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A WIENER–HOPF MONTE CARLO SIMULATION TECHNIQUE
FOR LÉVY PROCESSES

BY A. KUZNETSOV1, A. E. KYPRIANOU2,3, J. C. PARDO2

AND K. VAN SCHAIK3

York University, University of Bath, Centro de Investigación en Matemáticas
and University of Bath

We develop a completely new and straightforward method for simulating
the joint law of the position and running maximum at a fixed time of a gen-
eral Lévy process with a view to application in insurance and financial math-
ematics. Although different, our method takes lessons from Carr’s so-called
“Canadization” technique as well as Doney’s method of stochastic bounds for
Lévy processes; see Carr [Rev. Fin. Studies 11 (1998) 597–626] and Doney
[Ann. Probab. 32 (2004) 1545–1552]. We rely fundamentally on the Wiener–
Hopf decomposition for Lévy processes as well as taking advantage of recent
developments in factorization techniques of the latter theory due to Vigon
[Simplifiez vos Lévy en titillant la factorization de Wiener–Hopf (2002) Lab-
oratoire de Mathématiques de L’INSA de Rouen] and Kuznetsov [Ann. Appl.
Probab. 20 (2010) 1801–1830]. We illustrate our Wiener–Hopf Monte Carlo
method on a number of different processes, including a new family of Lévy
processes called hypergeometric Lévy processes. Moreover, we illustrate the
robustness of working with a Wiener–Hopf decomposition with two exten-
sions. The first extension shows that if one can successfully simulate for a
given Lévy processes then one can successfully simulate for any independent
sum of the latter process and a compound Poisson process. The second ex-
tension illustrates how one may produce a straightforward approximation for
simulating the two-sided exit problem.

1. Introduction. Let us suppose that X = {Xt : t ≥ 0} is a general Lévy pro-
cess with law P and Lévy measure �. That is to say, X is a Markov process with
paths that are right continuous with left limits such that the increments are station-
ary and independent and whose characteristic function at each time t is given by
the Lévy–Khinchine representation

E[eiθXt ] = e−t�(θ), θ ∈ R,(1)

where

�(θ) = iθa + 1

2
σ 2θ2 +

∫
R

(
1 − eiθx + iθx1{|x|<1}

)
�(dx).(2)
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We have a ∈ R, σ 2 ≥ 0 and � is a measure supported on R with �({0}) = 0 and∫
R
(x2 ∧ 1)�(dx) < ∞. Starting with the early work of Madan and Seneta [18],

Lévy processes have played a central role in the theory of financial mathematics
and statistics (see, e.g., the books [4, 8, 19, 20]). More recently, they have been ex-
tensively used in modern insurance risk theory (see, e.g., Klüppelberg, Kyprianou
and Maller [12], Song and Vondraček [21]). The basic idea in financial mathemat-
ics and statistics is that the logarithm of the stock price or risky asset follows the
dynamics of a Lévy process whilst in insurance mathematics, it is the Lévy pro-
cess itself which models the surplus wealth of an insurance company until ruin.
There are also extensive applications of Lévy processes in queuing theory, genet-
ics and mathematical biology as well as through their appearance in the theory of
stochastic differential equations.

In both financial and insurance settings, a key quantity of generic interest is
the joint law of the current position and the running maximum of a Lévy pro-
cess at a fixed time if not the individual marginals associated with the latter bi-
varite law. Consider the following example. If we define Xt = sups≤t Xs , then
the pricing of barrier options boils down to evaluating expectations of the form
E[f (x + Xt)1{x+Xt>b}] for some appropriate function f (x) and threshold b > 0.
Indeed if f (x) = (K − ex)+ then the latter expectation is related to the value of
an “up-and-in” put. In credit risk, one is predominantly interested in the quantity
P̂(Xt < x) as a function in x and t , where P̂ is the law of the dual process −X. In-
deed it is as a functional of the latter probabilities that the price of a credit default
swap is computed; see, for example, the recent book of Schoutens and Cariboni
[20]. One is similarly interested in P̂(Xt ≥ x) in ruin theory as these probabilities
are also equivalent to the finite-time ruin probabilities.

One obvious way to do Monte Carlo simulation of expectations involving the
joint law of (Xt ,Xt ) that takes advantage of the stationary and independent in-
crements of Lévy processes is to take a random walk approximation to the Lévy
process, simulate multiple paths, taking care to record the maximum for each run.
When one is able to set things up in this way so that one samples exactly from the
distribution of Xt , the law of the maximum of the underlying random walk will
not agree with the law of Xt .

Taking account of the fact that all Lévy processes respect a fundamental path de-
composition known as the Wiener–Hopf factorization, it turns out there is another
very straightforward way to perform Monte Carlo simulations for expectations in-
volving the joint law of (Xt ,Xt ) which we introduce in this paper. Our method
allows for exact sampling from the law of (Xg,Xg) where g is a random time
whose distribution can be concentrated arbitrarily close around t .

