

Citation for published version:
Li, C, Deussen, O, Song, Y-Z, Willis, P & Hall, P 2011, 'Modeling and generating moving trees from video', ACM
Transactions on Graphics, vol. 30, no. 6, 127. https://doi.org/10.1145/2024156.2024161

DOI:
10.1145/2024156.2024161

Publication date:
2011

Document Version
Peer reviewed version

Link to publication

© ACM, 2011. This is the author's version of the work. It is posted here by permission of ACM for your personal
use. Not for redistribution. The definitive version was published in ACM Transactions on Graphics, vol 30, issue
6, 2011, http://dx.doi.org/10.1145/2024156.2024161

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 23. Jan. 2020

https://doi.org/10.1145/2024156.2024161
https://doi.org/10.1145/2024156.2024161
https://researchportal.bath.ac.uk/en/publications/modeling-and-generating-moving-trees-from-video(8a73c414-778b-4d35-8b7a-4be4d9a6d272).html

Modeling and Generating Moving Trees from Video

Chuan Li† Oliver Deussen‡ Yi-Zhe Song† Phil Willis⋆ Peter Hall†

Media Technology Research Centre, University of Bath, UK† University of Konstanz, Germany‡

Centre for Digital Entertainment, University of Bath, UK⋆

Figure 1: Using a single video as input (left, background removed using alpha matting), our system outputs a 3D dynamic tree model
(middle). Using the model, potentially an infinite number of unique trees with similar appearance and motion can be generated (right).

Abstract

We present a probabilistic approach for the automatic production of
tree models with convincing 3D appearance and motion. The only
input is a video of a moving tree that provides us an initial dynamic
tree model, which is used to generate new individual trees of the
same type. Our approach combines global and local constraints to
construct a dynamic 3D tree model from a 2D skeleton. Our mod­
eling takes into account factors such as the shape of branches, the
overall shape of the tree, and physically plausible motion. Further­
more, we provide a generative model that creates multiple trees in
3D, given a single example model. This means that users no longer
have to make each tree individually, or specify rules to make new
trees. Results with different species are presented and compared to
both reference input data and state of the art alternatives.

Keywords: tree modeling and animation, generative model.

Links: DL PDF

1 Introduction

Trees are among the Earth’s most useful and beautiful products of
nature. They have been drawn, painted and modeled for centuries.
Contemporary tools make it possible to produce high quality 3D
moving models. Typically though, each tree must be individually

made by an expert user either by sketching or by providing suitable
images — new trees can be grown automatically only if abstract
rules are defined. The difficulties of building a tree are magnified
when the tree is to move. Overall, tree modeling remains a time
consuming process that often relies on expert knowledge.

In this paper we address the tree modeling problem using an ap­
proach that is almost entirely automatic. To make a model, the user
only has to outline the tree in an initial video frame. The system
then creates a full 3D model including motion. This model further­
more can serve as an example to automatically generate new 3D
dynamic tree models of the same species. Our approach makes it in­
expensive to model and animate a large library of trees for graphics
applications. Figure 1 gives an illustrative summary of the process.

Neubert et al. [2007] summarize current tree modeling meth­
ods by three categories: rules-based generation, interactive
modeling, and image-based production. The first group
uses rule-systems such as L-systems [Lindenmayer 1968;
Prusinkiewicz and Lindenmayer 1990] or procedural models
[Deussen and Lintermann 2005] to generate new trees from an
initial state. Talton et al. [2011] present an algorithm for high level
controlling grammar-based procedural models and demonstrate
the algorithm on tree modeling. Rules tend to be abstract and
so are best suited to technical users, yet this is the only current
group of methods capable of creating many distinct individual
trees. The second group uses interaction to sketch a model in
2D and then create a 3D model from that [Anastacio et al. 2006;
Quan et al. 2006; Okabe et al. 2005; Chen et al. 2008]. They
provide considerable control to artists skilled enough to create
high quality trees. Some methods combine rules and interaction
[Lintermann and Deussen 1999; Palubicki et al. 2009]. The third
group models trees from image data, with the advantage of increas­
ing realism. Martinez et al. [2004] use a set of registered images to
define a model, Neubert et al [2007] allow the construction from
two loosely coupled images. Tan et al. [2007; 2008] mixes image
input with user interaction to construct trees. Other approaches deal
with reconstructing tree models from point clouds [Xu et al. 2007;

http://doi.acm.org/10.1145/2024156.2024161
http://portal.acm.org/ft_gateway.cfm?id=2024161&type=pdf

Figure 2: Our system contains four components, indicated by four grey blocks. The first provides a 2D skeleton from the input; the second
constructs a static 3D model; the third recovers motion in 3D; finally the 3D model is used as an example to generate new trees.

Livny et al. 2010] in which case the 3D shape is implicitly given.
However, expensive hardware has to be used and in most cases
each tree needs to be individually edited by an expert. The latest
advance in this field produces lobe-based trees [Livny et al. 2011]:
the shape of the lobes is computed from the points and is a simple
triangular geometry (alpha shapes). This enables storing a tree
model in kilobyte and to reconstruct it in milliseconds.

All the above produce high quality static trees — making trees
move has been a separate issue. Physically based approach­
es to motion (e.g. [Shinya and A 1992; Sakaguchi and Ohya 1999;
Ota et al. 2004; Akagi and Kitajima 2006]) are computationally ex­
pensive. Heuristics have been proposed to reduce overhead­
s [Wessélen and Seipel 2005]. Recent advances considering a tree
as a harmonic oscillator [Diener et al. 2009; Habel et al. 2009] are
fast enough to operate over forests. Simulations are analogous to
rules for growing static trees in so far as the equations used con­
stitute rules. Like rule-based systems, simulations can be difficult
for non technical users to understand, although recent research ad­
dresses this [Diener et al. 2009]. Analogous to image based model­
ing, an alternative to simulation and heuristics is to use video as a
data source. Diener at al [2006] provide an example of this. They
are able to capture the dynamics of small trees in a controlled envi­
ronment, and re-target the motion to large trees in the wild. How­
ever, as a deterministic approach, they rely on accurate tracking to
parameterize branch motion, so the performance is less plausible
when the tracking is noise. Meantime, their algorithm only uses
rotations in the 2D plane to move branches so the result appears
unconvincing from the side view.

We use a single video as a source to build 3D dynamic tree models,
but differ from the above methods in the following aspects:

•	 We use a probabilistic approach to improve the appearance of
3D trees. Our method optimizes the global branch distribution
whilst avoiding implausible local branching patterns.

