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Figure 1: Using a single video as input (left, background removed using alpha matting), our system outputs a 3D dynamic tree model 
(middle). Using the model, potentially an infinite number of unique trees with similar appearance and motion can be generated (right). 

Abstract 

We present a probabilistic approach for the automatic production of 
tree models with convincing 3D appearance and motion. The only 
input is a video of a moving tree that provides us an initial dynamic 
tree model, which is used to generate new individual trees of the 
same type. Our approach combines global and local constraints to 
construct a dynamic 3D tree model from a 2D skeleton. Our mod
eling takes into account factors such as the shape of branches, the 
overall shape of the tree, and physically plausible motion. Further
more, we provide a generative model that creates multiple trees in 
3D, given a single example model. This means that users no longer 
have to make each tree individually, or specify rules to make new 
trees. Results with different species are presented and compared to 
both reference input data and state of the art alternatives. 

Keywords: tree modeling and animation, generative model. 
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1 Introduction 

Trees are among the Earth’s most useful and beautiful products of 
nature. They have been drawn, painted and modeled for centuries. 
Contemporary tools make it possible to produce high quality 3D 
moving models. Typically though, each tree must be individually 

made by an expert user either by sketching or by providing suitable 
images — new trees can be grown automatically only if abstract 
rules are defined. The difficulties of building a tree are magnified 
when the tree is to move. Overall, tree modeling remains a time 
consuming process that often relies on expert knowledge. 

In this paper we address the tree modeling problem using an ap
proach that is almost entirely automatic. To make a model, the user 
only has to outline the tree in an initial video frame. The system 
then creates a full 3D model including motion. This model further
more can serve as an example to automatically generate new 3D 
dynamic tree models of the same species. Our approach makes it in
expensive to model and animate a large library of trees for graphics 
applications. Figure 1 gives an illustrative summary of the process. 

Neubert et al. [2007] summarize current tree modeling meth
ods by three categories: rules-based generation, interactive 
modeling, and image-based production. The first group 
uses rule-systems such as L-systems [Lindenmayer 1968; 
Prusinkiewicz and Lindenmayer 1990] or procedural models 
[Deussen and Lintermann 2005] to generate new trees from an 
initial state. Talton et al. [2011] present an algorithm for high level 
controlling grammar-based procedural models and demonstrate 
the algorithm on tree modeling. Rules tend to be abstract and 
so are best suited to technical users, yet this is the only current 
group of methods capable of creating many distinct individual 
trees. The second group uses interaction to sketch a model in 
2D and then create a 3D model from that [Anastacio et al. 2006; 
Quan et al. 2006; Okabe et al. 2005; Chen et al. 2008]. They 
provide considerable control to artists skilled enough to create 
high quality trees. Some methods combine rules and interaction 
[Lintermann and Deussen 1999; Palubicki et al. 2009]. The third 
group models trees from image data, with the advantage of increas
ing realism. Martinez et al. [2004] use a set of registered images to 
define a model, Neubert et al [2007] allow the construction from 
two loosely coupled images. Tan et al. [2007; 2008] mixes image 
input with user interaction to construct trees. Other approaches deal 
with reconstructing tree models from point clouds [Xu et al. 2007; 
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Figure 2: Our system contains four components, indicated by four grey blocks. The first provides a 2D skeleton from the input; the second 
constructs a static 3D model; the third recovers motion in 3D; finally the 3D model is used as an example to generate new trees. 

Livny et al. 2010] in which case the 3D shape is implicitly given. 
However, expensive hardware has to be used and in most cases 
each tree needs to be individually edited by an expert. The latest 
advance in this field produces lobe-based trees [Livny et al. 2011]: 
the shape of the lobes is computed from the points and is a simple 
triangular geometry (alpha shapes). This enables storing a tree 
model in kilobyte and to reconstruct it in milliseconds. 

All the above produce high quality static trees — making trees 
move has been a separate issue. Physically based approach
es to motion (e.g. [Shinya and A 1992; Sakaguchi and Ohya 1999; 
Ota et al. 2004; Akagi and Kitajima 2006]) are computationally ex
pensive. Heuristics have been proposed to reduce overhead
s [Wessélen and Seipel 2005]. Recent advances considering a tree 
as a harmonic oscillator [Diener et al. 2009; Habel et al. 2009] are 
fast enough to operate over forests. Simulations are analogous to 
rules for growing static trees in so far as the equations used con
stitute rules. Like rule-based systems, simulations can be difficult 
for non technical users to understand, although recent research ad
dresses this [Diener et al. 2009]. Analogous to image based model
ing, an alternative to simulation and heuristics is to use video as a 
data source. Diener at al [2006] provide an example of this. They 
are able to capture the dynamics of small trees in a controlled envi
ronment, and re-target the motion to large trees in the wild. How
ever, as a deterministic approach, they rely on accurate tracking to 
parameterize branch motion, so the performance is less plausible 
when the tracking is noise. Meantime, their algorithm only uses 
rotations in the 2D plane to move branches so the result appears 
unconvincing from the side view. 

We use a single video as a source to build 3D dynamic tree models, 
but differ from the above methods in the following aspects: 

•	 We use a probabilistic approach to improve the appearance of 
3D trees. Our method optimizes the global branch distribution 
whilst avoiding implausible local branching patterns. 

•	 We recover realistic 3D motion from a single video. Again a 
probabilistic approach is used to account for complicated tree 
motion and clutter backgrounds. 

•	 We are able to create new trees that are similar but not iden
tical to a given example. This allows the user to create whole 
forests from a small set of reconstructed trees. 