There are several advantages of the technique. First, when it is taken in context
with very recent developments in Wiener–Hopf theory for Lévy processes, for ex-
ample, recent advances in the theory of scale functions for spectrally negative pro-
cesses (see Kyprianou, Pardo and Rivero [16]), new complex analytical techniques
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due to Kuznetsov [13] and Vigon’s theory of philanthropy (see [22]), one may
quickly progress the algorithm to quite straightforward numerical work. Second,
our Wiener–Hopf method takes advantage of a similar feature found in the, now
classical, “Canadization” method of Carr [7] for numerical evaluation of optimal
stopping problems. The latter is generally acknowledged as being more efficient
than appealing to classical random walk approximation Monte Carlo methods. In-
deed, later in this paper, we present our numerical findings with some indication
of performance against the method of random walk approximation. In this case,
our Wiener–Hopf method appears to be extremely effective. Third, in principle,
our method handles better the phenomena of discontinuities which can occur with
functionals of the form E[f (x + Xt)1{x+Xt>b}] at the boundary point x = b. It is
now well understood that the issue of regularity of the upper and lower half line
for the underlying Lévy process (see Chapter 6 of [14] for a definition) is respon-
sible the appearance of a discontinuity at x = b in such functions (cf. [1]). The
nature of our Wiener–Hopf method naturally builds the distributional atom which
is responsible for this discontinuity into the simulations.

Additional advantages to the method we propose include its simplicity with
regard to numerical implementation. Moreover, as we shall also see in Section 4 of
this paper, the natural probabilistic structure that lies behind our so-called Wiener–
Hopf Monte Carlo method also allows for additional creativity when addressing
some of the deficiencies of the method itself.

2. Wiener–Hopf Monte Carlo simulation technique. The basis of the algo-
rithm is the following simple observation which was pioneered by Carr [7] and
subsequently used in several contexts within mathematical finance for producing
approximate solutions to free boundary value problems that appear as a result of
optimal stopping problems characterizing the value of an American-type option.

Suppose that e1, e2, . . . are a sequence of i.i.d. exponentially distributed random
variables with unit mean. Suppose they are all defined on a common product space
with product law P which is orthogonal to the probability space on which the
Lévy process X is defined. For all t > 0, we know from the Strong Law of Large
Numbers that

n∑
i=1

t

n
ei → t as n ↑ ∞(3)

P-almost surely. The random variable on the left-hand side above is equal in law
to a Gamma random variable with parameters n and n/t . Henceforth, we write it
g(n,n/t). Recall that P is our notation for the law of the Lévy process X. Then
writing Xt = sups≤t Xs we argue the case that, for sufficiently large n, a suitable
approximation to P(Xt ∈ dx,Xt ∈ dy) is (P × P)(Xg(n,n/t) ∈ dx,Xg(n,n/t) ∈ dy).

This approximation gains practical value in the context of Monte Carlo simula-
tion when we take advantage of the fundamental path decomposition that applies
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to all Lévy processes over exponential time periods known as the Wiener–Hopf
factorization.

THEOREM 1. For all n ≥ 1 and λ > 0, define g(n,λ) := ∑n
i=1 ei/λ. Then(

Xg(n,λ),Xg(n,λ)

) d= (V (n,λ), J (n,λ)),(4)

where V (n,λ) and J (n,λ) are defined iteratively for n ≥ 1 as

V (n,λ) = V (n − 1, λ) + S
(n)
λ + I

(n)
λ ,

J (n,λ) = max
(
J (n − 1, λ),V (n − 1, λ) + S

(n)
λ

)
and V (0, λ) = J (0, λ) = 0. Here, S

(0)
λ = I

(0)
λ = 0, {S(j)

λ : j ≥ 1} are an i.i.d. se-
quence of random variables with common distribution equal to that of Xe1/λ and

{I (j)
λ : j ≥ 1} are another i.i.d. sequence of random variables with common distri-

bution equal to that of Xe1/λ
.

PROOF. The Wiener–Hopf factorization tells us that Xe1/λ and Xe1/λ − Xe1/λ

are independent and the second of the pair is equal in distribution to Xe1/λ
. This

will constitute the key element of the proof.
Fix n ≥ 1. Suppose we define Xs,t = sups≤u≤t Xu. Then it is trivial to note that(

Xg(n,λ),Xg(n,λ)

)
(5)

= (
Xg(n−1,λ) + (

Xg(n,λ) − Xg(n−1,λ)

)
,Xg(n−1,λ) ∨ Xg(n−1,λ),g(n,λ)

)
,

where g(0, λ) := 0. If we define X
(n)
t = Xg(n−1,λ)+t − Xg(n−1,λ) and X

(n)

en/λ =
sups≤en/λ X

(n)
s , then from (5) it follows that

(
Xg(n,λ),Xg(n,λ)

) = (
Xg(n−1,λ) + X

(n)
en/λ,Xg(n−1,λ) ∨ (

Xg(n−1,λ) + X
(n)

en/λ

))
.

Now noting that the process X(n) is independent of {Xs : s ≤ g(n − 1, λ)} and
has law P and, moreover, recalling the distributional Wiener–Hopf decomposition
described at the beginning of the proof, it follows that(

Xg(n,λ),Xg(n,λ)

) d= (
Xg(n−1,λ) + S

(n)
λ + I

(n)
λ ,Xg(n−1,λ) ∨ (

Xg(n−1,λ) + S
(n)
λ

))
,

where S
(n)
λ and I

(n)
λ defined as in the statement of the theorem. The conclusion of

the theorem now follows immediately. �

Note that the idea of embedding a random walk into the path of a Lévy process
with two types of step distribution determined by the Wiener–Hopf factorization
has been used in a different, and more theoretical context by Doney [9].

