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We use computer simulations to investigate self-assembly in a system of model chaperonin proteins, 
and in an Ising lattice gas. We discuss the mechanisms responsible for rapid and efficient assembly 
in these systems, and we use measurements of dynamical activity and assembly progress to compare 
their propensities for kinetic trapping. We use the analytic solution of a simple minimal model to 
illustrate the key features associated with such trapping, paying particular attention to the number of 
ways that particles can misbind. We discuss the relevance of our results for the design and control of 
self-assembly in general. © 2011 American Institute of Physics. [doi:10.1063/1.3662140] 

I. INTRODUCTION 

In self-assembly,1, 2 particles combine spontaneously to 
form structures that can be closed, such as capsids3 and DNA 
“origami,”4 or extended, such as filaments,5 sheets,6, 7 and un
usual crystals.8–12 The possibility of exploiting assembly for 
technological ends has been discussed many times,1, 2 but to 
realize this possibility we need to develop the ability to predict 
and control the properties of experimental self-assembling 
systems in general. In particular, understanding how systems 
can be designed so as to assemble reliably and rapidly while 
avoiding kinetic traps remains a key challenge. 

Effective dynamical assembly typically requires bond-
making and bond-breaking events, so that assembling parti
cles can avoid long-lived disordered structures and form the 
desired ordered one. The role of transient unbinding during 
self-assembly is understood at a qualitative level:3, 13–19 par
ticles on the micro- and nanoscale can exploit thermal fluc
tuations in order to sample a range of bound configurations 
as structures grow. Such fluctuations allow particles to break 
local bonds and escape the kinetic “traps” that result when 
misbound particles become frozen into place by the arrival 
of more material. The importance of such fluctuations is ap
parent from measurements, in computer simulations, of as
sembly yield as a function of particle binding strength. Typ
ically, such curves are non-monotonic, with a decrease in 
yield at large binding strength due to the suppression of bond-
breaking events3, 14, 15, 20, 21 (see Fig. 1). However, while the 
roles of fluctuations and transient unbinding are clear at this 
qualitative level, it is not clear “how much” reversibility is 
required for effective self-assembly in a given system. 

Here we address this question. We introduce a toy model 
of assembly whose analytic solution demonstrates a minimal 
set of requirements for kinetic trapping. We also consider 
computer simulations of two models of interacting particles. 
The first is an off-lattice, coarse-grained model22 of “chaper
onin” proteins from which filament-like and sheet-like struc
tures can assemble. The second is the two-dimensional lattice 

a)Authors to whom correspondence should be addressed. Electronic 
addresses: r.jack@bath.ac.uk and swhitelam@lbl.gov. 

gas, whose separation into dense and dilute phases exhibits 
many of the characteristic features of self-assembly.17, 18 We 
discuss the assembly mechanisms in these models, and in par
ticular identify whether assembly is more efficient when a sin
gle structure forms by nucleation and growth, or when multi
ple structures form simultaneously. We then consider the role 
of thermal fluctuations, comparing measurements of dynami
cal activity23, 24 with the flux towards the assembled state. For 
example, as chaperonin particles assemble into a close-packed 
sheet, they typically bind and unbind hundreds or thousands 
of times before attaining their final positions. We find that 
both the mechanism of assembly and the dynamical activity 
indicate the effectiveness of a system in avoiding (or escap
ing from) kinetic traps, and we discuss the relevance of these 
results for the design of self-assembling systems. 

II. MODELS AND ASSEMBLY YIELDS 

A. General considerations 

A key aim of this article is to identify features that are 
conserved between different self-assembling systems. To this 
end, we show results for three model systems, emphasising 
their common features as well as some salient differences. 
We initialise interacting particles in disordered configurations 
and they evolve with diffusive dynamics towards low-energy 
thermally equilibrated structures. For example, we will con
sider model chaperonin proteins that assemble into extended 
close-packed sheets (full details are given in Sec. II B). We 
define the “yield” of this assembly process to be the fraction 
of particles embedded in such close-packed sheets. To facil
itate comparison between systems, we consistently use εb/T 
to denote a dimensionless measure of the strength of inter
particle bonds; we also use nopt to denote the assembly yield, 
defined as the fraction of particles that are in “optimal” bond
ing environments. 

Figure 1(a) shows results for the sheet-forming chaper
onin system and Fig. 1(b) shows results for a two-dimensional 
lattice model where particles assemble into large close-
packed clusters (see Sec. II C for full details). For these two 
systems, on these time scales, nopt is large only in a narrow 
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FIG. 1. Assembly yield 〈nopt〉 versus binding strength εb/T, for various times 
and for equilibrated systems. We show representative snapshots of clusters at 
long times, for bond strengths indicated. (a) Sheet-forming chaperonin sys
tem (σ = 0.3), (b) lattice gas, (c) filament-forming chaperonin system. In 
cases (a) and (b), dynamic yields at fixed time are non-monotonic in binding 
strength εb/T; in (c), yield is monotonic, reflecting the absence of kinetic trap
ping. Data marked “long” are taken from simulations lasting 300 h of CPU 
time, rather than a fixed final time t. 

range of bond strength. When bonds are too weak, the assem
bled structure is not stable; when bonds are too strong, the 
system is vulnerable to kinetic trapping. We contrast this be
haviour with that of a different model of chaperonin proteins 
which assemble into long filaments. Figure 1(c) shows that 
this process does not suffer kinetic trapping even when bonds 
are very strong: the yield is monotonic in εb/T. 

B. Chaperonin model 

Chaperonin proteins6, 7 assemble in vitro into a range 
of structures that include extended two-dimensional sheets 

and quasi one-dimensional filaments. Following Refs. 22 
and 25, we model chaperonins as hard spheres of diameter 
2a equipped with orientation-dependent pairwise interactions 
that encourage either equator-to-equator or pole-to-pole bind
ing (see Appendix B). The anisotropic interactions have range 
a/4 and are characterised by a dimensionless bond strength 
εb/T. They also depend on a parameter σ that determines how 
precisely two chaperonins must align before they receive an 
energetic reward: the smaller is σ , the more specific is the 
angular interaction. We simulated N = 1000 chaperonins in 
periodically replicated cubic boxes of side L. Chaperonins 
were present at a concentration of 0.82% by volume (i.e., 
(4/3)Nπ (a/L)3 = 0.0082). 