•	 We recover realistic 3D motion from a single video. Again a
probabilistic approach is used to account for complicated tree
motion and clutter backgrounds.

•	 We are able to create new trees that are similar but not iden­
tical to a given example. This allows the user to create whole
forests from a small set of reconstructed trees.

We use video as source because of its realism and convenience. The
user provides an example video of a tree in the wild and marks the
outline in the initial frame, our system then automatically outputs a
3D dynamic model. A user friendly control mechanism is provided
so users can easily influence the output models — for examples,
controlling the overall shape of the generated trees or turning wind
up or down. Besides video, other 2D input sequences such as s­
ketches or conventionally modeled trees can be used.

2 System

Our system contains four components (see Fig. 2). The first pro­
vides a 2D skeleton from the input; the second constructs a static
3D model from a 2D skeleton; the third recovers motion in 3D;
finally the 3D model is used as an example to generate new trees.

(a) (b) (c)

Figure 3: Motivation for our probabilistic approach that fuses the
global and the local constraints: (a) the skeleton computed using
only the global constraint. Although the skeleton fills the outline, it

contains implausible local branch patterns. (b) the skeleton com­
puted using only the local constraint. In this case the branch pat­
tern appears natural, but the overall skeleton fails to minimize the
empty space inside of the outline. (c) the result of our probabilistic
approach, where the global and the local constraints are fused into
a probability density function that gives the optimal solution.

Let us firstly define some technical terms that are used throughout
this paper. A dynamic tree model is a labeled directed graph,

T = (X,R,A)	 (1)

meaning: a set of nodes X , a set of angular motions R, and a di­
rected adjacency matrix A. The nodes xi ∈ X give the skeleton
its overall shape and the adjacency matrix A gives its topological
structure. For example, aji ∈ A defines a branch that is direct­
ed from xj to the xi, so aji = (xj , xi). This paper models trees
using a binary structure and defines bifurcation as a basic term for
describing the local branch pattern. A bifurcation comprises a vec­
tor of four elements (xi, xj , xk, xl) corresponding to local root xj ,
apex xi, and local leaves xk, xl. Figure 8 has some illustrations: xj

is the parent node of xi, and xk, xl are two children nodes of xi;
branch aji splits into aik and ail at node xi.

To move the tree we assume each branch oscillates about its local
root. For each node, we set up a local coordinate system centered
at the local root xj(t) and use the world basis as rotation axes. The
angular motion ri ∈ R is defined as a list of rotations (in angles)
about the local root that sway each node xi in time: xi(t + 1) �→
(xi(t), ri(t)). Throughout this paper we attach the prime symbol
to variables to indicate 2D data, so T ′ = (X ′ , R ′ , A) represents a
2D moving skeleton.

′ The first component of our system builds a 2D skeleton T from the
input video. The technique we use is based on Diener et al. [2006]
and is briefly explained in Appendix A for completeness. Based
on this 2D model we perform the 3D appearance modeling that
is outlined in the next section. Motion modeling is introduced in
Section 4 and Section 5 explains how to generate new models from
an existing example. Results are shown in Section 6.

3 3D Appearance Modeling

This section explains how to build a 3D model from a 2D tree skele­
ton. This problem has been studied in the context of sketch input

� �

(a) (b) (c) (d)

Figure 4: Comparison between different algorithms for branch placement: From left to right, a): Diener’s [2006] method maps a 2D
skeleton to the front and back sides of a 3D ellipsoid. The resulting 3D skeleton fails to fill a volume satisfactorily. The symmetry in the
approximation is artificial, especially from the side views. b): Okabe’s [2005] method can lead to bifurcations that are too sharp. c) Our
result smoothly fuses global and local constraints. d) Making the branches curly and adding small twists further increases the visual richness.

[Anastacio et al. 2006; Quan et al. 2006; Chen et al. 2008] or alter­
natives such as [Diener et al. 2006]. Our method owes much to Ok­
abe et al [2005] and Tan et al [2008], the basic idea of which is to
spread branches in all directions uniformly inside of an enveloping
surface, Ω. Such an enveloping surface is made by surface revolu­
tion (see Okabe et al [2005]). Spreading branches inside a surface is
attractively simple, but can suffer from locally implausible branch
shapes, and global sub-optimal filling of the volume. Our approach
as illustrated in Figure 3, addresses both of these issues simultane­
ously because it fuses both local and global constraints.

Our basic approach consists of two steps: a copy-operation and
“pushing” the resulting structures in the right form. Initially, the
reconstructed 2D skeleton ([Diener et al. 2006], see Appendix A)
lies on the xy-plane, so we copy it to the yz-plane and update the
adjacency matrix A to create a tree with a single trunk. More com­
plex variants of this copying exist, such as creating copies on more
than two planes like Neubert et al [2007] did. In all cases the result
is a prototype 3D model with branches confined to distinct planes.

In a second step the model has to be adapted to create a botanical­
ly plausible structure. We do this by pushing the branches away
from the initial xy- and yz-planes in a perpendicular direction. The
pushing is performed following a root-to-leaf traversal.

At each step i, all the descendants of xi (the sub-tree rooted at xi)
are pushed by the same distance. The resulting new skeleton is
denoted by Xi. The key problem is how to select the optimal push­
ing distance: we want to fill a volume and keep tree branches in a
plausible shape. Here we propose a probabilistic solution, which
maximizes the posterior probability defined by the Bayes’ rule

p(xi|Ω, Xi−1) ∝ p(Ω|Xi−1 , xi)p(Xi−1, xi). (2)

The posterior is factorized into two terms: the local term
p(Xi−1, xi) keeps the branch shape plausible, while the global ter­
m p(Ω|Xi−1, xi) keeps the overall volumetric shape. Notice that
all points xi are in 3D. Next we explain each term in greater detail.

3.1 Local Appearance Term

The local appearance term makes sure the local branch pattern is
natural after pushing the current node xi. It is formulated as

p(Xi−1, xi) = p(Xi−1|xi)p(xi). (3)

The prior, p(xi), is defined as a uniform distribution over a range of
values [xi−δ, xi+δ] along the node’s pushing direction. This prior
prevents a branch from being over-stretched when its tip is pushed.
In practice we set δ to be 1/5 of the width of the tree.