Given (3), it is clear that the pair (V (n,n/t), J (n,n/t)) converges in distri-
bution to (Xt ,Xt ). This suggests that we need only to be able to simulate i.i.d.
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copies of the distributions of Sn/t := S
(1)
n/t and In/t := I

(1)
n/t and then by a sim-

ple functional transformation we may produce a realisation of the random vari-
ables (Xg(n,n/t),Xg(n,n/t)). Given a suitably nice function F , using standard Monte
Carlo methods one estimates for large k

E[F(Xt,Xt)] 
 1

k

k∑
m=1

F
(
V (m)(n,n/t), J (m)(n,n/t)

)
,(6)

where (V (m)(n,n/t), J (m)(n,n/t)) are i.i.d. copies of (V (n,n/t), J (n,n/t)). In-
deed the strong law of large numbers implies that the right-hand side above con-
verges almost surely as k ↑ ∞ to E × E(F (Xg(n,n/t),Xg(n,n/t))) which in turn
converges as n ↑ ∞ to E(F (Xt ,Xt)).

3. Implementation. The algorithm described in the previous section only has
practical value if one is able to sample from the distributions of Xe1/λ and −Xe1/λ

.
It would seem that this, in itself, is not that much different from the problem that it
purports to solve. However, it turns out that there are many tractable examples and
in all cases this is due to the tractability of their Wiener–Hopf factorizations.

Whilst several concrete cases can be handled from the class of spectrally one-
sided Lévy processes thanks to recent development in the theory of scale functions,
which can be used to described the laws of Xe1/λ and −Xe1/λ

(cf. [10, 17]), we give
here two large families of two-sided jumping Lévy processes that have pertinence
to mathematical finance to show how the algorithm may be implemented.

3.1. β-class of Lévy processes. The β-class of Lévy processes, introduced in
[13], is a 10-parameter Lévy process which has characteristic exponent

�(θ) = iaθ + 1

2
σ 2θ2 + c1

β1

{
B(α1,1 − λ1) − B

(
α1 − iθ

β1
,1 − λ1

)}

+ c2

β2

{
B(α2,1 − λ2) − B

(
α2 + iθ

β2
,1 − λ2

)}

with parameter range a,σ ∈ R, c1, c2, α1, α2, β1, β2 > 0 and λ1, λ2 ∈ (0,3) \
{1,2}. Here B(x, y) = 	(x)	(y)/	(x + y) is the Beta function (see [11]). The
density of the Lévy measure is given by

π(x) = c1
e−α1β1x

(1 − e−β1x)λ1
1{x>0} + c2

eα2β2x

(1 − eβ2x)λ2
1{x<0}.

Although � takes a seemingly complicated form, this particular family of Lévy
processes has a number of very beneficial virtues from the point of view of mathe-
matical finance which are discussed in [13]. Moreover, the large number of param-
eters also allows one to choose Lévy processes within the β-class that have paths
that are both of unbounded variation [when at least one of the conditions σ �= 0,
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λ1 ∈ (2,3) or λ2 ∈ (2,3) holds] and bounded variation [when all of the conditions
σ = 0, λ1 ∈ (0,2) and λ2 ∈ (0,2) hold] as well as having infinite and finite activity
in the jumps component [accordingly as both λ1, λ2 ∈ (1,3) or not].

What is special about the β-class is that all the roots of the equation λ+�(θ) =
0 are analytically identifiable which leads to semi-explicit identities for the laws
of Xe1/λ and −Xe1/λ

as the following result lifted from [13] shows.

THEOREM 2. For λ > 0, all the roots of the equation

λ + �(θ) = 0

are simple and occur on the imaginary axis. They can be enumerated by {iζ+
n :n ≥

0} on the positive imaginary axis and {iζ−
n :n ≥ 0} on the negative imaginary axis

in order of increasing absolute magnitude where

ζ+
0 ∈ (0, β2α2), ζ−

0 ∈ (−β1α1,0),

ζ+
n ∈ (

β2(α2 + n − 1), β2(α2 + n)
)

for n ≥ 1,

ζ−
n ∈ (

β1(−α1 − n),β1(−α1 − n + 1)
)

for n ≥ 1.

Moreover, for x > 0,

P(Xe1/λ ∈ dx) = −
(∑

k≥0

c−
k ζ−

k eζ−
k x

)
dx,(7)

where

c−
0 = ∏

n≥1

1 + ζ−
0 /(β1(n − 1 + α1))

1 − ζ−
0 /ζ−

n

and

c−
k = 1 + ζ−

k /(β1(k − 1 + α1))

1 − ζ−
k /ζ−

0

∏
n≥1,n�=k

1 + ζ−
k /(β1(n − 1 + α1))

1 − ζ−
k /ζ−

n

.

A similar expression holds for P(−Xe1/λ
∈ dx) with the role of {ζ−

n :n ≥ 0} being
played by {−ζ+

n :n ≥ 0} and α1, β1 replaced by α2, β2.

Note that when 0 is irregular for (0,∞) the distribution of Xe1/λ will
have an atom at 0 which can be computed from (7) and is equal to 1 −∑

k≥0 c−
k . Alternatively, from Remark 6 in [13] this can equivalently be written

as
∏

n≥0(−ζ−
n )/β1(n + α1). A similar statement can be made concerning an atom

at 0 for the distribution of −Xe1/λ
when 0 is irregular for (−∞,0). Conditions

for irregularity are easy to check thanks to Bertoin [3]; see also the summary in
Kyprianou and Loeffen [15] for other types of Lévy processes that are popular in
mathematical finance.