We use video as source because of its realism and convenience. The 
user provides an example video of a tree in the wild and marks the 
outline in the initial frame, our system then automatically outputs a 
3D dynamic model. A user friendly control mechanism is provided 
so users can easily influence the output models — for examples, 
controlling the overall shape of the generated trees or turning wind 
up or down. Besides video, other 2D input sequences such as s
ketches or conventionally modeled trees can be used. 

2 System 

Our system contains four components (see Fig. 2). The first pro
vides a 2D skeleton from the input; the second constructs a static 
3D model from a 2D skeleton; the third recovers motion in 3D; 
finally the 3D model is used as an example to generate new trees. 

(a) (b) (c) 

Figure 3: Motivation for our probabilistic approach that fuses the 
global and the local constraints: (a) the skeleton computed using 
only the global constraint. Although the skeleton fills the outline, it 

contains implausible local branch patterns. (b) the skeleton com
puted using only the local constraint. In this case the branch pat
tern appears natural, but the overall skeleton fails to minimize the 
empty space inside of the outline. (c) the result of our probabilistic 
approach, where the global and the local constraints are fused into 
a probability density function that gives the optimal solution. 

Let us firstly define some technical terms that are used throughout 
this paper. A dynamic tree model is a labeled directed graph, 

T = (X,R,A)	 (1) 

meaning: a set of nodes X , a set of angular motions R, and a di
rected adjacency matrix A. The nodes xi ∈ X give the skeleton 
its overall shape and the adjacency matrix A gives its topological 
structure. For example, aji ∈ A defines a branch that is direct
ed from xj to the xi, so aji = (xj , xi). This paper models trees 
using a binary structure and defines bifurcation as a basic term for 
describing the local branch pattern. A bifurcation comprises a vec
tor of four elements (xi, xj , xk, xl) corresponding to local root xj , 
apex xi, and local leaves xk, xl. Figure 8 has some illustrations: xj 

is the parent node of xi, and xk, xl are two children nodes of xi; 
branch aji splits into aik and ail at node xi. 

To move the tree we assume each branch oscillates about its local 
root. For each node, we set up a local coordinate system centered 
at the local root xj(t) and use the world basis as rotation axes. The 
angular motion ri ∈ R is defined as a list of rotations (in angles) 
about the local root that sway each node xi in time: xi(t + 1) �→ 
(xi(t), ri(t)). Throughout this paper we attach the prime symbol 
to variables to indicate 2D data, so T ′ = (X ′ , R ′ , A) represents a 
2D moving skeleton. 

′ The first component of our system builds a 2D skeleton T from the 
input video. The technique we use is based on Diener et al. [2006] 
and is briefly explained in Appendix A for completeness. Based 
on this 2D model we perform the 3D appearance modeling that 
is outlined in the next section. Motion modeling is introduced in 
Section 4 and Section 5 explains how to generate new models from 
an existing example. Results are shown in Section 6. 

3 3D Appearance Modeling 

This section explains how to build a 3D model from a 2D tree skele
ton. This problem has been studied in the context of sketch input 
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(a) (b) (c) (d) 

Figure 4: Comparison between different algorithms for branch placement: From left to right, a): Diener’s [2006] method maps a 2D 
skeleton to the front and back sides of a 3D ellipsoid. The resulting 3D skeleton fails to fill a volume satisfactorily. The symmetry in the 
approximation is artificial, especially from the side views. b): Okabe’s [2005] method can lead to bifurcations that are too sharp. c) Our 
result smoothly fuses global and local constraints. d) Making the branches curly and adding small twists further increases the visual richness. 

[Anastacio et al. 2006; Quan et al. 2006; Chen et al. 2008] or alter
natives such as [Diener et al. 2006]. Our method owes much to Ok
abe et al [2005] and Tan et al [2008], the basic idea of which is to 
spread branches in all directions uniformly inside of an enveloping 
surface, Ω. Such an enveloping surface is made by surface revolu
tion (see Okabe et al [2005]). Spreading branches inside a surface is 
attractively simple, but can suffer from locally implausible branch 
shapes, and global sub-optimal filling of the volume. Our approach 
as illustrated in Figure 3, addresses both of these issues simultane
ously because it fuses both local and global constraints. 

Our basic approach consists of two steps: a copy-operation and 
“pushing” the resulting structures in the right form. Initially, the 
reconstructed 2D skeleton ( [Diener et al. 2006], see Appendix A) 
lies on the xy-plane, so we copy it to the yz-plane and update the 
adjacency matrix A to create a tree with a single trunk. More com
plex variants of this copying exist, such as creating copies on more 
than two planes like Neubert et al [2007] did. In all cases the result 
is a prototype 3D model with branches confined to distinct planes. 

In a second step the model has to be adapted to create a botanical
ly plausible structure. We do this by pushing the branches away 
from the initial xy- and yz-planes in a perpendicular direction. The 
pushing is performed following a root-to-leaf traversal. 

At each step i, all the descendants of xi (the sub-tree rooted at xi) 
are pushed by the same distance. The resulting new skeleton is 
denoted by Xi. The key problem is how to select the optimal push
ing distance: we want to fill a volume and keep tree branches in a 
plausible shape. Here we propose a probabilistic solution, which 
maximizes the posterior probability defined by the Bayes’ rule 

p(xi|Ω, Xi−1) ∝ p(Ω|Xi−1 , xi)p(Xi−1, xi). (2) 

The posterior is factorized into two terms: the local term 
p(Xi−1, xi) keeps the branch shape plausible, while the global ter
m p(Ω|Xi−1, xi) keeps the overall volumetric shape. Notice that 
all points xi are in 3D. Next we explain each term in greater detail. 