The conditional probability p(Xi−1|xi) constrains the shape of
each bifurcation by examining the angle αi between the branch aji

and its parent branch

(αi − µ)2

p(Xi−1|xi) � exp − . (4)
2σ2

i

Here µ is the expected angle estimated as the average of all branch­
ing angles in the 2D tree. In practice we find µ lies between π/6
and π/3. Clearly αi = µ has the highest probability. σi controls
the width of the distribution: smaller values keep the actual push
closer to the expected angle µ. We set σ to depend on the topolog­
ical depth of the node. Doing so allows branches close to the root

�

(a) (b) (c) (d)

Figure 5: This the result of leaf density optimization. a): The reference image. b): Our result, where the overall shape of the leaves and its

density has been optimized to match the reference image. c): Randomly sampled leaves around branches using small variance. d): Randomly
sampled leaves using large variance.

to have a wider tolerance: if di is the topological depth of the cur­
rent node and dmax is the maximum topological depth of the tree,
we set σi = π(dmax − di)/dmax. An intuitive explanation is that
the lower branches usually form less regular bifurcations as their
growths are affected by the weight of the higher order branches.

3.2 Global Appearance Term

The global appearance term keeps the overall volumetric shape. It
is the conditional probability of filling the overall envelope Ω, given
the previous 3D skeleton Xi−1 updated by the current node xi. The
highest probable xi will have the updated 3D skeleton Xi that best
fits Ω. This is equivalent to minimizing the distance from Ω to Xi.

We first evenly plant m attractors, ωk=1:m, on the envelope surface.
These attractors are used to calculate the total distance from the
envelope to the 3D skeleton as

m

D(Ω, X) = min(|ωk −X|). (5)

k=1

The density of the attractors can be controlled by the user. We
keep the total number of the attractors to be around 200 to 300.
This provide good balance between the accuracy and computa­
tional efficiency. Our algorithm calculates the reduction of D
when Xi−1 is updated by xi: E(Ω, Xi−1 , xi) = D(Ω, Xi−1) −
D(Ω, Xi). It clamps the improvement to be non-negative, that is,
E(Ω, Xi−1, xi) = 0 for all D(Ω, Xi−1) < D(Ω, Xi). The proba­
bility is normalized over all possible solutions,

l E(Ω, Xk−1, x i
l)

p(Ω|Xi−1, x i) =
�L

, (6)
E(Ω, Xi−1, xl)j=1 i

Here xi
l is one of the L possible solutions for xi. The probability of

xi being outside of Ω is clamped to zero, which ensures all pushed
branches are inside the envelope.

Substituting Eqs. (3), (4), (6) into Eq. (2) gives the final posterior.
The pushing distance that maximizes this posterior is chosen as the
optimal solution for xi. Intuitively, our system exhaustively tries
out all possible “push” values within [xi−δ, xi+δ], evaluating each
using the quality measure that is dictated by the probability model:
for each push position, the quality of the branch angle is measured
using Eq. (4), and the equality of the space fill is measured using
Eq. (6). Then the best push distance is selected. Figure 4 shows
our output 3D skeleton and results of alternative algorithms. Notice
that at each step we search for the best value to push the current
node and all its direct and indirect children. So in total there are N

times L possible options to convert a whole tree into 3D. Here L is
the number of options for pushing a single node and N is the total
number of nodes in the tree.

Finally, we follow existing methods to add details at low
cost. Small branches and twigs are added using self-similarity
[Shlyakhter et al. 2001; Tan et al. 2007; Chen et al. 2008] while
curliness and twists are generated by fitting a Flash and Hogan
parametric line model [Flash and Hogan 1984]. We also propose a
simple but efficient algorithm that generates leaves that match the
reference image, which is explained in Appendix B.1. The result is
demonstrated in Figure 5.

4 3D Motion Modeling

So far we have modeled a static 3D tree from the given 2D input.
The next step is to model its motion also in 3D. We do so using
tracking data from the video. Again the key problem is to transform
the tracked 2D motion to 3D that moves the model in a realistic way.
Let the 2D projection of each 3D node xi at frame t be denoted by
′ ′ xi(t)

1. Video based tracking moves this point to xi(t + 1) in the
next frame.

We first assume the length of the 3D branch does not change, so
′ ′ that any apparent 2D translation xi(t+1)−xi(t) can be determin­

istically explained by a sequence of 3D rotations about the local
root xj(t). Section 4.1 explains this approach in greater detail. In
practice though, a deterministic approach leads to a sub-optimal so­
lution, for many reasons such as errors in the tracking data. As a
result the tree can be bent and twisted out of shape. Figure 6 and the
supplementary material show some examples. To solve this prob­
lem we again use a probabilistic approach to recovering 3D motion,
as explained in Section 4.2.

4.1 Deterministic motion estimation

Using the principle that the moving 3D tree must at all times project
onto a moving 2D skeleton, we can obtain a deterministic solution
for the 3D angular motion R in Eq. (1). We assume that a branch tip
xi(t) can only rotate about its local root xj(t). This follows direct
experience that wood can bend but is almost impossible to stretch or
compress and is a consequence of the way in which fibres are made
up; the Young’s modulus for wood is around 109 to 1010 N/m2

which is comparable with many metals.2 If a 2D branch appears

1please recall the prime symbol in this paper indicates 2D data

2http://en.wikipedia.org/wiki/Young’s modulus

(a) 3D deterministic result (b) Diener’s [2006] result (c) Our result

Figure 7: 3D motion acquired from an input video. (a): a 3D deterministic method can not handle the inaccuracy in tracking (highlighted in

green and yellow). So branches can be bent and twisted out of shape (in blue). (b): Diener’s method also produces implausible branch shapes
(in blue). Meantime it can not model branch foreshortening and produces motion that diverts from the real tree movement. (highlighted in
green and yellow). (c): Our method produces realistic 3D motion while keeping its projection following the video.

(a) (b) (c)

Figure 6: Motivation for the proposed probabilistic 3D motion
modeling. This figure demonstrates examples of angular motion
that lead to implausible branch shape. a): The original branches.
b): The branch is bent out of shape. c): The branch is over twist­
ed when its parent aligns with a rotation axes. Both problems are
solved use our approach.

to change length, it can only be because the 3D branch has been
foreshortened by projection. The idea here is to rotate the branch to
allow for this foreshortening.
We set up a local coordinate system centered at the local root xj(t)
and use the world basis as rotation axes. Rotating xi(t) around its
local root gives Φ, the sphere of all possible positions in the next
frame t. Using [Lucas and Kanade 1981], we also have the node’s

′ 2D projection tracked in the next frame, namely xi(t+ 1). The 3D
position xi(t + 1) must lie on the intersection of Φ and the line of

′ sight (aligned with the z direction) through xi(t + 1). In practice,
tracking data is noisy so there can be two, one or zero intersections,
depending on the distance between xi

′ (t) and xi
′ (t+1) ′ and the size

of Φ. In the case of two intersections, we select the solution with
the closer 3D distance to xi(t). In the case of no intersection, we

′ ′ shift xi(t + 1) towards xi(t) until a solution is found.