By making a suitable truncation of the series (7), one may easily perform in-
dependent sampling from the distributions Xe1/λ and Xe1/λ

as required for our
Monte Carlo methods.
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3.2. Philanthropy and general hypergeometric Lévy processes. The forthcom-
ing discussion will assume familiarity with classical excursion theory of Lévy pro-
cesses for which the reader is referred to Chapter VI of [2] or Chapter 6 of [14].

According to Vigon’s theory of philanthropy, a (killed) subordinator is called
a philanthropist if its Lévy measure has a decreasing density on R+. Moreover,
given any two subordinators H1 and H2 which are philanthropists, providing that
at least one of them is not killed, there exists a Lévy process X such that H1 and
H2 have the same law as the ascending and descending ladder height processes
of X, respectively. (In the language of Vigon, the philanthropists H1 and H2 are
friends.) Suppose we denote the killing rate, drift coefficient and Lévy measures of
H1 and H2 by the respective triples (k, δ,�H1) and (k̂, δ̂,�H2). Then [22] shows
that the Lévy measure of X satisfies the following identity:

�
+
X(x) =

∫ ∞
0

�H1(x + du)�H2(u) + δ̂πH1(x) + k̂ �H1(x), x > 0,(8)

where �
+
X(x) := �X(x,∞), �H1(u) := �H1(u,∞), �H2(u) := �H2(u,∞) and

πH1 is the density of �H1 . By symmetry, an obvious analogue of (8) holds for the
negative tail �

−
X(x) := �X(−∞, x), x < 0.

A particular family of subordinators which will be of interest to us is the class of
subordinators which is found within the definition of Kuznetsov’s β-class of Lévy
processes. These processes have characteristics (c,α,β, γ ) where γ ∈ (−∞,0) ∪
(0,1), β, c > 0 and 1 − α + γ > 0. The Lévy measure of such subordinators is of
the type

c
eαβx

(eβx − 1)1+γ
1{x>0} dx.(9)

From Proposition 9 in [13], the Laplace exponent of a β-class subordinator
satisfies

�(θ) = k+ δθ + c

β
{B(1 − α + γ,−γ ) − B(1 − α + γ + θ/β,−γ )}(10)

for θ ≥ 0 where δ is the drift coefficient and k is the killing rate.
Let H1 and H2 be two independent subordinators from the β-class where for

i = 1,2, with respective drift coefficients δi ≥ 0, killing rates ki ≥ 0 and Lévy
measure parameters (ci, αi, β, γi). Their respective Laplace exponents are denoted
by �i , i = 1,2. In Vigon’s theory of philanthropy, it is required that k1k2 = 0.
Under this assumption, let us denote by X the Lévy process whose ascending
and descending ladder height processes have the same law as H1 and H2, respec-
tively. In other words, the Lévy process whose characteristic exponent is given by
�1(−iθ)�2(iθ), θ ∈ R. It is important to note that the Gaussian component of the
process X is given by 2δ1δ2; see [22]. From (8), the Lévy measure of X is such
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that

�
+
X(x) = c1c2

∫ ∞
x

eβ1α1u

(eβ1u − 1)γ1+1

∫ ∞
u−x

eα2β2z

(eβ2z − 1)γ2+1 dz du

+ δ2c1
eβ1α1x

(eβ1x − 1)γ1+1 + k2c1

∫ ∞
x

eβ1α1u

(eβ1u − 1)γ1+1 dx.

Assume first that γ2 < 0, taking derivative in x and computing the resulting inte-
grals with the help of [11] we find that for x > 0 the density of the Lévy measure
is given by

π(x) = −c1c2

β
B(ρ,−γ2)e

−βx(1+γ1−α1)
2F1(1 + γ1, ρ;ρ − γ2; e−βx)

+ c1

(
k2 + c2

β
B(1 + γ2 − α2,−γ2)

)
eα1βx

(eβx − 1)1+γ1

− δ2c1
d

dx

[
eα1βx

(eβx − 1)1+γ1

]
,

where ρ = 2 + γ1 + γ2 − α1 − α2. The validity of this formula is extended for
γ2 ∈ (0,1) by analytical continuation. The corresponding expression for x < 0 can
be obtained by symmetry considerations.

We define a General Hypergeometric process to be the 13 parameter Lévy pro-
cess with characteristic exponent given in compact form

�(θ) = diθ + 1

2
σ 2θ2 + �1(−iθ)�2(iθ), θ ∈ R,(11)

where d, σ ∈ R. The two additional parameters d, σ are included largely with ap-
plications in mathematical finance in mind. Without these two additional parame-
ters, it is difficult to disentangle the Gaussian coefficient and the drift coefficients
from parameters appearing in the jump measure. Note that the Gaussian coefficient
in (11) is now σ 2/2 + 2δ1δ2. The definition of General Hypergeometric Lévy pro-
cesses includes previously defined Hypergeometric Lévy processes in Kyprianou,
Pardo and Rivero [16], Caballero, Pardo and Pérez [5] and Lamperti-stable Lévy
processes in Caballero, Pardo and Pérez [6].

Just as with the case of the β-family of Lévy processes, because � can be
written as a linear combination of a quadratic form and beta functions, it turns out
that one can identify all the roots of the equation �(θ) + λ = 0 which is again
sufficient to describe the laws of Xe1/λ and −Xe1/λ

.