In sheet-forming systems, particle interactions promote 
equator-to-equator binding. We focus on a system with an
gular specificity parameter σ = 0.3 (a fairly strict alignment 
criterion). We also contrast the behaviour of this system with 
that of a system possessing angular specificity parameter σ 

= 0.7 (a more generous alignment criterion). At large bond 
strengths, equilibrium configurations of these systems contain 
a large close-packed planar sheet; for weak bonds the equilib
rium is a dilute gas of free particles or small clusters. At the 
low concentrations studied, these systems do not form liquid 
phases or three-dimensional crystals. 

We also considered a filament-forming system whose in
teractions favour pole-to-pole binding. Its equilibrium state 
for large binding strength is a collection of long filaments. 

For concreteness, we have selected particular values for 
parameters such as the specificity σ and the volume fraction. 
Although there is a degree of arbitrariness in the particular 
values chosen, we find that the qualitative behaviour of the 
systems we consider here varies only weakly if we vary model 
parameters over a wide range of values. For instance, we do 
not find regimes in which the yields of chaperonin sheet for
mers or the lattice gas (Fig. 1) vary monotonically with bind
ing strength. Indeed, Fig. 1 shows that these systems exhibit 
similar qualitative trends, despite their differences in dimen
sion, packing fraction, and the microscopic detail of their in
teractions. Similar behaviour has been observed in a range of 
other self-assembling systems.3, 13–19 We are therefore confi
dent that our results are relevant for a range of self-assembling 
model systems; we would also expect similar phenomenology 
to be reproduced in experiments. 

We performed dynamic simulations, starting from well-
mixed configurations, using the virtual-move Monte Carlo 
(MC) algorithm22 described in Ref. 26. This algorithm ap
proximates a diffusive dynamics by using potential energy 
gradients to generate both single-particle- and collective 
translations and rotations. We define τB as the mean time 
taken for an isolated particle to diffuse a length equal to its 
diameter (150 MC steps in our simulations). For later con
venience we define t0 ≡ 105 MC steps ≈670 τB. For  the  
sheet-forming systems we sampled thermal equilibrium by 
starting from a large close-packed sheet inserted into a gas of 
monomers, and using local Monte Carlo moves supplemented 
by the nonlocal algorithm described in Ref. 21. 

To define the yield nopt, we consider two particles i and 
j to be neighbours if their interaction energy Eij ≤−2T. For  
the sheet-forming model the optimal number of neighbours 
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is Nmax = 6; for the filament-forming model Nmax = 2. The 
yield nopt is the fraction of particles with this number of neigh
bours. We also define a normalised energy (“fraction of pos
sible bonds”), 

2E 
nb = −  , (1) Nmaxεb 

where E is the total energy of the system. Thus, nb = 0 if no  
bonds are present, while nb = 1 if all particles are in optimal 
binding environments. 

The results shown in Fig. 1 illustrate that the sheet-
forming model suffers from kinetic trapping when εb/T is 
large, so that good assembly occurs only in an intermediate 
range of bond strengths.27 On the other hand, growing fila
ments in this model cannot become kinetically trapped: each 
particle can bind only at its north or south pole, and each of 
those two modes of binding permits the structure to be ex
tended in an orderly manner. In this case, thermal fluctuations 
do not facilitate assembly, but instead break up long filaments 
and reduce yield. We note that assembly of filaments may still 
suffer from kinetic trapping if they have more internal struc
ture than the simple strings of particles considered here.5, 28 

C. Lattice gas 

We also consider the two-dimensional lattice gas, com
prising N particles on a square lattice of V = L2 sites. Par
ticles on nearest neighbouring sites form bonds of energy 
−εb; particles may not overlap. The system phase-separates 
when bonds are strong, forming dense (liquid) and dilute (gas) 
phases. We work at density ρ ≡ N/V = 0.002 for which the 
onset of phase separation (binodal) is at εb/T = 3.2.29 We take 
L = 2048 throughout. Motivated by the characteristic non-
monotonic yield shown in Fig. 1(b), we draw an analogy be
tween this phase separation and the self-assembly observed 
in the chaperonin model.17, 18 In the limit of large εb/T we ob
serve diffusion-limited cluster aggregation,30 an example of 
kinetic trapping that frustrates phase separation. 

We again used an MC scheme with cluster moves in or
der to simulate the dynamics of Brownian particles dispersed 
in a solvent. Our scheme is a variant of the “cleaving” algo
rithm of Ref. 22. In each MC move we select a seed particle, 
and begin to grow a cluster by adding to the seed, with prob
ability pc = 1 − e −λεb/T , each of its neighbouring particles. 
Here λ = 0.9 is a parameter that controls the relative likeli
hood of moving single particles as opposed to whole clusters. 
This process of adding particles to the cluster is repeated re
cursively until no more particles are added. We then attempt 
to move the resulting cluster in a random direction. We re
ject any moves that would lead to more than one particle on 
any site; otherwise we calculate the energy difference �E be
tween the original and proposed configurations. The cluster is 
moved with probability pm = pa/n2 where n is the size of the 
cluster and pa = min (1, e−(1 − λ)�E/T) if  �E =� 0. When �E 
= 0 we take  pa = μ with μ = 0.9. The factors pa, pm, and 
pc together ensure that the dynamics obey detailed balance 
and that clusters of n particles diffuse with a rate proportional 
to 1/n. The parameters μ and λ are chosen for computational 
efficiency, and for consistency with our other studies of this 
model.31 An MC sweep comprises N MC moves. The Brown-
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ian time for an isolated particle is τB ≈ 1.11 MC sweep. Equi
librium conditions were probed using simulations that were 
initialised with a large assembled cluster. 