This simple deterministic approach usually complies with the mo­
tion in the original video. However, the appearance of the resulting
skeleton is not always optimal. As seen in Figure 6 and 7 the branch
can be bent out of shape or twist unrealistically when the tree moves
with large motion. This is because deterministic approaches rely on
near-perfect tracking data and do not regularize the result for natu­
ral branch shapes. Such a problem is shared by Diener at al [2006],
who also use a deterministic approach but only model the motion
as 2D rotations in the xy plane. It is worth mentioning that 2D
plane rotations are insufficient for modeling many 3D movement,
such as the foreshortening effect from the front view (see Figure 7
middle) and so the resulting motion appears unconvincing from the
side view (see the supplementary video). Such artifacts of the de­
terministic approaches motivate our use of probabilistic methods.

4.2 Probabilistic Motion Modeling

As with the 3D appearance modeling, our motion modeling also
follows a root to leaf traversal for each frame. Also, any motion
applied to a branch node xi(t) is applied to all of its descendants.
Recall the problem is, given a 3D skeleton and the track of its 2D
projection, to find the optimal 3D angular motion, ri(t), for each
node xi(t). Using the Bayes’s rule, the probability of choosing a
particular ri(t) can be factorized into two terms,

′ p(ri(t)|xi(t + 1), Xi−1(t + 1)) ∝
′ p(xi(t + 1)|Xi−1(t + 1), ri(t))p(Xi−1(t + 1), ri(t)). (7)

We use Xi−1(t + 1) to indicate the skeleton before rotating xi(t),
where all ancestors of xi(t) have been rotated to the next frame
t + 1. The “shape” term p(Xi−1(t + 1), ri(t)) evaluates whether
the skeleton has natural local branch patterns, after xi(t) is rotated
by ri(t). It is similar to the previously discussed local appearance

′ term (Section 3.1). The “track” term p(xi(t+1)|Xi−1(t+1), ri(t))
evaluates the similarity between the (projected) rotated branches
and their 2D tracked motion; in other words, how well the rotation
matches the track. It is analogous to the global appearance term
(Section 3.2), which evaluates the fit between the skeleton and the
envelop surface. As before, primes indicate 2D data.

4.2.1 Track Motion Term

′ The track motion term p(xi(t+1)|Xi−1 (t+1), ri(t)) is the prob­
′ ability that the rotation matches the 2D tracked motion xi(t + 1).

The node xi(t) undergoes a putative 3D rotation around its local
root, and is projected to 2D under a constant orthogonal projection

′ matrix K: that is, yi(t + 1) = K(xi(t), ri(t)). We define the
probability of the observed tracking using the distance between the

′ ′ predicted point yi(t+ 1) and the observed point xi(t + 1):

′ p(xi(t + 1)|Xi−1 (t+ 1), ri(t)) =
� (yi

′ (t + 1) − x ′ i(t + 1))2 �

exp . (8)
−2σ2

track

Since the rotation term is the only variable, the rotation leading
′ to the predicted point yi(t + 1) with highest probability will be

favored; σtrack is a pre-set parameter that controls the precision of
this estimate. If this were the only expression used to decide the
rotation we would recover the deterministic solution once again.
Next we introduce the shape motion term as a prior which prevents
the branch from bending out of shape.

Figure 8: Trees generated by statistical sampling. The first tree in each row is the example model, that used to generate new trees on the right.
The top row and the bottom row use different Dirichlet distributions to generate different bifurcation shapes. As an example, the Dirichlet
distributions of ratio of angles between the branches are illustrated on the left.

4.2.2 Shape Motion Term

The shape motion term constrains the rotated skeleton to a natural
appearance. It can be further decomposed into two terms,

p(Xi−1(t + 1), ri(t)) = p(Xi−1(t + 1)|ri(t))p(ri(t)). (9)

Here, p(ri(t)) is the prior of the angular motion, that is a rotation
we might guess at if we have no track data at all. We define this
prior as a uniform distribution over [−δ, δ], so the instant angular
velocity for each node is bounded.

A threshold Δ is also set for the accumulated angular motion over
all the past frames, so that |

�

τ

t

=0 ri(t)| > Δ is assigned with
zero probability. This is an important constraint when the branch
aligns with a rotating axis. Without it, an arbitrary rotation around
that axis would satisfy Eq. (9), even though the skeleton is twisted
unnaturally as time moves on (see Figure 6c).

The conditional probability p(Xi−1(t+1)|ri(t)) evaluates the nat­
uralness of the shape of the skeleton after rotating node xi(t) by
ri(t). It is controlled by the angle αij(t) between the current
branch and its parent branch. We set

� (αji(t)− αji(1))
2 �

p(Xi−1(t)|ri(t)) = exp − . (10)
2σ2

shape

Here the αij(1) is the angle between branch aji and its paren­
t branch in the initial frame. σshape is a free parameter that can
be set to vary with the topological depth, similar to σi in Eq. (4).
For example, a wider tolerance σshape can be assigned to nodes
near the leaves so they bend more easily.

The final posterior is calculated by substituting Eqs. (8), (9), (10)
into Eq. (7). The angular motion that maximizes this posterior is
used to rotate xi. To demonstrate the advantage of our probabilistic
based method, Figure 7 compares 3D branch animations using the
motion acquired from the deterministic approaches and our method.
As the figure shows, the deterministic method can bend branches
out of shape, while our method preserves its realism.

So far we have modeled the motion of a bare tree, the next step
is to generate motion for the leaves. The basic leaf motion is to
follow the branch it is attached to, with high frequency movement
introduced to enrich the dynamic. See Appendix B.2 for detail.

5 Generation

So far we have modeled a single tree. In this section, we introduce
a method that generates multiple unique trees that look and move
similarly, but not identically, to an existing model. The existing
model can be the one we just modeled from a video. However,
this module makes no assumption about the source of the example,
so a manually created model would be equally acceptable. The
advantage of having this module is that a potentially infinite number
of trees can be automatically created. Rule based systems can do
this too, but our method relieves the user of the need to define rules.
Instead our system automatically learns a statistical model of an
input example, and uses that statistical model to make new trees.
Hence it provides a unique solution to the tree modeling problem.