THEOREM 3. For λ > 0, all the roots of the equation

λ + �(θ) = 0
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are simple and occur on the imaginary axis. They can be enumerated by {iξ+
n :n ≥

0} on the positive imaginary axis and {iξ−
n :n ≥ 0} on the negative imaginary axis

in order of increasing absolute magnitude where

ξ+
0 ∈ (

0, β(1 + γ2 − α2)
)
, ξ−

0 ∈ (−β(1 + γ1 − α1),0
)
,

ξ+
n ∈ (

β(γ2 − α2 + n),β(1 + γ2 − α2 + n)
)

for n ≥ 1,

ξ−
n ∈ (−β(1 + γ1 − α1 + n),−β(γ1 − α1 + n)

)
for n ≥ 1.

Moreover, for x > 0,

P(Xe1/λ ∈ dx) = −
(∑

k≥0

c−
k ξ−

k eξ−
k x

)
dx,(12)

where

c−
0 = ∏

n≥1

1 + ξ−
0 /(β(γ1 − α1 + n))

1 − ξ−
0 /ξ−

n

and

c−
k = 1 + ξ−

k /(β(γ1 − α1 + k))

1 − ξ−
k /ξ−

0

∏
n≥1,n�=k

1 + ξ−
k /(β(γ1 − α1 + n))

1 − ξ−
k /ξ−

n

.

A similar expression holds for P(−Xe1/λ
∈ dx) with the role of {ξ−

n :n ≥ 0} re-
placed by {−ξ+

n :n ≥ 0} and α1, γ2 replaced by α2, γ2.

PROOF. The proof is very similar to the proof of Theorem 10 in [13]. Formula
(11) and reflection formula for the Beta function (see [11])

B(−z;−γ ) = B(1 + z + γ ;−γ )
sin(π(z + γ ))

sin(πz)
(13)

tell us that �(iθ) → −∞ as θ → β(1 + γ2 − α2), and since �(0) = 0 we con-
clude that λ + �(iθ) = 0 has a solution on the interval θ ∈ (0, β(1 + γ2 − α2)).
Other intervals can be checked in a similar way [note that �i(z) are Laplace ex-
ponents of subordinators, therefore they are positive for z > 0]. Next, we assume
that σ, δ1, δ2 > 0. Using formulas (11), (13) and the asymptotic result

	(a + z)

	(z)
= za + O(za−1), z → +∞,

which can be found in [11], we conclude that �(iθ) has the following asymptotics
as θ → +∞:

�(iθ) = −1

2
(σ 2 + 2δ1δ2)θ

2 + O(θ1+γ2)

− δ1	(−γ2)

βγ2

sin(π(α2 + θ/β))

sin(π(α2 − γ2 + θ/β))
[θ1+γ2 + O(θγ2+γ1)].
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Using the above asymptotic expansion and the same technique as in the proof of
Theorem 5 in [13], we find that as n → +∞ there exists a constant C1 such that

ξ+
n = β(n + 1 + γ2 − α2) + C1n

γ2−1 + O(nγ2−1−ε),

with a similar expression for ξ−
n . Thus, we use Lemma 6 from [13] (and the same

argument as in the proofs of Theorems 5 and 10 in [13]) to show that first there exist
no other roots of meromorphic function λ + �(iz) except for {ξ±

n }, and secondly
that we have a factorization

λ

λ + �(θ)
= 1

1 + iθ/ξ−
0

∏
n≥1

1 − iθ/(β(γ1 − α1 + n))

1 + iθ/ξ−
n

× 1

1 + iθ/ξ+
0

∏
n≥1

1 + iθ/(β(γ2 − α2 + n))

1 + iθ/ξ+
n

.

The Wiener–Hopf factoris φ±
q (θ) are identified from the above equation with the

help of analytical uniqueness result, Lemma 2 in [13]. Formula (12) is obtained
from the infinite product representation for φ+

q (θ) using residue calculus.
This ends the proof in the case σ, δ1, δ2 > 0, in all other cases the proof is almost

identical, except that one has to do more work to obtain asymptotics for the roots
of λ + �(iθ) = 0. We summarize all the possible asymptotics of the roots below

ξ+
n = β(n − α2 + ω2) + Cn�2 + O(n�2−ε) as n → ∞,

where the coefficients ω2, �2 and C are presented in Table 1. Corresponding results
for ξ−

n can be obtained by symmetry considerations. �

REMARK 1. Similar comments to those made after Theorem 2 regarding the
existence of atoms in the distribution of Xe1/λ and −Xe1/λ

also apply here.

TABLE 1
Coefficients for the asymptotic expansion of ξ+

n

Case ω2 C �2

σ 2, δ1, δ2 > 0 1 + γ2
2δ1c2

β	(1+γ2)(σ
2+2δ1δ2)

γ2 − 1

σ = 0, δ1, δ2 > 0 1 + γ2
c2

β	(1+γ2)δ2
γ2 − 1

σ 2, δ2 > 0, δ1 = 0 1 + γ2
2c1c2	(1−γ1)

β3+γ1−γ2 	(1+γ2)γ1σ
2 γ1 + γ2 − 2

σ 2, δ1 > 0, δ2 = 0 1 + γ2
2δ1c2

β	(1+γ2)σ
2 γ2 − 1

δ2 > 0, σ = δ1 = 0 1 + γ2
c2

βδ2	(1+γ2)
γ2 − 1

δ1 > 0, σ = δ2 = 0 0 sin(πγ2)
π

β2γ2(μ+d)
δ1c2	(1−γ2)

−γ2

σ 2 > 0, δ1 = δ2 = 0 1 + γ2
2c1c2	(1−γ1)

β3+γ1−γ2 	(1+γ2)γ1σ
2 γ1 + γ2 − 2

σ = δ1 = δ2 = 0 1 β2γ2
c2	(1−γ2)

sin(πγ2)
π (k2 + c2

β B(1 + γ2 − α2;−γ2)) −γ2
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REMARK 2. It is important to note that the hypergeometric Lévy process is
but one of many examples of Lévy processes which may be constructed using
Vigon’s theory of philanthropy. With the current Monte Carlo algorithm in mind,
it should be possible to engineer other favorable Lévy processes in this way.