3.1 Local Appearance Term 

The local appearance term makes sure the local branch pattern is 
natural after pushing the current node xi. It is formulated as 

p(Xi−1, xi) = p(Xi−1|xi)p(xi). (3) 

The prior, p(xi), is defined as a uniform distribution over a range of 
values [xi−δ, xi+δ] along the node’s pushing direction. This prior 
prevents a branch from being over-stretched when its tip is pushed. 
In practice we set δ to be 1/5 of the width of the tree. 

The conditional probability p(Xi−1|xi) constrains the shape of 
each bifurcation by examining the angle αi between the branch aji 

and its parent branch 

(αi − µ)2 

p(Xi−1|xi) � exp − . (4) 
2σ2 

i 

Here µ is the expected angle estimated as the average of all branch
ing angles in the 2D tree. In practice we find µ lies between π/6 
and π/3. Clearly αi = µ has the highest probability. σi controls 
the width of the distribution: smaller values keep the actual push 
closer to the expected angle µ. We set σ to depend on the topolog
ical depth of the node. Doing so allows branches close to the root 
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Figure 5: This the result of leaf density optimization. a): The reference image. b): Our result, where the overall shape of the leaves and its 

density has been optimized to match the reference image. c): Randomly sampled leaves around branches using small variance. d): Randomly 
sampled leaves using large variance. 

to have a wider tolerance: if di is the topological depth of the cur
rent node and dmax is the maximum topological depth of the tree, 
we set σi = π(dmax − di)/dmax. An intuitive explanation is that 
the lower branches usually form less regular bifurcations as their 
growths are affected by the weight of the higher order branches. 

3.2 Global Appearance Term 

The global appearance term keeps the overall volumetric shape. It 
is the conditional probability of filling the overall envelope Ω, given 
the previous 3D skeleton Xi−1 updated by the current node xi. The 
highest probable xi will have the updated 3D skeleton Xi that best 
fits Ω. This is equivalent to minimizing the distance from Ω to Xi. 

We first evenly plant m attractors, ωk=1:m, on the envelope surface. 
These attractors are used to calculate the total distance from the 
envelope to the 3D skeleton as 

m 

D(Ω, X) = min(|ωk −X|). (5) 

k=1 

The density of the attractors can be controlled by the user. We 
keep the total number of the attractors to be around 200 to 300. 
This provide good balance between the accuracy and computa
tional efficiency. Our algorithm calculates the reduction of D 
when Xi−1 is updated by xi: E(Ω, Xi−1 , xi) = D(Ω, Xi−1) − 
D(Ω, Xi). It clamps the improvement to be non-negative, that is, 
E(Ω, Xi−1, xi) = 0 for all D(Ω, Xi−1 ) < D(Ω, Xi). The proba
bility is normalized over all possible solutions, 

l E(Ω, Xk−1, x i
l) 

p(Ω|Xi−1, x i) = 
�L 

, (6) 
E(Ω, Xi−1, xl)j=1 i

Here xi
l is one of the L possible solutions for xi. The probability of 

xi being outside of Ω is clamped to zero, which ensures all pushed 
branches are inside the envelope. 

Substituting Eqs. (3), (4), (6) into Eq. (2) gives the final posterior. 
The pushing distance that maximizes this posterior is chosen as the 
optimal solution for xi. Intuitively, our system exhaustively tries 
out all possible “push” values within [xi−δ, xi+δ], evaluating each 
using the quality measure that is dictated by the probability model: 
for each push position, the quality of the branch angle is measured 
using Eq. (4), and the equality of the space fill is measured using 
Eq. (6). Then the best push distance is selected. Figure 4 shows 
our output 3D skeleton and results of alternative algorithms. Notice 
that at each step we search for the best value to push the current 
node and all its direct and indirect children. So in total there are N 

times L possible options to convert a whole tree into 3D. Here L is 
the number of options for pushing a single node and N is the total 
number of nodes in the tree. 

Finally, we follow existing methods to add details at low 
cost. Small branches and twigs are added using self-similarity 
[Shlyakhter et al. 2001; Tan et al. 2007; Chen et al. 2008] while 
curliness and twists are generated by fitting a Flash and Hogan 
parametric line model [Flash and Hogan 1984]. We also propose a 
simple but efficient algorithm that generates leaves that match the 
reference image, which is explained in Appendix B.1. The result is 
demonstrated in Figure 5. 

4 3D Motion Modeling 

So far we have modeled a static 3D tree from the given 2D input. 
The next step is to model its motion also in 3D. We do so using 
tracking data from the video. Again the key problem is to transform 
the tracked 2D motion to 3D that moves the model in a realistic way. 
Let the 2D projection of each 3D node xi at frame t be denoted by 
′ ′ xi(t)

1. Video based tracking moves this point to xi(t + 1) in the 
next frame. 

We first assume the length of the 3D branch does not change, so 
′ ′ that any apparent 2D translation xi(t+1)−xi(t) can be determin

istically explained by a sequence of 3D rotations about the local 
root xj(t). Section 4.1 explains this approach in greater detail. In 
practice though, a deterministic approach leads to a sub-optimal so
lution, for many reasons such as errors in the tracking data. As a 
result the tree can be bent and twisted out of shape. Figure 6 and the 
supplementary material show some examples. To solve this prob
lem we again use a probabilistic approach to recovering 3D motion, 
as explained in Section 4.2. 