Particles are considered to be neighbours if they are on 
adjacent lattice sites. The optimal number of neighbours is 
Nmax = 4, allowing nopt and nb to be defined as in Sec. II B. 
Figure 1(b) shows that the assembly yield of this simple two-
dimensional lattice model is qualitatively similar to that of 
the sheet-forming chaperonin model. In what follows, we use 
comparisons between these systems to identify which assem
bly properties may be generalised between models, and which 
are model-dependent. 

D. Schematic model of assembly and kinetic trapping 

To illustrate the physical origins of the behaviour in 
Fig. 1, we introduce a toy model of self-assembly. We con
sider a large number of particles, each of which can inhabit 
any of three energy levels: a “monomer” level of energy 0, a 
“misbound” level of energy −εb/2, and an “optimally bound” 
level of energy −εb: see Fig. 2(a). Particles begin in the 
monomer level, and transfer into the bound levels with the 
displayed rates. Here c is a concentration-like variable, and 
M is the degeneracy of the misbound level, which reflects the 
number of ways a particle can misbind. Particles escape from 
bound states with the Arrhenius-like rates shown. 

Denoting the unbound, misbound, and optimally bound 
states by 0, 1, 2, respectively, the model is described by a 
master equation, 

d 
P(t) = W P(t), (2)

dt 

where P(t) ≡ (P0(t), P1(t), P2(t)); the variable Pi(t) is the  
probability that a particle resides in state i at time t; and the 
matrix W is ⎛ −c(M + 1) α α2 

⎞ 

W = ⎜ ⎝ cM −α 0 ⎟ ⎠ . (3) 

c 0 −α2 

We have defined α ≡ e−εb/2T for compactness of notation and 
we take Boltzmann’s constant kB = 1 throughout this article. 
The yield in this model is nopt ≡ P2. 

All particles start in the monomer state, so that Eq. (2) 
is to be solved with the initial condition P(0) = (1, 0, 0). 
The solution is obtained by matrix diagonalisation; details are 
given in Appendix A. In the long-time limit, P(t) converges to 
the equilibrium distribution s = (1/Z)(α2, cMα, c) where Z 
= c + cMα + α2 is the partition function. Thus the equilib
rium (long-time) yield is neq = c/(c + cMα + α2). 

Dynamic yields are shown in Figs. 2(b) and 2(c). The  
long-time yield neq increases as particle binding strength εb/T 
increases. However, the escape rate α from the misbound state 
decreases as εb/T increases, so that misbound particles take a 
long time to unbind and transfer to the bound state. As long as 
M > 0, these two conflicting effects result in a yield nopt that 
at finite times decreases for large binding strength (Fig. 2(b)). 
We show in Appendix A that if α is small then reaching the 
equilibrium yield takes a time of order (M + 1)/α. However, 
if M = 0, i.e., there is no possibility of binding in a non 
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FIG. 2. Analytic toy model of assembly demonstrating the requirements for kinetic trapping. (a) Particles transfer between the “monomer,” “misbound,” and 
“optimally bound” levels with the rates shown; εb is the particle binding strength; c is a concentration variable (set to 10−2 in the other panels); and M is 
the number of ways of misbinding. (b) When there exists the possibility of misbinding (M > 0), the dynamic yield is non-monotonic with εb, because as εb 
increases (1) equilibrium yield increases but (2) the escape rate from misbound states decreases. (c) When misbinding is not possible (M = 0), dynamic yield 
increases with binding strength. Similar behaviour is seen in computer models in Fig. 1. 

-productive manner, then yield increases monotonically with 
binding strength (Fig. 2(c)). 

When M > 0 the toy model reproduces the qualitative 
dependence of yield on time and bond strength shown in 
Figs. 1(a) and 1(b). On the other hand, the behaviour shown 
in Fig. 1(c) is reproduced by the toy model when M = 0. We 
see immediately the three requirements for a dynamic yield 
that is non-monotonic in particle binding strength: (1) equi
librium yield increases with increasing binding strength; (2) 
there exists the possibility of misbinding; and (3) the escape 
rate from misbound states decreases with increasing binding 
strength. 

III. ASSEMBLY MECHANISMS 

We collate information about assembly mechanisms at 
different state points and in different models by plotting in 
Fig. 3 the normalized energy nb against the normalized num
ber of optimally bound particles nopt (which amounts to us
ing energy as a measure of assembly progress). If the system 
contains large clusters of optimally bound particles then one 

expects nopt ≈ nb. However, particles on the cluster surfaces 
contribute to nb but not to nopt so one finds in general that nopt 

< nb. For fixed nb the difference nb − nopt is smallest when 
the system contains one large cluster, which has relatively few 
surface particles. For kinetically trapped states one typically 
finds nopt � nb, because few particles are in optimal environ
ments. 

In the chaperonin system there is a pronounced nucle
ation regime in which assembly proceeds by growth of a sin
gle large cluster. Since nucleation is a rare event, this regime 
is characterised by system-wide fluctuations. However, the as
sembly mechanism does not fluctuate, but is the same for all 
trajectories: a single sheet grows from a gas of particles (evi
dence for this assertion is given in Appendix C). In the para
metric plots of Fig. 3, this becomes clearest when we plot 
〈nopt〉nb , the assembly yield from multiple trajectories aver
aged over configurations with a given value of nb. For  the  
lattice gas system, the free energy barrier to nucleation is 
smaller, fluctuations between trajectories are less pronounced, 
and it is appropriate to take time as a parametric variable. 
We plot quantities averaged at constant time, 〈nopt(t)〉 against 
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MC steps), and (c) the chaperonin filament-forming system. We show data for a range of bond strengths εb/T, as indicated. Time advances from bottom left to 
top right: dotted lines of constant time (isochrones) are drawn. In (a) the straight lines for the two highest temperatures indicate that assembly corresponds to the 
nucleation and growth of a single sheet; as temperature is lowered, multiple nucleation events are seen, and curves bend away from this line. Peak yield at long 
time is obtained (at εb/T ≈ 6.8) slightly away from the single-sheet nucleation regime (peak yield is obtained even further from this regime for a sheet-forming 
system with a more generous angular binding criterion: see Fig. 4(c)). Similar behaviour is seen in (b), although the nucleation regime is less pronounced. In (c), 
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〈nb(t)〉. We also show  isochrones, lines connecting points of 
equal time (lattice gas), or points of equal average time (chap
eronin systems). 