4. Extensions.

4.1. Building in arbitrary large jumps. The starting point for the Wiener–Hopf
Monte Carlo algorithm is the distribution of Xe1/λ and Xe1/λ

, and in Section 3 we
have presented two large families of Lévy processes for which one can compute
these distributions quite efficiently. We have also argued the case that one might
engineer other fit-for-purpose Wiener–Hopf factorizations using Vigon’s theory of
philanthropy. However, below, we present another alternative for extending the
application of the Wiener–Hopf Monte Carlo technique to a much larger class of
Lévy processes than those for which sufficient knowledge of the Wiener–Hopf
factorization is known. Indeed the importance of Theorem 4 below is that we may
now work with any Lévy processes whose Lévy measure can be written as a sum
of a Lévy measure from the β-family or hypergeometric family plus any other
measure with finite mass. This is a very general class as a little thought reveals that
many Lévy processes necessarily take this form. However, there are some obvious
exclusions from this class, for example, cases of Lévy processes with bounded
jumps.

THEOREM 4. Let Y = {Yt : t ≥ 0} be a sum of a Lévy process X and a com-
pound Poisson process such that for all t ≥ 0,

Yt = Xt +
Nt∑
i=1

ξi,

where N = {Nt : t ≥ 0} is a Poisson process with intensity γ , independent of the
i.i.d. sequence of random variables, {ξi : i ≥ 1}, and X. Define iteratively for n ≥ 1

V (n,λ) = V (n − 1, λ) + S
(n)
λ+γ + I

(n)
λ+γ + ξn(1 − βn),

J (n,λ) = max
(
V (n,λ), J (n − 1, λ),V (n − 1, λ) + S

(n)
λ+γ

)
,

where V (0, λ) = J (0, λ) = 0, sequences {S(j)
λ+γ :n ≥ 1} and {I (n)

λ+γ :n ≥ 1} are de-
fined in Theorem 1, and {βn :n ≥ 1} are an i.i.d. sequence of Bernoulli random
variables such that P(βn = 1) = λ/(γ + λ). Then

(
Yg(n,λ), Y g(n,λ)

) d= (V (Tn,λ), J (Tn, λ)),(14)

where Tn = min{j ≥ 1 :
∑j

i=1 βi = n}.



2182 KUZNETSOV, KYPRIANOU, PARDO AND VAN SCHAIK

PROOF. Consider a Poisson process with arrival rate λ + γ such that points
are independently marked with probability λ/(λ+γ ). Then recall that the Poisson
Thinning theorem tells us that the process of marked points is a Poisson process
with arrival rate λ. In particular, the arrival time having index T1 is exponentially
distributed with rate λ.

Suppose that τ1 is the first time that an arrival occurs in the process N , in partic-
ular τ1 is exponentially distributed with rate γ . Let eλ be another independent and
exponentially distributed random variable, and fix x ∈ R and y ≥ 0. Then making
use of the Wiener–Hopf decomposition,

(x + Yτ1∧eλ,max{y, x + Y τ1∧eλ})

=
⎧⎪⎨
⎪⎩

(
x + S

(1)
λ + I

(1)
λ ,max

{
y, x + S

(1)
λ

})
, if eλ < τ1,(

x + S(1)
γ + I (1)

γ + ξn,max
{
x + S(1)

γ + I (1)
γ + ξn, y, x + S(1)

γ

})
,

if τ1 ≤ eλ.

If we momentarily set (x, y) = (V (0, λ), J (0, λ)) = (0,0), then by the Pois-
son Thinning theorem it follows that (Yτ1∧eλ, Y τ1∧eλ) is equal in distribution to
(V (1, λ), J (1, λ)). Moreover, again by the Poisson Thinning theorem, (Yeλ, Y eλ)

is equal in distribution to (V (T1, λ), J (T1, λ)). This proves the theorem for the
case n = 1.

In the spirit of the proof of Theorem 1, the proof for n ≥ 2 can be established
by an inductive argument. Indeed, if the result is true for n = k − 1 then it is true
for n = k by taking (x, y) = (V (k − 1, λ), J (k − 1, λ)) then appealing to the lack
of memory property, stationary and independent increments of Y and the above
analysis for the case that n = 1. The details are left to the reader. �

REMARK 3. A particular example where the use of the above theorem is of
pertinence is a linear Brownian motion plus an independent compound Poisson
process. This would include, for example, the so-called Kou model from mathe-
matical finance in which the jumps of the compound Poisson process have a two-
sided exponential distribution. In the case that X is a linear Brownian motion, the
quantities Xe1/λ and −Xe1/λ

are both exponentially distributed with easily com-
puted rates.