4.1 Deterministic motion estimation 

Using the principle that the moving 3D tree must at all times project 
onto a moving 2D skeleton, we can obtain a deterministic solution 
for the 3D angular motion R in Eq. (1). We assume that a branch tip 
xi(t) can only rotate about its local root xj(t). This follows direct 
experience that wood can bend but is almost impossible to stretch or 
compress and is a consequence of the way in which fibres are made 
up; the Young’s modulus for wood is around 109 to 1010 N/m2 

which is comparable with many metals.2 If a 2D branch appears 

1please recall the prime symbol in this paper indicates 2D data

2http://en.wikipedia.org/wiki/Young’s modulus




(a) 3D deterministic result (b) Diener’s [2006] result (c) Our result 

Figure 7: 3D motion acquired from an input video. (a): a 3D deterministic method can not handle the inaccuracy in tracking (highlighted in 

green and yellow). So branches can be bent and twisted out of shape (in blue). (b): Diener’s method also produces implausible branch shapes 
(in blue). Meantime it can not model branch foreshortening and produces motion that diverts from the real tree movement. (highlighted in 
green and yellow). (c): Our method produces realistic 3D motion while keeping its projection following the video. 

(a) (b) (c) 

Figure 6: Motivation for the proposed probabilistic 3D motion 
modeling. This figure demonstrates examples of angular motion 
that lead to implausible branch shape. a): The original branches. 
b): The branch is bent out of shape. c): The branch is over twist
ed when its parent aligns with a rotation axes. Both problems are 
solved use our approach. 

to change length, it can only be because the 3D branch has been 
foreshortened by projection. The idea here is to rotate the branch to 
allow for this foreshortening. 
We set up a local coordinate system centered at the local root xj(t) 
and use the world basis as rotation axes. Rotating xi(t) around its 
local root gives Φ, the sphere of all possible positions in the next 
frame t. Using [Lucas and Kanade 1981], we also have the node’s 

′ 2D projection tracked in the next frame, namely xi(t+ 1). The 3D 
position xi(t + 1) must lie on the intersection of Φ and the line of 

′ sight (aligned with the z direction) through xi(t + 1). In practice, 
tracking data is noisy so there can be two, one or zero intersections, 
depending on the distance between xi

′ (t) and xi
′ (t+1) ′ and the size 

of Φ. In the case of two intersections, we select the solution with 
the closer 3D distance to xi(t). In the case of no intersection, we 

′ ′ shift xi(t + 1) towards xi(t) until a solution is found. 

This simple deterministic approach usually complies with the mo
tion in the original video. However, the appearance of the resulting 
skeleton is not always optimal. As seen in Figure 6 and 7 the branch 
can be bent out of shape or twist unrealistically when the tree moves 
with large motion. This is because deterministic approaches rely on 
near-perfect tracking data and do not regularize the result for natu
ral branch shapes. Such a problem is shared by Diener at al [2006], 
who also use a deterministic approach but only model the motion 
as 2D rotations in the xy plane. It is worth mentioning that 2D 
plane rotations are insufficient for modeling many 3D movement, 
such as the foreshortening effect from the front view (see Figure 7 
middle) and so the resulting motion appears unconvincing from the 
side view (see the supplementary video). Such artifacts of the de
terministic approaches motivate our use of probabilistic methods. 

4.2 Probabilistic Motion Modeling 

As with the 3D appearance modeling, our motion modeling also 
follows a root to leaf traversal for each frame. Also, any motion 
applied to a branch node xi(t) is applied to all of its descendants. 
Recall the problem is, given a 3D skeleton and the track of its 2D 
projection, to find the optimal 3D angular motion, ri(t), for each 
node xi(t). Using the Bayes’s rule, the probability of choosing a 
particular ri(t) can be factorized into two terms, 

′ p(ri(t)|xi(t + 1), Xi−1(t + 1)) ∝ 
′ p(xi(t + 1)|Xi−1(t + 1), ri(t))p(Xi−1(t + 1), ri(t)). (7) 

We use Xi−1(t + 1) to indicate the skeleton before rotating xi(t), 
where all ancestors of xi(t) have been rotated to the next frame 
t + 1. The “shape” term p(Xi−1(t + 1), ri(t)) evaluates whether 
the skeleton has natural local branch patterns, after xi(t) is rotated 
by ri(t). It is similar to the previously discussed local appearance 

′ term (Section 3.1). The “track” term p(xi(t+1)|Xi−1(t+1), ri(t)) 
evaluates the similarity between the (projected) rotated branches 
and their 2D tracked motion; in other words, how well the rotation 
matches the track. It is analogous to the global appearance term 
(Section 3.2), which evaluates the fit between the skeleton and the 
envelop surface. As before, primes indicate 2D data. 

4.2.1 Track Motion Term 

′ The track motion term p(xi(t+1)|Xi−1 (t+1), ri(t)) is the prob
′ ability that the rotation matches the 2D tracked motion xi(t + 1). 

The node xi(t) undergoes a putative 3D rotation around its local 
root, and is projected to 2D under a constant orthogonal projection 

′ matrix K: that is, yi(t + 1) = K(xi(t), ri(t)). We define the 
probability of the observed tracking using the distance between the 

′ ′ predicted point yi(t+ 1) and the observed point xi(t + 1): 

′ p(xi(t + 1)|Xi−1 (t+ 1), ri(t)) = 
� (yi

′ (t + 1) − x ′ i(t + 1))2 � 

exp . (8) 
−2σ2 

track 

Since the rotation term is the only variable, the rotation leading 
′ to the predicted point yi(t + 1) with highest probability will be 

favored; σtrack is a pre-set parameter that controls the precision of 
this estimate. If this were the only expression used to decide the 
rotation we would recover the deterministic solution once again. 
Next we introduce the shape motion term as a prior which prevents 
the branch from bending out of shape. 