Figure 3 allows us to draw several conclusions about the 
assembly mechanism in these systems. In Fig. 3(a) the nearly 
straight lines at the two highest temperatures indicate that as
sembly corresponds to the nucleation and growth of a single 
sheet. As temperature is lowered, multiple nucleation events 
are seen, and curves bend away from this line. (Since there 
are multiple growing sheets, the fraction of bound particles 
located on cluster surfaces is larger, and nopt/nb is lower, than 
in the single-sheet regime.) The maximal yield nopt at long 
times is obtained at εb/T ≈ 6.8, slightly away from the single-
sheet nucleation regime. That is, while the ratio of surface to 
bulk particles is optimal in the single-sheet regime, the to
tal number of assembled particles increases with εb such that 
the yield continues to increase even as the surface-to-bulk ra
tio starts to fall. This competition between quality and quan
tity of assembled product was recently discussed in Ref. 18. 
Further from the single-sheet nucleation regime the surface-
to-bulk effect dominates, and yield begins to decline. For 
very strong bonds, clusters become ramified, as illustrated in 
Fig. 1, and yield is small. We note in passing that the opti
mal assembly regime seems to take place near the spinodal 
line for phase separation, since it is associated with a nucle
ation barrier that is just small enough for nucleation to cease 
to be a rare event—the possibility of controlling the nucle
ation barrier to achieve optimal assembly was discussed in 
Ref. 12. 

In Fig. 3(b), we show data for the lattice gas model, which 
behaves similarly to the sheet-forming chaperonins: maximal 
yield is obtained in a regime in which many clusters grow si
multaneously, but too strong an interaction again impairs as
sembly. By contrast, the assembly mechanism in the filament-
forming system is largely insensitive to bond strength: the 
main effect of increasing εb/T is that the system makes more 
progress along the reaction coordinate (Fig. 3(c)). This again 
reflects the low propensity for kinetic trapping in this system. 

Finally, we note that despite their different spatial dimen
sionality and binding geometry, the sheet-forming chaperonin 
model and the lattice gas show similar behaviour in the repre
sentations of Figs. 1 and 3. In both cases, assembly can take 
place through the nucleation and growth of a single structure, 
but optimal yield occurs in the regime in which several clus
ters (sheets) grow simultaneously (see also Ref. 19). In Fig. 4 
we show data for a chaperonin sheet-forming system with an 
angular binding specificity (σ = 0.7) more generous than that 
(σ = 0.3) studied in Figs. 1 and 3. In particular, Fig. 4(b) in
dicates that two intermediate-sized sheets may coalesce and 
heal into a single larger close-packed sheet. This healing in
dicates that particles can escape kinetic traps. In Sec. V we 
discuss this effect in the context of assembly “forgivingness,” 
the ability to recover an ordered product from a disordered 
intermediate state. 

IV. REVERSIBILITY OF BINDING 

A. Everything put together (well) falls apart 
(transiently): Statistics of bond-breaking and 
bond-making 

As we have discussed (see, e.g., Fig. 2), non-monotonic 
yields such as those shown in Fig. 1 occur because assem
bling particles must break bonds that are not compatible with 
the final ordered structure.13 In Fig. 5 we show the scaled en
ergy Ei ≡ Ei/εb of each of 5 randomly chosen chaperonin 
sheet-formers as a function of the time t, for two different 
bond strengths. We show similar data for the lattice gas sys
tem. It is clear that assembling particles bind and unbind, and 
unbind more readily at the weaker bond strength. However, 
despite the clear link between bond-breaking events and good 
assembly, we possess little understanding of how many bond
breakings are required in order to maintain effective assembly. 

To investigate this, we recorded for each particle the 
number of bound neighbours Nold it possessed before each ac
cepted MC move, and the number of bound neighbours Nnew 
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FIG. 5. (a and b) Scaled energy Ei for each of five randomly chosen sheet-
forming chaperonin particles as a function of time t, for two different bond 
strengths and σ = 0.3. (c and d) Similar data for lattice gas particles. Assem
bling particles bind and unbind, with unbinding being more frequent when 
bonds are weaker. The range of times shown is such that substantial assem
bly has occurred by the end of all trajectories. 

it possessed after each accepted MC move. If Nnew > Nold 

then we count a binding event for this particle; if Nnew < Nold 

then we count an unbinding event.32 If Nnew = Nold then we 
assume that nothing happened to this particle (it might have 
gained and lost neighbours in equal number, but this hap
pens so rarely in our simulations that we ignore it). We write 
K± to represent the total number of binding/unbinding events 
in a given time window of an assembly trajectory. We use 
these counts of binding and unbinding events to measure re
versibility by separating them into time-reversal symmetric 
and asymmetric measures. That is, averaging the numbers of 
events between times 0 and t, we define the traffic (or dynam
ical activity23, 24) as  

〈K+〉 + 〈K−〉 T (t) ≡ , (4)
N 

and the flux as 

〈K+〉 − 〈K−〉 F(t) ≡ . (5)
N 

Traffic measures the total number of events per particle; flux 
measures the excess of binding over unbinding events per par
ticle, and is a measure of the extent to which time-reversal 
symmetry is broken in the system. For an equilibrated sys
tem (which is time-reversal symmetric), we have F(t) = 0 
and T (t) ∝ t . For a system in which bonds never break, we 
have F(t) = T (t). 