4.2. Approximate simulation of the law of (Xt ,Xt ,Xt ). Next, we consider
the problem of sampling from the distribution of the three random variables
(Xt ,Xt ,Xt). This is also an important problem for applications making use of
the two-sided exit problem and, in particular, for pricing double barrier options.
The following slight modification of the Wiener–Hopf Monte Carlo technique al-
lows us to obtain two estimates for this triple of random variables, which in many
cases can be used to provide upper and lower bounds for certain functionals of
(Xt ,Xt ,Xt).
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THEOREM 5. Given two sequences {S(n)
λ :n ≥ 1} and {I (n)

λ :n ≥ 1} introduced
in Theorem 1 we define iteratively for n ≥ 1

V (n,λ) = V (n − 1, λ) + S
(n)
λ + I

(n)
λ ,

J (n,λ) = max
(
J (n − 1, λ),V (n − 1, λ) + S

(n)
λ

)
,

K(n,λ) = min
(
K(n − 1, λ),V (n,λ)

)
,(15)

J̃ (n, λ) = max
(
J̃ (n − 1, λ),V (n,λ)

)
,

K̃(n,λ) = min
(
K̃(n − 1, λ),V (n − 1, λ) + I

(n)
λ

)
,

where V (0, λ) = J (0, λ) = K(0, λ) = J̃ (0, λ) = K̃(0, λ) = 0. Then for any
bounded function f (x, y, z) : R3 → R which is increasing in z-variable we have

E[f (V (n,λ), J (n,λ),K(n,λ))] ≥ E
[
f

(
Xg(n,λ),Xg(n,λ),Xg(n,λ)

)]
,(16)

E[f (V (n,λ), K̃(n,λ), J̃ (n, λ))] ≤ E
[
f

(
Xg(n,λ),Xg(n,λ),Xg(n,λ)

)]
.(17)

PROOF. From Theorem 1, we know that (V (n,λ), J (n,λ)) has the same dis-
tribution as (Xg(n,λ),Xg(n,λ)), and, for each n ≥ 1, K(n,λ) = min{Xg(k,λ) :k =
0,1, . . . , n} ≥ Xg(n,λ). The inequality in (16) now follows. The equality in (17) is

the result of a similar argument where now, for each n ≥ 1, K̃(n,λ) = Xg(n,λ) and

J̃ (n, λ) = max{Xg(k,λ) :k = 0,1, . . . , n} ≤ Xg(n,λ). �

Theorem 5 can be understood in the following sense. Both triples of random
variables (V (n,λ), J (n,λ),K(n,λ)) and (V (n,λ), J̃ (n,λ), K̃(n,λ)) can be con-
sidered as estimates for (Xg(n,λ),Xg(n,λ),Xg(n,λ)), where in the first case K(n,λ)

has a positive bias and in the second case J̃ (n, λ) has a negative bias. An example
of this is handled in the next section.

5. Numerical results. In this section, we present numerical results. We per-
form computations for a process Xt in the β-family with parameters

(a, σ,α1, β1, λ1, c1, α2, β2, λ2, c2) = (a, σ,1,1.5,1.5,1,1,1.5,1.5,1),

where the linear drift a is chosen such that �(−i) = −r with r = 0.05, for no
other reason that this is a risk neutral setting which makes the process {exp(Xt −
rt) : t ≥ 0} a martingale. We are interested in two parameter sets. Set 1 has σ = 0.4
and Set 2 has σ = 0. Note that both parameter sets give us proceses with jumps
of infinite activity but of bounded variation, but due to the presence of Gaussian
component the process Xt has unbounded variation in the case of parameter Set 1.

As the first example, we compare computations of the joint density of (X1,X1 −
X1) for the parameter Set 1. Our first method is based on the following Fourier
inversion technique. As in the proof of Theorem 1, we use the fact that Xe1/λ and
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Xe1/λ − Xe1/λ are independent, and the latter is equal in distribution to Xe1/λ
, to

write

P(Xe1/λ ∈ dx)P(−Xe1/λ
∈ dy) = P(Xe1/λ ∈ dx,Xe1/λ − Xe1/λ ∈ dy)

= λ

∫
R+

e−λt
P(Xt ∈ dx,Xt − Xt ∈ dy)dt.

Writing down the inverse Laplace transform, we obtain

P(Xt ∈ dx,Xt − Xt ∈ dy)
(18)

= 1

2π i

∫
λ0+iR

P(Xe1/λ ∈ dx)P(−Xe1/λ
∈ dy)λ−1eλt dλ,

where λ0 is any positive number. The values of analytical continuation of
P(Xe1/λ ∈ dx) for complex values of λ can be computed efficiently using tech-
nique described in [13]. Our numerical results indicate that the integral in (18) can
be computed very precisely, provided that we use a large number of discretiza-
tion points in λ space coupled with Filon-type method to compute this Fourier
type integral. Thus, first we compute the joint density of (X1,X1 − X1) using
(18) and take it as a benchmark, which we use later to compare the Wiener–Hopf
Monte Carlo method and the classical Monte Carlo approach. For both of these
methods, we fix the number of simulations M = 107 and the number of time steps
N ∈ {20,50,100}. For fair comparison, we use 2N time steps for the classical
Monte Carlo, as Wiener–Hopf Monte Carlo method with N time steps requires
simulation of 2N random variables {S(j)

λ , I
(j)
λ : j = 1,2, . . . ,N}. All the code was

written in Fortran and the computations were performed on a standard laptop (Intel
Core 2 Duo 2.5 GHz processor and 3 GB of RAM).