Figure 8: Trees generated by statistical sampling. The first tree in each row is the example model, that used to generate new trees on the right. 
The top row and the bottom row use different Dirichlet distributions to generate different bifurcation shapes. As an example, the Dirichlet 
distributions of ratio of angles between the branches are illustrated on the left. 

4.2.2 Shape Motion Term 

The shape motion term constrains the rotated skeleton to a natural 
appearance. It can be further decomposed into two terms, 

p(Xi−1(t + 1), ri(t)) = p(Xi−1(t + 1)|ri(t))p(ri(t)). (9) 

Here, p(ri(t)) is the prior of the angular motion, that is a rotation 
we might guess at if we have no track data at all. We define this 
prior as a uniform distribution over [−δ, δ], so the instant angular 
velocity for each node is bounded. 

A threshold Δ is also set for the accumulated angular motion over 
all the past frames, so that | 

�

τ

t 

=0 ri(t)| > Δ is assigned with 
zero probability. This is an important constraint when the branch 
aligns with a rotating axis. Without it, an arbitrary rotation around 
that axis would satisfy Eq. (9), even though the skeleton is twisted 
unnaturally as time moves on (see Figure 6c). 

The conditional probability p(Xi−1(t+1)|ri(t)) evaluates the nat
uralness of the shape of the skeleton after rotating node xi(t) by 
ri(t). It is controlled by the angle αij(t) between the current 
branch and its parent branch. We set 

� (αji(t)− αji(1))
2 � 

p(Xi−1(t)|ri(t)) = exp − . (10) 
2σ2 

shape 

Here the αij(1) is the angle between branch aji and its paren
t branch in the initial frame. σshape is a free parameter that can 
be set to vary with the topological depth, similar to σi in Eq. (4). 
For example, a wider tolerance σshape can be assigned to nodes 
near the leaves so they bend more easily. 

The final posterior is calculated by substituting Eqs. (8), (9), (10) 
into Eq. (7). The angular motion that maximizes this posterior is 
used to rotate xi. To demonstrate the advantage of our probabilistic 
based method, Figure 7 compares 3D branch animations using the 
motion acquired from the deterministic approaches and our method. 
As the figure shows, the deterministic method can bend branches 
out of shape, while our method preserves its realism. 

So far we have modeled the motion of a bare tree, the next step 
is to generate motion for the leaves. The basic leaf motion is to 
follow the branch it is attached to, with high frequency movement 
introduced to enrich the dynamic. See Appendix B.2 for detail. 

5 Generation 

So far we have modeled a single tree. In this section, we introduce 
a method that generates multiple unique trees that look and move 
similarly, but not identically, to an existing model. The existing 
model can be the one we just modeled from a video. However, 
this module makes no assumption about the source of the example, 
so a manually created model would be equally acceptable. The 
advantage of having this module is that a potentially infinite number 
of trees can be automatically created. Rule based systems can do 
this too, but our method relieves the user of the need to define rules. 
Instead our system automatically learns a statistical model of an 
input example, and uses that statistical model to make new trees. 
Hence it provides a unique solution to the tree modeling problem. 

One way to generate new trees from an existing one is to add some 
randomness to the example. For example, jitter branches by adding 
Gaussian noise. However, keeping the randomly jittered trees look
ing natural is not a negligible task. Moreover, only limited novelty 
can be produced — for example, the global branch distribution re
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mains similar. The same problems exist for motion too. 

We propose to make use of a statistical model to generate new trees. 
The new trees and the example tree may look and move different
ly, but they should share a common distribution of characteristic 
features and so are statistically identical. Figure 8 shows some 
example trees automatically generated from examples. Broadly s
peaking, our algorithm grows a completely new model from root 
to leaves, adding a bifurcation at each recursive step. The shape 
of the bifurcation depends on tree type and so follows the statistics 
in the example tree. A new tree is first generated in its static form 
in 2D, then converted into 3D tree, using the 3D modeling method 
explained in Section 3. Motion characteristics are then included to 
allow the tree to sway naturally over time. The “stiffness” of the tree 
is reflected in the frequencies that dominate the swaying motion of 
its branches. The statistics of these frequencies in the example tree 
are used to generate a statistically identical motion in the example. 

The key ingredient of the above method is to learn the statistical 
characters of the example tree. In order to do this, we first define 
features that characterize the appearance and motion of a tree. The 
features are represented as a points in a feature space. We then fit 
a parametric distribution to the collection of feature points taken 
from the example. New features can be sampled from the distri
bution for the new tree. Thus we have a probabilistic generative 
model (PGM). Figure 8 shows different types of tree have different 
distributions — that is, different PGMs. Next we first discuss the 
strategy for feature selection and PGM fitting in detail, then explain 
the algorithm to grow a new tree by assembling these features. 

5.1 Feature Selection 

The United States Forestry Service states that leaf shape and color, 
and the tree’s general shape are all useful indicators of a tree’s class 
(USFS-TAMU). Our method uses the shape of a tree as a 2D en
velope surface to constraint the overall shape of the generated tree 
and the shape of bifurcations to characterize a tree species. As men
tioned, we also use dominant swaying frequencies to characterize 
motion. The envelope surface is used when growing the tree, here 
we focus on the shape and motion of bifurcations. 

Recall that in a binary tree all bifurcations have exactly four ele
ments: the local root xj , the apex xi, and the local leaves xk, xl(see 
Figure 8 for an illustration). We can describe the shape of a bifurca
tion with a feature vector of fixed dimension. The feature vector for 
the shape of a bifurcation should not depend on the location, orien
tation or the absolute scale of the bifurcation — otherwise viewing 
the same tree from different positions would give different results. 
The features we choose comprise: (i) the ratio of angle between the 
branches, < θ1 : θ2 : θ3 > so 

i 
θ = 1; and (ii) the ratio of 

branch lengths < L1 : L2 : L3 > so that Li = 1. The summa
tion constraint turns out to be crucial in the later PGM fitting. 