One way to generate new trees from an existing one is to add some
randomness to the example. For example, jitter branches by adding
Gaussian noise. However, keeping the randomly jittered trees look­
ing natural is not a negligible task. Moreover, only limited novelty
can be produced — for example, the global branch distribution re­

�

�

�

�

mains similar. The same problems exist for motion too.

We propose to make use of a statistical model to generate new trees.
The new trees and the example tree may look and move different­
ly, but they should share a common distribution of characteristic
features and so are statistically identical. Figure 8 shows some
example trees automatically generated from examples. Broadly s­
peaking, our algorithm grows a completely new model from root
to leaves, adding a bifurcation at each recursive step. The shape
of the bifurcation depends on tree type and so follows the statistics
in the example tree. A new tree is first generated in its static form
in 2D, then converted into 3D tree, using the 3D modeling method
explained in Section 3. Motion characteristics are then included to
allow the tree to sway naturally over time. The “stiffness” of the tree
is reflected in the frequencies that dominate the swaying motion of
its branches. The statistics of these frequencies in the example tree
are used to generate a statistically identical motion in the example.

The key ingredient of the above method is to learn the statistical
characters of the example tree. In order to do this, we first define
features that characterize the appearance and motion of a tree. The
features are represented as a points in a feature space. We then fit
a parametric distribution to the collection of feature points taken
from the example. New features can be sampled from the distri­
bution for the new tree. Thus we have a probabilistic generative
model (PGM). Figure 8 shows different types of tree have different
distributions — that is, different PGMs. Next we first discuss the
strategy for feature selection and PGM fitting in detail, then explain
the algorithm to grow a new tree by assembling these features.

5.1 Feature Selection

The United States Forestry Service states that leaf shape and color,
and the tree’s general shape are all useful indicators of a tree’s class
(USFS-TAMU). Our method uses the shape of a tree as a 2D en­
velope surface to constraint the overall shape of the generated tree
and the shape of bifurcations to characterize a tree species. As men­
tioned, we also use dominant swaying frequencies to characterize
motion. The envelope surface is used when growing the tree, here
we focus on the shape and motion of bifurcations.

Recall that in a binary tree all bifurcations have exactly four ele­
ments: the local root xj , the apex xi, and the local leaves xk, xl(see
Figure 8 for an illustration). We can describe the shape of a bifurca­
tion with a feature vector of fixed dimension. The feature vector for
the shape of a bifurcation should not depend on the location, orien­
tation or the absolute scale of the bifurcation — otherwise viewing
the same tree from different positions would give different results.
The features we choose comprise: (i) the ratio of angle between the
branches, < θ1 : θ2 : θ3 > so

i
θ = 1; and (ii) the ratio of

branch lengths < L1 : L2 : L3 > so that Li = 1. The summa­
tion constraint turns out to be crucial in the later PGM fitting.

For motion, we assume a branch, aji, will sway according to dom­
inant frequencies. The ratio between the energy of each given fre­
quency also sum to unity. This makes it possible for us to represent
motion using the same statistical model as we use for shapes, but
in higher dimensions. More exactly, we keep the lower frequency
components (the first 20% or so) as the dominant frequencies. Sup­
pose that ck + idk is a complex number representing the real and
the imaginary parts of the kth frequency component. We represent
dominant frequencies with a pair of tuples, < ck >

n
1 and < dk >

n
1 ,

both of which are scaled to sum to unity. For the purpose of fitting
a PGM, the tuples are shifted so that no term is negative. This shift
is removed after sampling from the fitted PGM.

5.2 PGM Fitting and Sampling

We compute shape and motion features for every node in the exam­
ple tree. When plotted in feature space, these features form a tight
cloud. We fit a parametric function whose contours follow path­
s of equal density through this cloud. Notice that the summation
constraint means the feature vectors are really tuples of ratios. The
important consequence of this is that a Gaussian distribution is in­
appropriate to model the distribution — because it cannot guarantee
the summation constraint. Instead we use the Dirichlet distribution,
which is designed for tuples with exactly the summation constraint
we have. The Dirichlet distribution is briefly explained next, but
see [Bishop 2006] for a more in-depth exposition.

Let z denotes a random vector whose elements satisfy zk > 0 and
zk = 1. Here zk represents the proportion of item k, i.e. the

proportion of the kth bifurcation angle in all the three angles. The
probability density function of this random vector z is then modeled
by a Dirichlet distribution with the parameter vector β:

K
Γ(Σkβk) βk −1

p(z|β) ∼ D(z1, ..., zK |β1, ..., βK) =
�K

zk , (11)
Γ(βk)k k

where Γ denotes a gamma function. β can be learned from some
training data, i.e. an existing tree model (see [Minka 2003] for de­
tails). Notice the length of the parameter vector β is the same as the
random vector z. β can be understood by its precision s =

�

k
βk

and the mean of the distribution m = β
s

. Intuitively, beta controls
the shape of the distribution: z is likely to be near the mean when s
is large, and distributed more diffusely when s is small.

We model different tree features independently because they spread
into different feature dimensions and shapes. We define βangle,
βlength and βmotion as the parameter vectors for the branch an­
gle, length and motion. To model bifurcation shapes, βangle and
βlength only need to be 3D vectors. It is slightly more complicated
for βmotion: for each rotating axes, we have its own β, which is
learned in the frequency domain rather than in the spatial domain:
we perform the fourier transform to the time series of the branch
angular motion and only keep the most informative (lowest 20%)
frequencies.

5.3 Growing a New Tree

A new tree is first generated in 2D, then converted into 3D. The
Dirichlet distribution ensures each bifurcation has a well formed
shape and moves naturally, but does not guarantee anything about
the global shape of the new tree. To ensure this we need a space-
filling constraint, which is analogous to the problem we faced when
converting a 2D skeleton to 3D. As in that case we need a 3D en­
velop surface, on this occasion denoted Ω ′ to indicate its 2D nature.

We grow a 2D tree from root to leaf to fill Ω ′ . At each step a leaf
point is randomly chosen and a new bifurcation is added to it: the
bifurcation is sampled from the PGM. The growing direction of the
new bifurcation is decided by two criteria: (i) it should efficiently
reduce the empty space in Ω ′ , and (ii) the angle between the new­
ly added bifurcation and its parent should appear natural. These
two criteria are equivalent to those used when converting a skele­
ton to 3D, so we re-use the approach except: (a) all spatial terms
are now in 2D, (b) rather than “push” we find the best growing di­
rection. This is equivalent to finding the best rotation of the child
branch around the z axis. This is essentially a one dimensional
search problem and the optimal solution can be efficiently found.

