
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(a) (b) 

(c) (d) 

Figure 6: SEM images of titanium dioxide sol-gel coating: (a) cross-sectional view before 
reaction (b) cross-sectional view after reaction (c) front on view before reaction (d) front 
on view after reaction 
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Figure 7: Example concentration vs. time plots of methylene blue degradation (a) with 
catalyst and no UV and without catalyst but with UV (b) pseudo-first order - 15mL/s, 
200rpm (c) pseudo-second order reaction - 20mL/s, 200rpm. 
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Figure 8: Effect of film height on the (a) the surface area based pseudo-second order 
reaction rate constant (b) the volumetric pseudo-second order reaction rate constant 
(this data excludes the pseudo-first order reactions occurring at 15mL/s). 
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Figure 9: Calculated reaction rates at methylene blue concentrations of (a) 26µmol/L 
and (b) 13µmol/L. 
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Figure 10: Effect of film height on the pseudo-second order surface area based reaction 
rate constants as classified by flow regime. 
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Figure 11: UV light intensity distribution on the glass disc in the spinning disc reactor, 
with white circle indicating the outside disc surface. 
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Figure 12: Effect of film height on photonic efficiency at (a) 26µ mol/Lmethylene blue 
(b) 10µmol/L methylene blue. 
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¯Table 1: Pseudo-second order rate constants and average liquid film heights h of the 
pseudo-second order reaction experiments. 

Q 
[mL/s] 

ω 
[rpm] 

Wave 
regime 

kapp,s · 104 

[m4mol−1s−1] 
h̄ 
[µm] 

5 
5 
5 
5 
10 
10 
20 
20 
20 
20 
20 
20 

50 
100 
200 
200 
50 
150 
50 
50 
150 
200 
200 
200 

smooth 
smooth 
helical 
helical 
smooth 
helical 
crisscross 
crisscross 
solitary 
solitary 
solitary 
solitary 

3.45 
1.92 
1.65 
1.70 
1.58 
2.69 
1.81 
0.97 
2.18 
1.16 
2.06 
2.49 

283 
178 
112 
112 
356 
171 
449 
449 
216 
178 
178 
178 
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Table 2: Pseudo-first order rate constants and average liquid film heights of 15mL/s 
experiments. 

Q ω kapp,s · 106


[mL/s] [rpm] [m s−1] 
15
 100
 8.85 
15
 200
 8.92 
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