We show typical results in Fig. 6. The maximal possible 
flux in a system is approximately Nmax: flux increases in time 
in a similar way to 〈nb(t)〉, because it quantifies the number 
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FIG. 6. (a and b) Flux and traffic measurements for the sheet-forming chap
eronin system (σ = 0.3). (c and d) Similar data for the lattice gas. At fixed 
time, flux is non-monotonic in εb/T (compare yield in Fig. 1); but traffic de
creases with increasing εb/T, due to the role of the bond strength as an acti
vation energy for bond-breaking. 

of bonds in the system. The flux therefore saturates at long 
times, while the traffic continues to increase (events continue 
to happen in the system even after it has equilibrated in the 
assembled state). 

B. Two steps forwards, one step back: 
Quantifying reversibility 

Close inspection of Fig. 6 reveals that under optimal 
assembly conditions in the sheet-forming system, particles 
eventually form on average about 5.5 bonds, but participate in 
about 4000 binding events (and so around 3994.5 unbinding 
events). Lattice gas particles typically participate in ∼2500 
binding and 2497 unbinding events in order to achieve a net 
gain of 3 bonds. In the filament-forming system, at the low
est temperature probed, particles participate in fewer than two 
events per bond formed. No reversibility is required in this 
case, because no misbinding can happen. 

To interpret these results, it is useful to return to the toy 
model defined in Sec. II D. We assume that reaching the “opti
mally bound” state results in two binding events, and reaching 
the “misbound” state results in one event (the idea is that op
timally bound particles typically have Nmax neighbours while 
misbound ones have fewer than Nmax; we take  Nmax = 2). 

Assuming that εb/T is large, it is useful to work at leading 
order in α ≡ e−εb/(2T ). The analysis is performed in Appendix 
A: here we summarise the main results. In the limit of small 
α (and assuming M > 0), the toy model approaches the as
sembled state as nopt ∼ 1 − e−t/τ with τ ≈ (M + 1)/α. There 
is a broad time window τ � t � α−2 in which F(t) ≈ 2 and 
T (t) ≈ 2(M + 1). Making a parametric plot of flux against 
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FIG. 7. Parametric plots of flux and traffic during assembly, showing the role 
of traffic as a system clock. (a) Schematic M-state model with M = 10 and c 
= 0.01. For large εb/T, assembly is complete after approximately 2(M + 1) 
= 22 events. (b) Sheet-forming chaperonin model (σ = 0.3) with isochrones 
at the indicated times. (c) Lattice gas model (isochrones are at 104, 105, and  
106 MC steps). 

traffic as in Fig. 7(a), one observes that for large εb, the traffic 
plays the role of a clock, with the system reaching the assem
bled state when T (t) ≈ 2(M + 1) (and T (t)/F(t) = M + 1). 
[If the limit of large εb has not yet been reached, the system 
reaches equilibrium at a value of T (t) larger than 2(M + 1).] 

We show parametric plots of flux and traffic for the sheet-
forming chaperonin model and the lattice gas in Figs. 7(b) and 
7(c). At a fixed value of traffic, flux is an increasing function 
of εb, reflecting the role of εb as a driving force towards the 
assembled state. But at fixed time, traffic is a decreasing func
tion of εb, reflecting the role of εb in the activation energy for 
escaping from misbound states. 

The parametric plots of Fig. 7 allow comparison of re
versibility of assembly between different systems. By com
parison with the schematic model, we use these data to quan
tify systems’ propensities for kinetic trapping, as follows. We 
calculate the ratio M̃(t) = T (t)/F(t): under optimal assem
bly conditions in the schematic model (large εb/T and long 
time t) then M̃(t) approaches M + 1, the ratio of the number 
of misbound and optimally bound states. Given simulations of 
fixed length t but varying εb/T, we define a parameter Meff(t) 
by evaluating M̃(t) in the system with optimal εb/T. In the  
schematic model, Meff(t) ≈ M + 1 as long as substantial as
sembly occurs before time t for at least one value of εb/T. 

For our computer models, we obtain order-of-magnitude 
estimates of Meff as follows. For the sheet-forming chaper
onins and times in the range 20–100t0, optimal assembly is in 
the range 7 < εb/T < 7.25. The flux is F ≈ 5 while the traf
fic is in the range 2000 < T < 7000. We infer that Meff lies 
in the range 400–1500. For the lattice gas model and times 
in the range 107–108 MC sweeps, optimal assembly is in the 
range 5 < εb/T < 5.7, the flux is F ≈ 3 and  the traffic in  
the range 500–5000; the range for Meff is 200–2000. Given 
the large overlap in estimates of Meff for lattice gas and chap
eronin systems, we conclude that the propensity for kinetic 
trapping in these two models are quite similar. For the sheet-
forming chaperonins with σ = 0.7 (see Fig. 4) and taking 
time 20–100t0 we obtain a range for Meff of 800–4000, sys
tematically larger than the value for the sheet-forming chap
eronins with σ = 0.3. It may be that the less specific interac
tion potential offers more possibilities for disordered states, 
so that the system requires more unbonding events in order to 
reach a final ordered structure. For filament-forming chaper
onins, optimal assembly occurs at very large εb/T, for  which  
T ≈ F and hence Meff = 1 (the analogous toy model has M 
= Meff − 1 = 0, as expected since there is no possibility for 
misbinding). 

We have emphasised the large uncertainties in the 
parameter Meff: the model of Sec. II D is a toy model of 
assembly, and one should not expect a direct mapping to 
more detailed computer models. For example, the values 
we obtain for Meff depend on the method used to identify 
neighbouring particles in the chaperonin model, and on the 
time at which flux and traffic are measured. Physically, the 
structures of the misbound states that cause kinetic trapping 
vary with time as assembly takes place, so describing these 
states with a single number Meff is simplistic. Nevertheless, 
we argue that the parameter Meff which we extract provides 
a useful estimate of the importance of kinetic trapping 
in these assembling systems. Comparison of the values 
of Meff emphasises the difference between sheet-forming 
and filament-forming chaperonins. On the other hand, the 
difference between the sheet-forming chaperonins and the 
assembling lattice gas model is very small, especially given 
the inherent uncertainties in estimating Meff. 