Leaves are added to a generated tree using standard approach­
es [Tan et al. 2008]; if greater control is required for a specific tree
the user can provide a hand-drawn density map. Figure 8 shows

some results of trees generated into different types. The Dirich­
let distributions in the figure are visualizations of bifurcation angle
triplets, similar distributions exist for branch lengths triplets and
sway frequency in higher dimensions. The output tree looks and
moves like the input example (see supplementary video for motion
results), but is not identical. Generation is unique and important
to the current tree modeling literature because it makes populating
large landscape scenes straightforward for users.

6 Results

Figures 1 and 10 show our method works for different tree species.
Each row shows the results from a single input video. The left col­
umn shows the initial frames from the videos, with backgrounds
removed. The middle column shows our output model from the
front view. Note that our output model matches the reference im­
age from the front and has a natural appearance from all the other
angles. The right column shows new trees generated with simi­
lar appearances. The ability to generate unique trees of the same
species makes populating large landscape scenes straightforward.
In the supplementary video we show examples of moving trees,
that demonstrate the robust performance of our method for compli­
cated tree movement and cluttered background. In comparison, the
deterministic methods fail to realistically capture the motion once
the tracking data appears noisy.

Our system uses video as input because it is convenient for users
and offers realism that is expensive to achieve otherwise. Howev­
er, there is no reason why the system could not work with other
types of input source - for example, sketch based input as shown
in Figure 9. Indeed, sketch based input can be used to constrain
the branching structure for a conifer tree. In practice, the central
trunk is initialized by the user and will not be copied nor pushed.
In general, our system can model trees that have a skeletal structure
which can be represented by a graph of nodes and arcs.

Our system provides flexible user control for editing the output
models. For example, the appearance of the tree can be controlled
by a 2D outline supplied by a user. Typically this outline can be
recycled from the user outlining a tree in a video frame, but the
opportunity for creative control exists allowing users to indulge in
topiary, for example. Figure 11 shows how 3D tree branches opti­
mally fill unusually shaped volumes, and leaves can still be added
to complete the model. As leaves add considerable complexity to a
model in terms of the number of polygons, we allow users to con­
trol the complexity of the model by balancing the number of seeds
and the scale of the template. To make a lower resolution model,
users only need to sub-sample the seeds and scale the template to
a larger size. See supplementary video for an example. Our mod­
el stores the frequencies of branch oscillations at each node, which
means users can exercise control over how the tree moves through
a driving signal that effects the oscillations. For example, the us­
er can drive a tree using an audio signal of a windy day. See the
supplementary video for an example of motion magnification.

The major free parameters are generally fixed for different trees
mentioned in the paper. For example, the search range δ for p(xi)
in Eq.(3) is fixed to be 1/5 of the width of the tree. The standard
deviation σi in Eq.(4) is calculated from the topology depth of the
branch. However, a few parameters may be adjusted slightly for
specific scenarios. For example, the bound of the angular velocity
for p(ri(t)) in Eq.(9) is enlarged to cope with the strong wind
example in the demo video. In practice, the time taken to build a
static tree is within a minute using our combined Matlab and C++
implementation running on a standard Intel P4 desktop. 3D motion
generation usually takes about one extra second per frame. The
memory consumption is small, the system consumes about 30 Mb
memory while running. The output model can be between 10K and

100K polygons, depending on the required resolution.

A user specified 2D sketch. Our result.

Figure 9: User sketch helps model some specific type of trees. The
main central of the conifer tree (in orange) is specified to not being
copied nor pushed in the 3D modeling step. User can also draw
further branch details (in gray) to increase the similarity between
the model and the input example.

Ideally results should be quantitatively evaluated. In practice we
realize it is difficult to get the ground truth data for trees. Recent
advances such as [Livny et al. 2010] uses a scanning technique to
acquire 3D points clouds for trees. Although using an active scan­
ner is a step forward toward highly accurate geometry capturing for
trees, the data is still sparse, incomplete, and noisy so can not be
used as the ground truth. Here we would like to emphasize that
the purpose of our work is to provide a single view solution for a
visually plausible model. And we have provided qualitative exam­
ples, including comparisons with other results, comparisons with
the reference video and a number of graphics applications.

For a single tree modeling, our work draws inspirations
from existing art, such as [Okabe et al. 2005; Tan et al. 2007;
Chen et al. 2008]. Particularly, [Chen et al. 2008] proposed a
Markov random field approach to convert a freehand sketch of a
tree into a full 3D model that is both complex and realistic-looking.
Like [Chen et al. 2008], our approach pushes a 2D skeleton mod­
el into 3D from root to leaf, but whereas [Chen et al. 2008] grow
branches in random directions we supply a constraint (that factors
into local and global parts). In addition, our Bayesian framework
is also used to model 3D motion, whereas [Chen et al. 2008] only
works with static models.

Last but not least, we discuss the range of tree species that our
method is designed to work with. According to the list of tree gener­
a3, the major tree species include Eudicots, Monocotyledons, Mag­
noliids, Conifers, Ginkgos, Cycads, and Ferns. As a skeleton based
approach, our method works better with trees that have an adequate
branching structure. These include Eudicots, Magnoliids, Conifers
and Ginkgos. Although not all of these trees strictly follow a binary
skeleton, we found our method produces visually plausible output
models. In addition, it is very convenient for users to add further
constraints to improve the realism of a particular tree species. For
example, the central trunk of conifer trees typically does not branch
like a deciduous tree. In this case the user can enforce this at the
initialization stage (Fig. 9). However, our system works less well
on Monocotyledons, Cycads and Ferns, which are leaf-dominated

3http://en.wikipedia.org/wiki/List of tree genera

species. For example, a palm tree is expected to appear as a soli­
tary shoot ending in a crown of leaves. In this case, specific prior
knowledge about the tree species is needed to acquire a plausible
output model.

7 Conclusions

In this paper we described a method for reconstructing animated 3D
tree models from 2D video input and showed how to create a variety
of models automatically from a reconstructed tree. Our probabilis­
tic formulation fuses local and global constraints to ensure optimal
static models. A probabilistic method is also used in motion model­
ing to fuse the shape and track terms, which maintains the integrity
of branch shapes in 3D dynamic models. Our approach to using
video reduces user interaction to outlining a tree in just one frame.
The user can control the shape of generated trees by drawing a new
outline, and control the complexity 3D models by specifying the
number of leaves. Furthermore, the motion can also be controlled
by modulating the dominant frequencies stored at each node.