For motion, we assume a branch, aji, will sway according to dom
inant frequencies. The ratio between the energy of each given fre
quency also sum to unity. This makes it possible for us to represent 
motion using the same statistical model as we use for shapes, but 
in higher dimensions. More exactly, we keep the lower frequency 
components (the first 20% or so) as the dominant frequencies. Sup
pose that ck + idk is a complex number representing the real and 
the imaginary parts of the kth frequency component. We represent 
dominant frequencies with a pair of tuples, < ck >

n 
1 and < dk >

n 
1 , 

both of which are scaled to sum to unity. For the purpose of fitting 
a PGM, the tuples are shifted so that no term is negative. This shift 
is removed after sampling from the fitted PGM. 

5.2 PGM Fitting and Sampling 

We compute shape and motion features for every node in the exam
ple tree. When plotted in feature space, these features form a tight 
cloud. We fit a parametric function whose contours follow path
s of equal density through this cloud. Notice that the summation 
constraint means the feature vectors are really tuples of ratios. The 
important consequence of this is that a Gaussian distribution is in
appropriate to model the distribution — because it cannot guarantee 
the summation constraint. Instead we use the Dirichlet distribution, 
which is designed for tuples with exactly the summation constraint 
we have. The Dirichlet distribution is briefly explained next, but 
see [Bishop 2006] for a more in-depth exposition. 

Let z denotes a random vector whose elements satisfy zk > 0 and 
zk = 1. Here zk represents the proportion of item k, i.e. the 

proportion of the kth bifurcation angle in all the three angles. The 
probability density function of this random vector z is then modeled 
by a Dirichlet distribution with the parameter vector β: 

K 
Γ(Σkβk) βk −1 

p(z|β) ∼ D(z1, ..., zK |β1, ..., βK) = 
�K 

zk , (11) 
Γ(βk)k k 

where Γ denotes a gamma function. β can be learned from some 
training data, i.e. an existing tree model (see [Minka 2003] for de
tails). Notice the length of the parameter vector β is the same as the 
random vector z. β can be understood by its precision s = 

� 

k 
βk 

and the mean of the distribution m = β 
s 

. Intuitively, beta controls 
the shape of the distribution: z is likely to be near the mean when s 
is large, and distributed more diffusely when s is small. 

We model different tree features independently because they spread 
into different feature dimensions and shapes. We define βangle, 
βlength and βmotion as the parameter vectors for the branch an
gle, length and motion. To model bifurcation shapes, βangle and 
βlength only need to be 3D vectors. It is slightly more complicated 
for βmotion: for each rotating axes, we have its own β, which is 
learned in the frequency domain rather than in the spatial domain: 
we perform the fourier transform to the time series of the branch 
angular motion and only keep the most informative (lowest 20%) 
frequencies. 

5.3 Growing a New Tree 

A new tree is first generated in 2D, then converted into 3D. The 
Dirichlet distribution ensures each bifurcation has a well formed 
shape and moves naturally, but does not guarantee anything about 
the global shape of the new tree. To ensure this we need a space-
filling constraint, which is analogous to the problem we faced when 
converting a 2D skeleton to 3D. As in that case we need a 3D en
velop surface, on this occasion denoted Ω ′ to indicate its 2D nature. 

We grow a 2D tree from root to leaf to fill Ω ′ . At each step a leaf 
point is randomly chosen and a new bifurcation is added to it: the 
bifurcation is sampled from the PGM. The growing direction of the 
new bifurcation is decided by two criteria: (i) it should efficiently 
reduce the empty space in Ω ′ , and (ii) the angle between the new
ly added bifurcation and its parent should appear natural. These 
two criteria are equivalent to those used when converting a skele
ton to 3D, so we re-use the approach except: (a) all spatial terms 
are now in 2D, (b) rather than “push” we find the best growing di
rection. This is equivalent to finding the best rotation of the child 
branch around the z axis. This is essentially a one dimensional 
search problem and the optimal solution can be efficiently found. 

Leaves are added to a generated tree using standard approach
es [Tan et al. 2008]; if greater control is required for a specific tree 
the user can provide a hand-drawn density map. Figure 8 shows 



some results of trees generated into different types. The Dirich
let distributions in the figure are visualizations of bifurcation angle 
triplets, similar distributions exist for branch lengths triplets and 
sway frequency in higher dimensions. The output tree looks and 
moves like the input example (see supplementary video for motion 
results), but is not identical. Generation is unique and important 
to the current tree modeling literature because it makes populating 
large landscape scenes straightforward for users. 

6 Results 

Figures 1 and 10 show our method works for different tree species. 
Each row shows the results from a single input video. The left col
umn shows the initial frames from the videos, with backgrounds 
removed. The middle column shows our output model from the 
front view. Note that our output model matches the reference im
age from the front and has a natural appearance from all the other 
angles. The right column shows new trees generated with simi
lar appearances. The ability to generate unique trees of the same 
species makes populating large landscape scenes straightforward. 
In the supplementary video we show examples of moving trees, 
that demonstrate the robust performance of our method for compli
cated tree movement and cluttered background. In comparison, the 
deterministic methods fail to realistically capture the motion once 
the tracking data appears noisy. 

