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Abstract 

Isotopic partition-function ratios and kinetic isotope effects for reaction of S-adenosylmethionine 

with catecholate in water are evaluated using a subset of 324 atoms within its surrounding 

aqueous environment at the AM1/TIP3P level. Two alternative methods for treating motion in the 

six librational degrees of freedom of the subset atoms relative to their environment are compared. 

A series of successively smaller subset hessians are generated by cumulative deletion of rows and 

columns from the initial 972  972 hessian. We find that it is better to treat these librations as 

vibrations than as translations and rotations, and that there is no need to invoke the Teller-Redlich 

product rule. The validity of “cut-off” procedures for computation of isotope effects with 

truncated atomic subsets is assessed: to ensure errors in ln(KIE) < 1% (or 2% for the quantum-

corrected KIE) for all isotopic substitutions considered, it is necessary to use a less-restrictive 

procedure than is suggested by the familiar 2-bond cut-off rule. 

 

Introduction 

One of the most powerful experimental techniques for probing the nature of chemical reaction 

mechanism is the measurement of a kinetic isotope effect (KIE), a rate constant ratio that arises 

from isotopic substitution at a particular position in a molecule.  The magnitude and direction of 

a KIE contains information about the mechanistic events in a chemical reaction, reflecting 

differences in bonding between the reactants and the transition state.
1
 Hybrid quantum-

mechanical/molecular-mechanical (QM/MM) methods are now commonly used for calculations 

of KIEs for reactions occurring in solution
2,3

 or within enzyme active sites.
4,5

 Systems as large as 

many thousands of atoms are nowadays treated in geometry optimizations and molecular 

dynamics simulations, but usually only a subset of atoms is considered in KIE calculations,
3,5

 for 

which vibrational frequencies are computed by means of a subset Hessian. The purpose of this 

paper is to perform a critical analysis of the methods used to obtain KIEs from subset Hessians.  
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In the early days of KIE calculations, a standard procedure to simplify the computations was 

to employ the cut-off rule first introduced by Stern and Wolfsberg.
6
 They had noted that it was 

possible to leave out parts of a “large” molecule without significantly affecting the value of a 

calculated KIE, provided that (a) it was around room temperature, (b) the omitted atoms were 

more than two bonds distant from the position of isotopic substitution where force constants 

changed on going from the reactant structure to the transition structure and (c) the force constants 

for that portion of the molecule retained were correct (i.e. the same as they would be in the whole 

molecule without the cut-off).
7
 Melander and Saunders discussed the practical usefulness of this 

simplification, as a means by which to reduce the cost of KIE calculations, but added a wise 

precautionary note that the cut-off procedure would be valid only if it were justifiable to ignore 

the influence of medium effects on the isotope effect.
8
 Procedures

9
 employing the cut-off rule 

have been used extensively in enzymology, where KIE calculations involving whole enzyme-

substrate complexes are not tractable.  

A cut-off procedure is invoked implicitly whenever a subset hessian is used, and it is timely 

now to enquire about the validity of this approach. Whereas the original cut-off rule was 

formulated for molecules in which the omitted atoms were covalently linked to the retained 

atoms, the systems now typically studied by QM/MM methods involve non-covalent solvent-

solute or enzyme-substrate interactions: what form of cut-off rule is appropriate for such 

systems? We considered this question a few years ago in the context of a study of the chorismate-

prephenate rearrangement in water and in the active site of chorismate mutase,
10

 but now we 

present the results of a more comprehensive analysis for SN2 methyl transfer (1) from S-

adenosylmethionine (AdoMet) to catecholate in aqueous solution. In addition to the question of 

how many atoms should be included in the subset hessian, we also assess two different 

procedures for evaluating the KIE in terms of 

isotopic partition-function ratios (IPFRs) 

determined for reactant-state (RS) and 

transition-state (TS) structures of subsets. 

Although subset (or partial) hessians have 

been discussed by others (see below), a 

thorough and critical analysis in their use in 

isotope effect has previously been lacking. 
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Theory 

KIEs and IPFRs for whole molecules with separable translations and rotations 

The conventional transition-state theory treatment of KIEs with the Born-Oppenheimer, rigid-

rotor and harmonic oscillator approximations (and neglecting tunnelling and transmission-factor 

contributions) considers the rate-constant ratio k/k' (where the prime denotes the rate constant for 

the heavier isotopologue) as the product of three factors (eq. 2) involving translational, rotational 

and vibrational partition functions for the isotopologous RS and TS species.
7,8

 The first is the 

mass and moments-of-inertia factor (MMI), where | I | is the determinant of the moment-of-

inertia tensor (i.e. the product of the three principal moments of inertia) of a non-linear N-atomic 

molecule of molecular mass M; rotational symmetry factors are omitted here since they are all 

equal to unity for the applications to be presented below. The second is the Boltzmann 

excitational (EXC) factor corresponding to the relative populations of the higher vibrational 

quantum states, and the third is the zero-point energy (ZPE). EXC involves a product, and ZPE a 

summation, over 3N – 6 and 3N – 7 real vibrational frequencies of RS and TS, respectively, 

where u = hc/kBT with frequency (s
-1

) replaced by wavenumber  (cm
-1

) and h, kB, c and T are 

the Planck and Boltzmann constants, the velocity of light and the absolute temperature. 