In terms of effectiveness of assembly, we draw two main 
conclusions from the toy model. First, the time taken to equi
librate depends strongly on the activation barrier for escape 
from misbound states, and is τ ∼ (M + 1)e−εb/2T . Thus, as
sembly is most rapid if the system possesses relatively weak 
bonds. Second, the number of unbinding events required to 
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arrive at the assembled product depends on the number of 
misbound states: this number reflects a system’s propensity 
for trapping, and minimising M provides a method for increas
ing assembly quality. Practical design rules for minimisation 
of M remain an outstanding problem, but tuning the speci
ficity of inter-particle attractions17 might provide a route to 
minimising this parameter. 

V. OUTLOOK 

Based on the analysis of this article, we draw two main 
conclusions. In Sec. III we showed that the assembly mech
anism assumed by classical nucleation theory (CNT), con
sisting of the growth of an isolated, compact cluster, typi
cally operates when bonds are relatively weak. As bonds get 
stronger this simple picture no longer holds: multiple clusters 
grow,17, 19 and for very strong bonds cluster structures become 
ramified. We find that the competition between quality and 
quantity of assembly18 results in optimal assembly happening 
away from the “CNT regime.” The extent to which this hap
pens depends on the design of inter-component interactions 
(compare the sheet-forming systems with angular specificity 
σ = 0.7 (Fig. 4) with the data for σ = 0.3 shown in the other 
figures). 

In Sec. IV we demonstrated the importance to self-
assembly of the reversibility of binding. In models in which 
kinetic trapping is important, particles bind and unbind hun
dreds or thousands of times before finally adopting their final 
positions in the assembled superstructure. We associate the 
ratio of traffic and flux under conditions of optimal assem
bly with a parameter Meff that counts degeneracy of misbound 
states. Large values of Meff indicate that a system is prone to 
kinetic trapping; a system’s bonds must be relatively weak in 
order to avoid such trapping. 

These conclusions reinforce the importance of annealing 
if kinetic trapping is to be avoided. If departures from CNT 
at optimal assembly are large, then the system is effective 
in annealing disordered clusters into well-formed products. 
Similarly, if Meff is small, the system requires relatively few 
unbinding events in order to arrive at an assembled product. 
Both these measurements reflect the “forgivingness” of as
sembly, by which we mean the ability of particles to escape 
from kinetic traps and form an assembled product. We believe 
that guidelines for improving forgivingness are potentially 
useful in the design of self-assembly in general. For the chap
eronin sheet-formers that we considered, we found that the 
version with reduced angular specificity seems to be the more 
forgiving of the two. Similarly, crystallisation tends to be most 
forgiving when interactions are relatively long-ranged; short-
ranged interactions more frequently lead to gelation or other 
forms of kinetic trapping.33 Further simulation studies are 
needed in order to clarify the importance of microscopic pa
rameters to the “forgivingness” of self-assembly, and to assess 
how typical numbers for “flux” and “traffic” compare to those 
seen in the model systems studied here. Ultimately, however, 
application of the ideas developed here requires the develop
ment of experimental systems in which the microscopic re
versibility of self-assembling components can be quantified. 
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APPENDIX A: MINIMAL MODEL OF 
KINETIC TRAPPING 

In this appendix, we analyse the toy model introduced in 
Sec. II D. The master equation (2) can be solved exactly by 
matrix diagonalization: we write W = SDS−1 where D is a 
diagonal matrix. The columns of S are the right eigenvectors 
of W. The solution is then P(t) = SeDtS−1 P(0). There is a 
zero eigenvalue of W that corresponds to the steady state: we 
denote the other two eigenvalues by −λ+ and −λ− which are 
ordered as 0 < λ− < λ+. 

1. Assembly yield 

The yield of assembly is nopt(t) ≡ P2(t). The right eigen
vector of W corresponding to the equilibrium state is s 
= (1/Z)(α2, cMα, c) where Z = c + cMα + α2 is the par
tition function. Thus the equilibrium (long-time) yield is neq 

= c/(c + cMα + α2) while for general t the solution is of the 
form 

nopt(t) = neq[1 − ae−λ+t − be−λ−t ], (A1) 

where a and b are (positive) constants that depend on α, c, and 
M, subject to a + b = 1. 

To gain physical intuition, it is convenient to assume 
that α is small. In this case, we have λ+ = c(M + 1) 
+ O(α) while λ− = α/(M + 1) + O(α2). Physically, the sys
tem forms bonds quickly (with rate λ+), arriving in a state in 
which P2 ≈ 1/(M + 1) and P1 ≈ M/(M + 1). There is then 
a slow relaxation (with rate λ− � 1) in which P2 increases to 
the value neq ≈ 1. [Here and in the following, we use approx
imate equalities to indicate that there are corrections at O(α).] 
The slow relaxation to equilibrium involves particles escaping 
from the misbound energy level, and therefore has an acti
vated rate λ− ∼ e−εb /2T . This gives rise to the non-monotonic 
yield plot shown in Fig. 2(b). 

When there is no possibility of misbinding (i.e., when M 
= 0), the previous analysis holds but b = 0 in Eq.  (A1); the  
slow stage of relaxation is irrelevant for the yield. In this case, 
yield curves are monotonic with εb/T; see Fig. 2(c). 

2. Flux and traffic 

To obtain time-averaged flux and traffic in this model, 
we notice that the average number of transitions from state 
1 to state 0 between times 0 and t is K10 = α 

∫ 
0 
tdt ′ P1(t ′), 

with similar results for transitions between other states. For 
a full analysis of the statistics of the number of transitions 
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between states in Markov processes, see Ref. 34. If we as
sume that transitions between states 0 and 1 involve the mak
ing (or breaking) of one bond while transitions between states 
0 and 2 involve making or breaking of two bonds, we arrive 
at expressions for the traffic and flux: 

t 

T (t) = dt ′ [c(M + 2)P0(t ′) + αP1(t ′) + 2α2P2(t ′)], 
0 

t 

F(t) = dt ′ [c(M + 2)P0(t ′) − αP1(t ′) − 2α2P2(t ′)]. 
0 

(A2) 

For the initial conditions used here, it may be readily shown 
from Eq. (2) that F(t) = P1(t) + 2P2(t), as required. 