Our system uses video as input because it is convenient for users 
and offers realism that is expensive to achieve otherwise. Howev
er, there is no reason why the system could not work with other 
types of input source - for example, sketch based input as shown 
in Figure 9. Indeed, sketch based input can be used to constrain 
the branching structure for a conifer tree. In practice, the central 
trunk is initialized by the user and will not be copied nor pushed. 
In general, our system can model trees that have a skeletal structure 
which can be represented by a graph of nodes and arcs. 

Our system provides flexible user control for editing the output 
models. For example, the appearance of the tree can be controlled 
by a 2D outline supplied by a user. Typically this outline can be 
recycled from the user outlining a tree in a video frame, but the 
opportunity for creative control exists allowing users to indulge in 
topiary, for example. Figure 11 shows how 3D tree branches opti
mally fill unusually shaped volumes, and leaves can still be added 
to complete the model. As leaves add considerable complexity to a 
model in terms of the number of polygons, we allow users to con
trol the complexity of the model by balancing the number of seeds 
and the scale of the template. To make a lower resolution model, 
users only need to sub-sample the seeds and scale the template to 
a larger size. See supplementary video for an example. Our mod
el stores the frequencies of branch oscillations at each node, which 
means users can exercise control over how the tree moves through 
a driving signal that effects the oscillations. For example, the us
er can drive a tree using an audio signal of a windy day. See the 
supplementary video for an example of motion magnification. 

The major free parameters are generally fixed for different trees 
mentioned in the paper. For example, the search range δ for p(xi) 
in Eq.( 3) is fixed to be 1/5 of the width of the tree. The standard 
deviation σi in Eq.( 4) is calculated from the topology depth of the 
branch. However, a few parameters may be adjusted slightly for 
specific scenarios. For example, the bound of the angular velocity 
for p(ri(t)) in Eq.( 9) is enlarged to cope with the strong wind 
example in the demo video. In practice, the time taken to build a 
static tree is within a minute using our combined Matlab and C++ 
implementation running on a standard Intel P4 desktop. 3D motion 
generation usually takes about one extra second per frame. The 
memory consumption is small, the system consumes about 30 Mb 
memory while running. The output model can be between 10K and 

100K polygons, depending on the required resolution. 

A user specified 2D sketch. Our result. 

Figure 9: User sketch helps model some specific type of trees. The 
main central of the conifer tree (in orange) is specified to not being 
copied nor pushed in the 3D modeling step. User can also draw 
further branch details (in gray) to increase the similarity between 
the model and the input example. 

Ideally results should be quantitatively evaluated. In practice we 
realize it is difficult to get the ground truth data for trees. Recent 
advances such as [Livny et al. 2010] uses a scanning technique to 
acquire 3D points clouds for trees. Although using an active scan
ner is a step forward toward highly accurate geometry capturing for 
trees, the data is still sparse, incomplete, and noisy so can not be 
used as the ground truth. Here we would like to emphasize that 
the purpose of our work is to provide a single view solution for a 
visually plausible model. And we have provided qualitative exam
ples, including comparisons with other results, comparisons with 
the reference video and a number of graphics applications. 

For a single tree modeling, our work draws inspirations 
from existing art, such as [Okabe et al. 2005; Tan et al. 2007; 
Chen et al. 2008]. Particularly, [Chen et al. 2008] proposed a 
Markov random field approach to convert a freehand sketch of a 
tree into a full 3D model that is both complex and realistic-looking. 
Like [Chen et al. 2008], our approach pushes a 2D skeleton mod
el into 3D from root to leaf, but whereas [Chen et al. 2008] grow 
branches in random directions we supply a constraint (that factors 
into local and global parts). In addition, our Bayesian framework 
is also used to model 3D motion, whereas [Chen et al. 2008] only 
works with static models. 

Last but not least, we discuss the range of tree species that our 
method is designed to work with. According to the list of tree gener
a3, the major tree species include Eudicots, Monocotyledons, Mag
noliids, Conifers, Ginkgos, Cycads, and Ferns. As a skeleton based 
approach, our method works better with trees that have an adequate 
branching structure. These include Eudicots, Magnoliids, Conifers 
and Ginkgos. Although not all of these trees strictly follow a binary 
skeleton, we found our method produces visually plausible output 
models. In addition, it is very convenient for users to add further 
constraints to improve the realism of a particular tree species. For 
example, the central trunk of conifer trees typically does not branch 
like a deciduous tree. In this case the user can enforce this at the 
initialization stage (Fig. 9). However, our system works less well 
on Monocotyledons, Cycads and Ferns, which are leaf-dominated 

3http://en.wikipedia.org/wiki/List of tree genera 



species. For example, a palm tree is expected to appear as a soli
tary shoot ending in a crown of leaves. In this case, specific prior 
knowledge about the tree species is needed to acquire a plausible 
output model. 

7 Conclusions 

In this paper we described a method for reconstructing animated 3D 
tree models from 2D video input and showed how to create a variety 
of models automatically from a reconstructed tree. Our probabilis
tic formulation fuses local and global constraints to ensure optimal 
static models. A probabilistic method is also used in motion model
ing to fuse the shape and track terms, which maintains the integrity 
of branch shapes in 3D dynamic models. Our approach to using 
video reduces user interaction to outlining a tree in just one frame. 
The user can control the shape of generated trees by drawing a new 
outline, and control the complexity 3D models by specifying the 
number of leaves. Furthermore, the motion can also be controlled 
by modulating the dominant frequencies stored at each node. 

We have provided side-by-side comparisons to other work to show 
the qualitative advantage of our models. Indeed, we have not pro
vided quantitative evaluation. However, our system is designed for 
graphics application, where visual satisfaction is highly valued and 
perfect reconstruction is less demanding. 