We have provided side-by-side comparisons to other work to show
the qualitative advantage of our models. Indeed, we have not pro­
vided quantitative evaluation. However, our system is designed for
graphics application, where visual satisfaction is highly valued and
perfect reconstruction is less demanding.

Our system needs a 2D skeleton model to work with. The 2D model
can be acquired from a single input video for the realism it offer­
s. Our system is also compatible with other forms of input data,
including user sketches, as long as the skeleton model can be ex­
pressed as a graph of nodes and arcs. However, palm trees is a
limiting case as they are not characterized by branches but leaves.

A more important restriction is the use of binary skeletons. So far
we have not found this to be significant in practice, and is it very
convenient for automatic generation: allowing a general n-ary tree
introduces a significant degree of complexity into the generative
model. However, this can be an interesting path for future work.

Another area ripe for further development lies in the simultaneous
modeling of motion and shape in 3D. Instead of first modeling a
static 3D skeleton, then moving it we might consider solving for the
moving skeleton that best fits all frames simultaneously. Using mul­
tiple views should further improve the realism of our output models.
Last but not the least, it is interesting to explore whether our data
driven approach can be used to parameterize physical models such
as used in [Diener et al. 2009; Habel et al. 2009; Sun et al. 2003],
so the data can be better applied in realtime graphics applications.

References

AKAGI, Y., AND KITAJIMA, K. 2006. Computer animations
of swaying trees based on physical animation. Computers and
Graphics 30, 4, 529–539.

ANASTACIO, F., SOUSA, M. C., SAMAVATI, F., AND JORGE,
J. A. 2006. Modeling plant structures using concept sketch­
es. Proceedings of the 4th international symposium on Non-
photorealistic animation and rendering, 105–113.

BISHOP, C. 2006. Pattern Recognition and Machine Learning.
Springer-Velrag.

CHEN, X., NEUBERT, B., XU, Y.-Q., DEUSSEN, O., AND KANG,
S. B. 2008. Sketch-based tree modeling using markov random
field. ACM Trans. Graph. 27, 5, 1–9.

DEUSSEN, O., AND LINTERMANN, B. 2005. Digital Design of
Nature: Computer Generated Plants and Organics. Springer-
Verlag.

DIENER, J., REVERET, L., AND FIUME, E. 2006. Hierarchical re­
targetting of 2d motion fields to the animation of 3d plant mod­
els. ACM SIGGRAPH/Eurographics Symposium on Computer
animation, 187–195.

DIENER, J., RODRIGUEZ, M., BABOUD, L., AND REVERET, L.
2009. Wind projection basis for real-time animation of trees.
Computer Graphics Forum (Proceedings Eurographics 2009)
28, 2, 533–540.

FLASH, T., AND HOGAN, N. 1984. The coordination of arm move­
ments: An experimentally confirmed mathematical model. Jour­
nal of Neuroscience 5, 1688–1703.

HABEL, R., KUSTERNIG, A., AND WIMMER, M. 2009. Physical­
ly guided animation of trees. Computer Graphics Forum (Pro­
ceedings Eurographics 2009) 28, 2, 523–532.

HARRIS, C., AND STEPHENS, M. 1988. In Proc. 4th Alvey Vision
Conference, 189–192.

LINDENMAYER, A. 1968. Mathematical models for cellular inter­
actions in development ii. simple and branching filaments with
two-sided inputs. Journal of Theoretical Biology 18, 3, 300–315.

LINTERMANN, B., AND DEUSSEN, O. 1999. Interactive modeling
of plants. IEEE Computer Graphics and Applications 19, 1, 56–
65.

LIU, C., TORRALBA, A., FREEMAN, W. T., DURAND, F., AND

ADELSON, E. H. 2005. Motion magnification. In ACM SIG­
GRAPH, 519–526.

LIVNY, Y., YAN, F., OLSON, M., CHEN, B., ZHANG, H., AND

EL-SANA, J. 2010. Automatic reconstruction of tree skeletal
structures from point clouds. ACM Trans. Graph. 29 (Decem­
ber), 151:1–151:8.

LIVNY, Y., PIRK, S., CHENG, Z., YAN, F., DEUSSEN, O.,
COHEN-OR, D., AND CHEN, B. 2011. Texture-lobes for tree
modeling. ACM Siggraph, to appear.

LUCAS, B. D., AND KANADE, T. 1981. An iterative image regis­
tration technique with an application to stereo vision. Proceed­
ings of the 7th International Joint Conference on Artificial Intel­
ligence, 674–679.

MINKA, T. P. 2003. Estimating a dirichlet distribution. M.I.T
Technical report.

NEUBERT, B., FRANKEN, T., AND DEUSSEN, O. 2007. Ap­
proximate image-based tree-modeling using particle flows. ACM
Trans. Graph. 26, 3, 88–95.

OKABE, M., OWADA, S., AND IGARASHI, T. 2005. Interactive
design of botanical trees using freehand sketches and example-
based editing. Comput. Graph. Forum 24, 3, 487–496.

OTA, S., TAMURA, M., FUJIMOTO, T., AND K, M. 2004. A
hybrid method for the real-time animation of trees swaying in
wind fields. The Visual Computer 20, 11, 613–623.

PALUBICKI, W., HOREL, K., LONGAY, S., RUNIONS, A., LANE,
B., MĚCH, R., AND PRUSINKIEWICZ, P. 2009. Self-organizing
tree models for image synthesis. ACM SIGGRAPH, 1–10.

PRUSINKIEWICZ, P., AND LINDENMAYER, A. 1990. The algo­
rithmic beauty of plants. Springer-Verlag.

http:ACMTrans.Graph.27

QUAN, L., TAN, P., ZENG, G., YUAN, L., WANG, J., AND

KANG, S. B. 2006. Image-based plant modeling. ACM Trans.
Graph. 25, 3, 599–604.

RECHE-MARTINEZ, A., MARTIN, I., AND DRETTAKIS, G. 2004.
Volumetric reconstruction and interactive rendering of trees from
photographs. ACM Trans. Graph. 23, 3, 720–727.

SAKAGUCHI, T., AND OHYA, J. 1999. Modeling and animation of
botanical trees for interactive virtual environments. In ACM sym­
posium on Virtual reality software and technology, 139 – 146.