Using the solution P(t) given above and performing the 
time integral, one arrives at 

T (t) = (k+ + k−)T S−1Dint(t)S P(0), 

where k− = (0, α,  2α2), k+ = (c(M + 2), 0, 0), and Dint(t) 
is a diagonal matrix with elements (t, (1 − e−λ−t )/λ−, 

(1 − eλ+t )/λ+). 
We again analyse the limit of small α. For large times 

(λ−t � 1) the flux saturates at 2 + O(α) while the traffic is 

T (t) ≈ 2(M + 1) + 2(M + 2)α2t. (A3) 

For large enough times, the second term dominates and the 
traffic increases linearly with time, but if α−1 � t � α−2 

then traffic saturates at 2(M + 1). This is the limit in which 
the number of unbinding events from the misbound state is 
large, but unbinding events from the optimally bound state 
are rare enough that they may be neglected. The existence of 
such a limit is the basis for the extraction of the parameter 
Meff discussed in Sec. IV. 

APPENDIX B: INTER-CHAPERONIN POTENTIAL 

Model chaperonins are hard spheres of diameter 2a, 
equipped with an attractive pairwise interaction that operates 
only when the centres of two chaperonins lie within a dis
tance 2a and 2a + a/4. Consider two chaperonins i and j that 
lie within this interaction range. Let ni and nj be unit vectors 
pointing from the centre of each chaperonin to its north pole, 
and let r ij be the unit vector pointing from the centre of i to 
the centre of j. Let  φij be the angle between the orientation 
vectors ni and nj , and let θ i be the angle between ni and r ij 

(and let θ j be the angle between nj and −r ij ). Our “sticky 
equator” systems have orientational interaction, 

εeq = −εbĈ1(φij ; σalign)C0(θi ; σeq)C0(θj ; σeq), (B1) 

where Cα(ψ ; σ ) ≡ e −(cos ψ−α)2/σ 2 
rewards the alignment of 

angles ψ and cos −1α. The parameter σ determines the 
angular tolerance of this interaction. Ĉα(ψ ; σ ) ≡ Cα(ψ ; σ ) 
+ C−α(ψ ; σ ) is this function’s symmetrized counterpart. In 
Eq. (B1) the factors C0 encourage orientation vectors to point 
perpendicular to the inter-chaperonin vector. The factor Ĉ1 

encourages orientation vectors to point parallel or antiparal
lel. For the sheet-forming system described in the main text 
we set σ align = σ eq = 0.3. For the sheet-forming system de
scribed in Appendix B we set σ align = σ eq = 0.7. 
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FIG. 8. System-wide fluctuations associated with nucleation can be con
trolled by using bond number (system energy) as a measure of assembly 
progress. (Top) We show yield nopt against time t for three independent dy
namical simulations of the sheet-forming model considered in the main text, 
for εb/T = 6.6. Here assembly proceeds via nucleation and growth of a single 
sheet, and the characteristic time for appearance of the sheet is broadly dis
tributed. (Bottom) However, when bond number nb is used as a measure of 
reaction progress, the data collapse. This collapse reveals that the assembly 
mechanism in all three trajectories is the same, and motivates the parametric 
plot of Fig. 3. 

For the “sticky pole” system we choose the angular inter
action 

εpol = −εbĈ1(φij ; σalign)Ĉ1(θi ; σpol)Ĉ1(θj ; σpol), (B2) 

whose three functions encourage alignment vectors to point 
parallel or antiparallel (function 1), and alignment vectors to 
point parallel or antiparallel to the inter-chaperonin vector 
(functions 2 and 3). We set σ align = 0.3 and σ pol = 0.12. 

APPENDIX C: TRAJECTORY-TO-TRAJECTORY 
FLUCTUATIONS 

The self-assembly of sheets and lattice gas clusters re
flects an underlying first-order phase transition, and can hap
pen, roughly speaking, in one of two ways. Either a single 
critical nucleus appears in the system and grows by acquiring 
monomers, or many clusters of the new phase grow simulta
neously and coalesce. Which of these mechanisms operates 
depends on the thermodynamic state and the system size (the 
latter is fixed in our simulations). The nucleation regime is 
characterised by large fluctuations: the randomly distributed 
time at which the first critical nucleus appears strongly af
fects the behaviour of the whole system. In simulation stud
ies, fluctuations associated with rare nucleation events lead 
to substantial differences in values of observables such as as
sembly yield nopt(t) from run-to-run; the time-averaged yield 
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〈nopt(t)〉 is usually not representative of the behaviour of any 
single trajectory. In order to deduce the assembly mechanism, 
it is therefore useful to use the number of bonds in the sys
tem, rather than time, as a reaction coordinate. Figure 8 shows 
that data from different trajectories collapse in this represen
tation: although the time to assembly varies significantly be
tween trajectories, the assembly mechanism does not. 

1G. Whitesides and B. Grzybowski, Science 295, 2418 (2002).

2S. C. Glotzer and M. J. Solomon, Nature Matter. 6, 557 (2007).

3M. F. Hagan and D. Chandler, Biophys. J. 91, 42 (2006).

4P. Rothemund, Nature 440, 297 (2006).

5Y. Yang, R. Meyer, and M. F. Hagan, Phys. Rev. Lett. 104, 258102 (2010).

6C. Paavola, S. Chan, Y. Li, K. Mazzarella, R. McMillan, and J. Trent, Nan

otechnology 17, 1171 (2006). 

7Y.  Li, C. D. Paavola,  H.  Kagawa, S. L. Chan,  and J. D. Trent,  Nanotechnol
ogy 18, 455101 (2007). 