Inspection of the forms of the MMI, EXC and ZPE factors shows that the KIE may be rewritten 

simply as a quotient of IPFRs for RS and TS (eq. 3). 

 

 

(2) 

 

 

 

(3) 

 

It is common to replace MMI in eq. 2 by an equivalent factor containing only vibrational 

frequencies. According to the Teller-Redlich product rule,
11

 the masses and moments of inertia 

for a pair of isotopologues are related to the vibrational frequencies: the equality expressed by eq. 

4 assumes separability of translational and rotational motions from vibrational motions within the 

harmonic approximation. Substituting the vibrational product VP for each of RS and for TS in eq. 

k/k'         =     fRS / fTS     

k/k'    =

KIE    =             MMI                           EXC          ZPE

| I '|

| I  |

½

RS

M '

M RS

3
2

| I '|

| I  |

½

TS

M '

M TS

3
2

RS

[1  exp(ui )]  exp(ui /2)

[1  exp(ui')]  exp(ui'/2)
3N  6

i


3N  7

i TS

[1  exp(ui )]  exp(ui /2)

[1  exp(ui')]  exp(ui'/2)
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3, the KIE may be written as eq. 5, the Bigeleisen equation, where VPR is the vibrational product 

ratio.
6,12

 Two points should be noted: (i) the product of ratios of atomic masses m that appears eq. 

4 vanishes from the KIE because it is identical for both RS and TS; (ii) it is conventional to 

consider the ratio of imaginary transition frequencies for the TS as a separate factor, so that (in 

eq. 6) the VPR and EXC products and the ZPE summation are all taken over 3N – 7 real TS 

frequencies. 

 

(4) 

 

(5) 

 

(6) 

 

Use of the Bigeleisen equation enables the determination of KIEs from normal-mode 

frequencies without the need to consider the MMI factor explicitly.
13

 However, some time ago I 

pointed out
14

 that there was some practical merit in separately determining the vibrational product 

and mass-moment-of-inertia terms for a pair of isotopologues, rather than relying upon their 

equality, particularly when the vibrational frequencies had been obtained using hessians in 

cartesian coordinates from standard packages for ab initio or semiempirical molecular orbital 

calculations. Older implementations involving numerical second derivatives tended to produce 

hessians which, upon mass-weighting and diagonalisation,
15

 yielded eigenvectors corresponding 

to translation and rotation of the whole molecule which did not have zero eigenvalues: this meant 

that the Teller-Redlich product rule was not exactly satisfied, and consequently that application 

of the Bigeleisen equation incurred some error.  

 

KIEs and IPFRs for subsets 

The relationships outlined above assume that each molecular system, either RS or TS, 

corresponds to a zero-gradient stationary point on a potential energy surface. Reliable optimized 

geometries and hessians are readily available from modern quantum-chemical packages 

employing second-derivative methods, provided that convergence thresholds are set suitably 

tightly. However, during the past 15 years it has become common to perform simulations for very 

k/k'    =     (‡ / ‡')      VPR      EXC     ZPE

VPR   = /
i'
i

RS

3N  6

i

i'
i

TS

3N  7

i

| I '|

| I  |

½ M '

M

3
2i'

i
=   VP   =   MI    =

3N  6

i


N

j

mj

mj'
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large molecular systems (e.g. molecules in solution or within enzyme active sites) but to compute 

explicit hessians for only a subset of the total number of atoms in the system. For example, 

relaxation of a specified subset of atoms to a local minimum (or saddle point) may be performed 

within a frozen environment of the remaining atoms. In the context of QM/MM methods, the 

mobile subset and the frozen environment may be the same as the QM and MM regions, although 

different selections may also be made. In these circumstances the Ns subset atoms do not in 

themselves constitute a stationary structure in which vibrational degrees of freedom are separable 

from translations and rotation. The constraining influence of the environment means that 

diagonalization of the mass-weighted 3Ns  3Ns hessian in cartesian coordinates generally yields 

3Ns non-zero eigenvalues which include six corresponding to libration of the whole subset with 

respect to its environment: “translation” and “rotation” of the subset as a whole are not free or 

separable motions but are coupled with the internal vibrational degrees of freedom. 