SHI, J., AND MALIK, J. 2000. Normalized cuts and image segmen­
tation. IEEE Trans. Pattern Anal. Mach. Intell. 22, 8, 888–905.

SHINYA, M., AND A, F. 1992. Stochastic motion-motion under the
influence of wind. Computer Graphics Forum 11, 3, 119–128.

SHLYAKHTER, I., ROZENOER, M., DORSEY, J., AND TELLER,
S. 2001. Reconstructing 3d tree models from instrumented pho­
tographs. IEEE Comput. Graph. Appl. 21, 3, 53–61.

SUN, M., JEPSON., A. D., AND FIUME, E. 2003. Video input
driven animation (vida). In Proceedings of the Ninth IEEE Inter­
national Conference on Computer Vision - Volume 2, 96–103.

TALTON, J. O., LOU, Y., LESSER, S., DUKE, J., MĚCH, R., AND

KOLTUN, V. 2011. Metropolis procedural modeling. ACM Tran­
s. Graph. 30, 11:1–11:14.

TAN, P., ZENG, G., WANG, J., KANG, S. B., AND QUAN, L.
2007. Image-based tree modeling. In ACM SIGGRAPH, 87 –
93.

TAN, P., FANG, T., XIAO, J., ZHAO, P., AND QUAN, L. 2008.
Single image tree modeling. ACM Trans. Graph. 27, 5, 1–7.

WESS ´ ELEN, D., AND SEIPEL, S. 2005. Real-time visualisation of
animated trees. The Visual Computer 21, 6, 397–405.

XU, H., GOSSETT, N., AND CHEN, B. 2007. Knowledge and
heuristic-based modeling of laser-scanned trees. ACM Trans. Gr.
26, 4, 19–31.

A 2D Skeleton Acquisition

We use an approach based on Diener et al. [2009] to acquire a 2D
skeleton from a single input video. The process is briefly explained
here for completeness.

First the user needs to outline the tree in frame one, because auto­
matic segmentation is not solved. Given an outline we detect Harris
interest points [1988] on the leafy part of the tree. The Harris points
are tracked from frame to frame. Our system then constructs a hi­
erarchy using recursive binary clustering, first dividing the whole
feature set into halves, then each half into quarters and so on. We
use the Normalized Cut algorithm [Shi and Malik 2000] for clus­
tering because it is designed to partition data based on affinities
between pairs on nodes. An affinity matrix is calculated from the
spatial distances between the features and their similarity of mo­
tion [Liu et al. 2005]. The clustering process stops when the hi­
erarchy reaches a certain level. We find 5 − 7 levels are sufficient
for many trees species without introducing unnecessary complexity.
The output is a binary hierarchy, and the links between the parent
and the children nodes are stored in the adjacency matrix A.

The hierarchy can be used for tracking the tree over long periods of
time, which implies it is a plausible model of the branching struc­
ture. However, the hierarchy is not well suited for graphics pur­
poses because it does not look like a physical skeleton of branches.
To find a skeleton we use the centroid of each cluster as an initial

′ ′ ′ approximation of nodes in X . Next we shift x ∈ X to a bet­
ter position: for every branch aji, we shift the child node along a

′ ′ ′ ′ ′ line xi towards its parent: xi �→ xi + α(xj − xi). The process
is recursive, from root to tip nodes. The effect is to “fold” the ini­
tial skeleton to a visually acceptable form, and one which tracks
the video. In our experience, α = 0.4 suits many tree types. The
folding process stops at the second last level to prevent an overall
shrinking of the skeleton.

B Leaf Modeling

B.1 Leaf Appearance Modeling

Leaves can be generated using random sampling [Tan et al. 2008].
However, randomly sampled leaves tend to be unsatisfactory when
compared with the real reference image. The problem is shown in
Figure 5(c-d), where the overall leaf density does not match the real
tree in Figure 5(a). Here we propose a simple but efficient algorithm
that outputs the optimal leaf density, as shown in Figure 5(b).

We use Harris interest points detected in section A as 2D “seeds”
to generate 3D leaves. Seeds are divided into two halves based on
their intensities. Each seed is then assigned to a branch based on
their Euclidian distances in the xy plane. Dark seeds are assigned
to branches at the back of the tree; bright seeds are assigned to
branches at the front. The bright and dark leaf division improves
the realism of the shading process.

Now we have seeds in 3D, the next step is to generate leaf detail­
s such as shape, orientation and texture. For each tree, we have a
user-defined 3D mesh model that represents a cluster of leaves. We
locate one mesh model at each seed. The orientation of the mesh
is adjusted according to its location so the leaves naturally face d­
ifferent directions around the tree. For photo-realistic rendering,
user-defined texture is mapped to the mesh.

B.2 Leaf Motion Modeling

[Habel et al. 2009] proposed a physically guided approach to ani­
mate leaves. Different from their method, we approximate the ba­
sic leaf motion to follow the branch it is attached to. However, this
usually results in motion that looks damped. On the other hand,
independently jittering the motion of each leaf looks wrong too,
because the motion of leaves are tied together by the twigs they
grow from.

To solve this problem we introduce some random motion to rotate
leaf clusters around their main axis. In addition to the underlying
branch motion, we oscillate each leaf cluster using a sine wave:
y(t) = Asin(ωt + β). β is calculated as the distance from the
center of each leaf cluster to the branch node it is assigned to, so
each cluster starts with a slightly different phase. The amplitude
A is modulated by the magnitude of the branch velocity, so larger
branch motion results in larger difference between the leaves. ω
is a user tunable parameter that controls the frequency of the sine
wave. Now the motion of each leaf can be enriched in a similar
way: for each polygon, we select a vertex as the apex for rotation
and introduce high frequency angular motion to it.

Acknowledgements

We thank reviewers for their valuable suggestions. We would al­
so like to thank UK’s Engineering and Physical Sciences Research
Council for supporting this work with grant EP/D064155/1, and for
supporting the Media Technology Research Centre and the Centre
for Digital Entertainment at University of Bath.

http:ACMTrans.Gr

Figure 10: Generation of different types of tree. Left: an initial frame of the input video. Background is removed using alpha matting.
Middle: the output 3D tree model. Right: some generated new models, using the middle one as the example.

Figure 11: Tree topiary: users can control the shape of the generated trees using different envelope shapes. Top row: the resulting trees
using a triangle, a circle, a pentagon and a heart shape as the envelopes. In the bottom row a vase image is used to extract an outline.