8M. Leunissen, C. Christova, A. Hynninen, C. Royall, A. Campbell, 
A. Imhof, M. Dijkstra, R. van Roij, and A. van Blaaderen, Nature 437, 
235 (2005). 

9C. R. Iacovella and S. C. Glotzer, Nano Lett. 9, 1206 (2009). 
10S. Chung, S. Shin, C. Bertozzi, and J. De Yoreo, Proc. Natl. Acad. Sci. 

U.S.A. 107, 16536 (2010). 
11F. Romano, E. Sanz, and F. Sciortino, J. Chem. Phys. 132, 184501 (2010). 
12W. L. Miller and A. Cacciuto, J. Chem. Phys. 133, 234108 (2010). 
13G. M. Whitesides and M. Boncheva, Proc. Natl. Acad. Sci. U.S.A. 99, 4769 

(2002). 
14R. L. Jack, M. F. Hagan, and D. Chandler, Phys. Rev. E 76, 021119 (2007). 
15A. W. Wilber, J. P.K. Doye, A. A. Louis, E. G. Noya, M. A. Miller, and 

P. Wong, J. Chem. Phys. 127 (2007). 
16D. C. Rapaport, Phys. Rev. Lett. 101, 186101 (2008). 

17S. Whitelam, E. H. Feng, M. F. Hagan, and P. L. Geissler, Soft Matter 5, 
1251 (2009). 

18M. F. Hagan, O. M. Elrad, and R. L. Jack, J. Chem. Phys. 135, 104115 
(2011). 

19D. Klotsa and R. L. Jack, Soft Matter 6, 6294 (2011). 
20C. L. Klix, C. P. Royall, and H. Tanaka, Phys. Rev. Lett. 104, 165702 

(2010). 
21S. Whitelam, Phys. Rev. Lett. 105, 088102 (2010). 
22S. Whitelam and P. L. Geissler, J. Chem. Phys. 127, 154101 (2007). 
23M. Baiesi, C. Maes, and B. Wynants, Phys. Rev. Lett. 103 (2009). 
24J. P. Garrahan, R. L. Jack, V. Lecomte, E. Pitard, K. van Duijvendijk, and 

F. van Wijland, Phys. Rev. Lett. 98, 195702 (2007). 
25S. Whitelam, C. Rogers, A. Pasqua, C. Paavola, J. Trent, and P. L. Geissler, 

Nano Lett. 9, 292 (2009). 
26S. Whitelam, Mol. Simul. 37, 606 (2011). 
27We note also that dynamical trajectories of the chaperonin model equili

brate only within a narrow range of bond strengths. At small bond strengths, 
free energy barriers to sheet nucleation are large enough that they are not 
surmounted in direct simulations; at large bond strengths, disordered ag
gregates form and do not relax on timescales simulated. 

28M. Fandrich, J. Meinhardt, and N. Grigorieff, Prion 3, 89 (2009). 
29R. J. Baxter, Exactly Solved Models in Statistical Mechanics (Academic, 

New York, 2002). 
30P. Meakin, Phys. Rev. Lett. 51, 1119 (1983). 
31J. Grant and R. L. Jack, preprint arXiv:1110.6068. 
32We also tested a modified scheme in which particles making multiple bonds 

in one move contribute Nnew − Nold to K+, etc. The results from this 
scheme and the one used in the main text are essentially indistinguishable. 

33E. Sanz, C. Valeriani, T. Vissers, A. Fortini, M. E. Leunissen, A. van 
Blaaderen, D. Frenkel, and M. Dijkstra, J. Phys.: Condens. Matter 20, 
494247 (2008). 

34J. P. Garrahan, R. L. Jack, V. Lecomte, E. Pitard, K. van Duijvendijk, and 
F. van Wijland, J. Phys. A 42, 075007 (2009). 

Downloaded 11 Jan 2012 to 138.38.54.38. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions 

http://dx.doi.org/10.1126/science.1070821
http://dx.doi.org/10.1038/nmat1949
http://dx.doi.org/10.1529/biophysj.105.076851
http://dx.doi.org/10.1038/nature04586
http://dx.doi.org/10.1103/PhysRevLett.104.258102
http://dx.doi.org/10.1088/0957-4484/17/5/001
http://dx.doi.org/10.1088/0957-4484/17/5/001
http://dx.doi.org/10.1088/0957-4484/18/45/455101
http://dx.doi.org/10.1088/0957-4484/18/45/455101
http://dx.doi.org/10.1038/nature03946
http://dx.doi.org/10.1021/nl900051u
http://dx.doi.org/10.1073/pnas.1008280107
http://dx.doi.org/10.1073/pnas.1008280107
http://dx.doi.org/10.1063/1.3393777
http://dx.doi.org/10.1063/1.3524307
http://dx.doi.org/10.1073/pnas.082065899
http://dx.doi.org/10.1103/PhysRevE.76.021119
http://dx.doi.org/10.1063/1.2759922
http://dx.doi.org/10.1103/PhysRevLett.101.186101
http://dx.doi.org/10.1039/b810031d
http://dx.doi.org/10.1063/1.3635775
http://dx.doi.org/10.1039/c1sm05456b
http://dx.doi.org/10.1103/PhysRevLett.104.165702
http://dx.doi.org/10.1103/PhysRevLett.105.088102
http://dx.doi.org/10.1063/1.2790421
http://dx.doi.org/10.1103/PhysRevLett.103.010602
http://dx.doi.org/10.1103/PhysRevLett.98.195702
http://dx.doi.org/10.1021/nl8029306
http://dx.doi.org/10.1080/08927022.2011.565758
http://dx.doi.org/10.4161/pri.3.2.8859
http://dx.doi.org/10.1103/PhysRevLett.51.1119
http://dx.doi.org/10.1088/0953-8984/20/49/494247
http://dx.doi.org/10.1088/1751-8113/42/7/075007
http://jcp.aip.org/about/rights_and_permissions