An approximate way to calculate KIEs and IPFRs for a subset of Ns atoms (within a larger 

environment of N – Ns atoms) is project out the six librational degrees of freedom and to treat 

them instead as translations and rotations, as we have previously described.
10,14

 In practice, the 

3Ns  3Ns hessian in cartesian coordinates is first transformed into a (3Ns – 6)  (3Ns – 6) hessian 

in a set of internal coordinates, and then back-transformed, whereupon 3Ns – 6 pure vibrational 

eigenvalues and 6 zero eigenvalues for translational and rotational motion are obtained. This 

procedure is equivalent to treating the subset as if it were a freely translating and freely rotating 

cluster isolated from its environment but whose internal vibrations are governed by force 

constants whose values are determined by the influence of the environment. The subset KIEs and 

IPFRs may then be determined by replacing N by Ns in eq. 2, and by using the equality in eq. 4, 

leading to eqs. 7 and 8 with pure vibrational frequencies; we call this the “translation/rotation” 

method. The MI, EX and ZP factors are labelled to assist interpretation of Tables 1 and 4. 

 

 

(7) 

 

 

(8) 
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Is there a form, analogous to the Bigeleisen equation, that expresses the KIE and IPFRs in 

terms only of vibrational frequencies for a subset? The product of the 3N eigenvalues of the 

vibrational secular matrix is equal (eq. 9) to the product of determinants of the Wilson F and G 

matrices for potential energy and kinetic energy,
16

 respectively, which in turn is equal to the 

product of determinants of the potential energy matrix V and kinetic energy matrix T in mass-

weighted cartesian coordinates.
15

 There is a problem when there are zero eigenvalues, as for 

translation and rotation, since then eq. 9 is not valid; the solution is the Teller-Redlich product 

rule for molecules whose 3N degrees of freedom are separable into 3 translations, 3 rotations and 

3N – 6 vibrations. 

 

(9) 

 

However, using the cartesian formulation of the vibrational problem, it is easy to note that 

since the frequencies are proportional to the square roots of the vibrational eigenvalues, and T is 

the unit matrix, the product of the ratios of frequencies for isotopologues with the same hessian 

(within the Born-Oppenheimer approximation) reduces simply (eq. 10) to the ratio of products of 

atomic masses used to mass-weight the hessian prior to diagonalization. Furthermore, the atomic 

masses are the same for both isotopologues, except for the isotopically substituted atom(s) alone. 

 

 

(10) 

 

With a subset hessian there are, in general, 3Ns non-zero vibrational frequencies and so there is 

no difficulty in evaluating the product on the left-hand side of eq. 10 over 3Ns ratios i '/i for an 

isotopologous pair. Thus there is no need to invoke the Teller-Redlich product rule when a subset 

hessian is used. The product of the isotopic ratios for all 3Ns frequencies is equal to the three-

halves power of the product of the ratios of atomic masses for the specific isotopic substitution. 

In the context of a typical calculation, satisfaction of this rule requires nothing more than that the 

matrix diagonalization is performed correctly. Nonetheless, the extent to which it is indeed borne 

out in practice is demonstrated by the results presented below.  

i    =    | F | | G |    =    | V | | T |
3N

i

| V'|

| V |

½i'
i

= =

3
2


N

j

mj

mj'


3N
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In the light of the above, an alternative way to calculate KIEs and IPFRs for subsets of atoms 

is simply to replace the MMI factor in eq. 2 by extending the products for EXC and the 

summations for ZPE over 3Ns (for RS) or 3Ns  1 (for TS) vibrations and librations, as in eqs. 11 

- 13, in which the contributing factors VP, EX and ZP (cf. Tables 1 and 3) are identified for 

clarity. Note that VP may be replaced by the MI factor, which differs from unity only for 

isotopically substituted atoms within the subset Ns; however, these factors cancel from the KIE 

since the same isotopic substitution applies to both RS and TS.  

(11) 

 

(12) 

 

 

 

 

 

(13) 

 

 

 

 

 

The high-temperature limit of a subset KIE evaluated as either (fRS)tr/(fTS)tr or (fRS)af/(fTS)af is 

the ratio of transition frequencies, ‡/‡', since motion along the transition vector is considered to 

be classical in transition-state theory. Within the inherent assumption of separability in this 

treatment of KIEs from subset hessians, the quantum correction ‡/‡' for motion along the 

transition vector may be approximated by Bell’s expression
17

 for an inverted parabola, eq. 14. 