Figure 1 presents the results of our computations. In Figure 1(a), we show our
benchmark, a surface plot of the joint probability density function of (X1,X1 −
X1) produced using Fourier method (18), which takes around 40–60 seconds to
compute. Figure 1(b)–(d) show the difference between the benchmark and the
Wiener–Hopf Monte Carlo result as the number of time steps N increases from
20 to 50 to 100. The computations take around 7 seconds for N = 100, and 99%
of this time is actually spent performing the Monte Carlo algorithm, as the precom-
putations of the roots ζ±

n and the law of Iλ, Sλ take less than one tenth of a second.
Figure 1(e) shows the result produced by the classical Monte Carlo method with
N = 100 (which translates into 200 random walk steps according to our previous
convention); this computation takes around 10–15 seconds since here we also need
to compute the law of X1/N , which is done using inverse Fourier transform of the
characteristic function of Xt given in (1). Finally, Figure 1(f) shows the difference
between the Monte Carlo result and our benchmark.

The results illustrate that in this particular example the Wiener–Hopf Monte
Carlo technique is superior to the classical Monte Carlo approach. It gives a much
more precise result, it requires less computational time, is more straightforward to
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FIG. 1. Computing the joint density of (X1,X1 − X1) for parameter Set 1. Here X1 ∈ [0,1] and
X1 − X1 ∈ [0,4].
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programme and does not suffer from some the issues that plague the Monte Carlo
approach, such as the atom in distribution of X1 at zero, which is clearly visible in
Figure 1(e).

Next, we consider the problem of pricing up-and-out barrier call option with
maturity equal to one, which is equivalent to computing the following expecta-
tion:

πuo(s) = e−r
E

[
(seX1 − K)+1{s exp(X1)<b}

]
.(19)

Here s ∈ [0, b] is the initial stock price. We fix the strike price K = 5, the bar-
rier level b = 10. The numerical results for parameter Set 1 are presented in
Figure 2. Figure 2(a) shows the graph of πuo(s) as a function of s produced
with Fourier method similar to (18), which we again use as a benchmark. Fig-
ure 2(b)–(d) show the difference between the benchmark and results produced
by Wiener–Hopf Monte Carlo (blue solid line) and classical Monte Carlo (red
line with circles) for N ∈ {20,50,100}. Again we see that Wiener–Hopf Monte
Carlo method gives a better accuracy, especially when the initial stock price

FIG. 2. Computing the price of up-and-out barrier option for parameter Set 1. In figures (b)–(d)
the graph of WH-MC error is solid line, the graph of MC error is line with circles.
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FIG. 3. Computing the price of up-and-out barrier option for parameter Set 2. In figures (b)–(d)
the graph of WH-MC error is solid line, the graph of MC error is line with circles.

level s is close to the barrier b, as in this case the Monte Carlo approach pro-
duces an artificial atom in the distribution of X1 at zero which creates a large
error.

Figure 3 shows corresponding numerical results for parameter Set 2. In this
case, we have an interesting phenomenon of a discontinuity in πuo(s) at the bound-
ary b. The discontinuity should be there and occurs due to the fact that, for those
particular parameter choices, there is irregularity of the upper half line. Irregularity
of the upper half line is equivalent to there being an atom at zero in the distribu-
tion of Xt for any t > 0 (also at independent and exponentially distributed random
times). We see from the results presented in Figures 2 and 3 that Wiener–Hopf
Monte Carlo method correctly captures this phenomenon; the atom at zero is pro-
duced if and only if the upper half line is irregular, while the classical Monte Carlo
approach always generates an atom. Also, analyzing Figure 3(b)–(d), we see that
in this case classical Monte Carlo algorithm is also doing a good job and it is hard
to find a winner. This is not surprising, as in the case of parameter Set 2 the process
Xt has bounded variation, thus the bias produced in monitoring for supremum only
at discrete times is smaller than in the case of process of unbounded variation.
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FIG. 4. Computing the price of the double no-touch barrier option for parameter Set 1. The solid
lines represent the upper/lower bounds produced by WH-MC method, the line with circles represents
the MC result.

Finally, we give an example of how one can use Theorem 5 to produce up-
per/lower bounds for the price of the double no-touch barrier call option

πdnt(s) = e−r
E

[
(seX1 − K)+1{s exp(X1)<b;s exp(X1)>b}

]
.(20)

First, we use identity 1{s exp(X1)>b} = 1 − 1{s exp(X1)<b} and obtain

πdnt(s) = πuo(s) − e−r
E

[
(seX1 − K)+1{s exp(X1)<b;s exp(X1)<b}

]
.

Function f (x, y, z) = −(sex − K)+1{s exp(y)<b;s exp(z)<b} is increasing in both
variables y and z, thus using Theorem 5 we find that

πdnt
1 (s) = πuo(s) − e−r

E
[(

seV (n,n) − K
)+1{s exp(J̃ (n,n))<b;s exp(K̃(n,n))<b}

]
,

πdnt
2 (s) = πuo(s) − e−r

E
[(

seV (n,n) − K
)+1{s exp(J (n,n))<b;s exp(K(n,n))<b}

]
are the lower/upper bounds for πdnt(s). Figure 4 illustrates this algorithm for pa-
rameter Set 1, the other parameters being fixed at K = 5, b = 3, b = 10 and the
number of time steps N = 200 (400 for the classical Monte Carlo). We see that the
Monte Carlo approach gives a price which is almost always larger than the upper
bound produced by the Wiener–Hopf Monte Carlo algorithm. This is not surpris-
ing, as in the case of Monte Carlo approach we would have positive (negative)
bias in the estimate of infimum (supremum), and given that the payoff of the dou-
ble no-touch barrier option is increasing in infimum and decreasing in supremum
this amplifies the bias.
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