Our system needs a 2D skeleton model to work with. The 2D model 
can be acquired from a single input video for the realism it offer
s. Our system is also compatible with other forms of input data, 
including user sketches, as long as the skeleton model can be ex
pressed as a graph of nodes and arcs. However, palm trees is a 
limiting case as they are not characterized by branches but leaves. 

A more important restriction is the use of binary skeletons. So far 
we have not found this to be significant in practice, and is it very 
convenient for automatic generation: allowing a general n-ary tree 
introduces a significant degree of complexity into the generative 
model. However, this can be an interesting path for future work. 

Another area ripe for further development lies in the simultaneous 
modeling of motion and shape in 3D. Instead of first modeling a 
static 3D skeleton, then moving it we might consider solving for the 
moving skeleton that best fits all frames simultaneously. Using mul
tiple views should further improve the realism of our output models. 
Last but not the least, it is interesting to explore whether our data 
driven approach can be used to parameterize physical models such 
as used in [Diener et al. 2009; Habel et al. 2009; Sun et al. 2003], 
so the data can be better applied in realtime graphics applications. 
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A 2D Skeleton Acquisition 

We use an approach based on Diener et al. [2009] to acquire a 2D 
skeleton from a single input video. The process is briefly explained 
here for completeness. 

First the user needs to outline the tree in frame one, because auto
matic segmentation is not solved. Given an outline we detect Harris 
interest points [1988] on the leafy part of the tree. The Harris points 
are tracked from frame to frame. Our system then constructs a hi
erarchy using recursive binary clustering, first dividing the whole 
feature set into halves, then each half into quarters and so on. We 
use the Normalized Cut algorithm [Shi and Malik 2000] for clus
tering because it is designed to partition data based on affinities 
between pairs on nodes. An affinity matrix is calculated from the 
spatial distances between the features and their similarity of mo
tion [Liu et al. 2005]. The clustering process stops when the hi
erarchy reaches a certain level. We find 5 − 7 levels are sufficient 
for many trees species without introducing unnecessary complexity. 
The output is a binary hierarchy, and the links between the parent 
and the children nodes are stored in the adjacency matrix A. 

The hierarchy can be used for tracking the tree over long periods of 
time, which implies it is a plausible model of the branching struc
ture. However, the hierarchy is not well suited for graphics pur
poses because it does not look like a physical skeleton of branches. 
To find a skeleton we use the centroid of each cluster as an initial 

′ ′ ′ approximation of nodes in X . Next we shift x ∈ X to a bet
ter position: for every branch aji, we shift the child node along a 

′ ′ ′ ′ ′ line xi towards its parent: xi �→ xi + α(xj − xi). The process 
is recursive, from root to tip nodes. The effect is to “fold” the ini
tial skeleton to a visually acceptable form, and one which tracks 
the video. In our experience, α = 0.4 suits many tree types. The 
folding process stops at the second last level to prevent an overall 
shrinking of the skeleton. 

B Leaf Modeling 

B.1 Leaf Appearance Modeling 

Leaves can be generated using random sampling [Tan et al. 2008]. 
However, randomly sampled leaves tend to be unsatisfactory when 
compared with the real reference image. The problem is shown in 
Figure 5(c-d), where the overall leaf density does not match the real 
tree in Figure 5(a). Here we propose a simple but efficient algorithm 
that outputs the optimal leaf density, as shown in Figure 5(b). 

We use Harris interest points detected in section A as 2D “seeds” 
to generate 3D leaves. Seeds are divided into two halves based on 
their intensities. Each seed is then assigned to a branch based on 
their Euclidian distances in the xy plane. Dark seeds are assigned 
to branches at the back of the tree; bright seeds are assigned to 
branches at the front. The bright and dark leaf division improves 
the realism of the shading process. 

Now we have seeds in 3D, the next step is to generate leaf detail
s such as shape, orientation and texture. For each tree, we have a 
user-defined 3D mesh model that represents a cluster of leaves. We 
locate one mesh model at each seed. The orientation of the mesh 
is adjusted according to its location so the leaves naturally face d
ifferent directions around the tree. For photo-realistic rendering, 
user-defined texture is mapped to the mesh. 

B.2 Leaf Motion Modeling 

[Habel et al. 2009] proposed a physically guided approach to ani
mate leaves. Different from their method, we approximate the ba
sic leaf motion to follow the branch it is attached to. However, this 
usually results in motion that looks damped. On the other hand, 
independently jittering the motion of each leaf looks wrong too, 
because the motion of leaves are tied together by the twigs they 
grow from. 

To solve this problem we introduce some random motion to rotate 
leaf clusters around their main axis. In addition to the underlying 
branch motion, we oscillate each leaf cluster using a sine wave: 
y(t) = Asin(ωt + β). β is calculated as the distance from the 
center of each leaf cluster to the branch node it is assigned to, so 
each cluster starts with a slightly different phase. The amplitude 
A is modulated by the magnitude of the branch velocity, so larger 
branch motion results in larger difference between the leaves. ω 
is a user tunable parameter that controls the frequency of the sine 
wave. Now the motion of each leaf can be enriched in a similar 
way: for each polygon, we select a vertex as the apex for rotation 
and introduce high frequency angular motion to it. 
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Figure 10: Generation of different types of tree. Left: an initial frame of the input video. Background is removed using alpha matting. 
Middle: the output 3D tree model. Right: some generated new models, using the middle one as the example. 

Figure 11: Tree topiary: users can control the shape of the generated trees using different envelope shapes. Top row: the resulting trees 
using a triangle, a circle, a pentagon and a heart shape as the envelopes. In the bottom row a vase image is used to extract an outline. 