 

(14) 
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Computational methods 

QM/MM calculations were performed for a complex of cationic AdoMet and anionic catecholate 

(described byAM1
18

) within a sphere containing about 500 water molecules described by the 

flexible TIP3P MM potential
19

 within CHARMM.
20

 Geometry optimisations were carried out for a 

minimum energy structure RS and for a first-order saddle point TS for eq. 1 using the GRACE
21

 

suite of utilities as previously reported
22

 for this reaction both in water and in an enzyme active 

site. Numerical differentiation of analytical gradients of the QM/MM potentials yielded large 

hessians of dimension 972  972 for subsets of both RS (Fig. 1) and TS involving the 63 QM 

atoms together with 87 MM water molecules whose oxygen is within 14 Å of the transferring 

methyl carbon atom. Isotopic partition-function ratios and KIEs (k-H3/k-D3, k-12C/k-13C, 

k32Slg/k34Slg, k16Onu/k18Onu) were computed by means of the equations above in which the six 

external degrees of freedom of the 324-atom subset were treated either as vibrations only (eqs. 12 

and 13) or as translations and rotations (eqs. 7 and 8).  

A series of calculations was then carried out 

in which firstly water molecules and 

subsequently atoms of AdoMet and catecholate 

furthest from the positions of isotopic 

substitution were removed from the kinetic 

energy term for the normal modes of vibration: 

this was performed by deletion of the 

corresponding rows and columns of the large 

hessians. This process was continued until only 

the six atoms subject to isotopic substitution 

were included in “cut-off” hessians of 

dimension 18  18. It is important to 

understand that the retained elements of each 

hessian were unchanged from their values in 

the large hessian. Although the calculations were actually carried out in mass-weighted cartesian 

coordinates (for which the kinetic energy is represented simply by the unit matrix), this procedure 

is equivalent to keeping the potential energy matrix F unchanged while eliminating atoms from 

the kinetic energy matrix G (cf. eq. 9).  

 

Figure 1. 324-atom “large” subset (cut-off model 1 

with 87 waters) for RS selected from AdoMet, 

catecholate and ~500 waters. 
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Note that the large subset hessians are themselves determined by means of QM/MM 

calculations in which the subset atoms experience the influence of the environment of the 

surrounding atoms of the full system. Even at the final stage of the cut-off procedure followed 

here, the six remaining atoms feel this influence through the values of the hessian elements which 

are quite different from those that would be obtained by calculating a hessian for only six atoms. 

 

Results and Discussion 

Large subset hessians 

Table 1 contains values of (fRS)af, (fTS)af, (fRS)tr and (fTS)tr evaluated at 298.15 K using the full 972 

 972 subset hessians determined with the AM1/TIP3P method, along with the various factors 

contributing to each IPFR and also their ratios contributing to the KIEs. Note that it is not the 

purpose of this paper to present quantitatively accurate results for either the IPFRs or the KIEs; 

thus it is irrelevant that a different choice of method to describe either the QM or the MM regions 

would possibly give more reliable numerical values. Furthermore, the optimized structures for RS 

and TS are neither unique nor necessarily the most representative (cf. comments made 

previously
22

 concerning the need to take averages over many configurations in order to obtain 

KIEs that may be meaningfully compared with experiment, regardless of the choice of QM/MM 

method). The point of this study is to examine how the values of the IPFRs and KIEs depend 

upon (a) whether they are evaluated by treating the six external degrees of freedom of the subset 

atoms (with respect to their environment within the larger solvated system) as vibrational 

frequencies or as translational and rotational motions, and (b) the extent of the “cut-off” achieved 

by progressively omitting more and more atoms from the subset hessians. In order to discuss the 

magnitude of errors in these successive approximations, it is necessary first to establish a 

reference point: it seems reasonable to choose the largest possible system, in which the cut-off is 

most distant from the positions of isotopic substitution. 

IPFRs defined as “heavy/light” always have values > 1, becoming larger at lower temperatures 

but tending towards unity as the temperature increases. The value of fRS for -D3/-H3 is about 

1676, reflecting the much larger number of effectively accessible microstates for the heavier 

isotopologue. The product VP of the frequency ratios is less than 1 because the heavier 

isotopologue has lower frequencies, but the ratio of zero-point energies ZP is much greater than 1 
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because the frequencies for the heavier isotopologue enter the bottom of the ratio in eqs. 7, 8, 12 

and 13 and the “light/heavy” ratio is accentuated by the exponential.  

The VP term evaluated over 3Ns  6 = 966 internal vibrational frequencies is exactly equal to 

the MI term. The quotient TR = VP/MI = 1 (to 5 parts in 10
8
) shows that the Teller-Redlich 

product rule is satisfied perfectly for practical purposes. The exceedingly small remaining 

discrepancy arises from the fact that the projected hessian was transferred from the program that 

performed the projection to the one that determined the IPFRs and associated quantities by means 

of a formatted file that retained only 8 decimal places for the cartesian force constants, and in 

consequence the vibrational frequencies contained very small errors as evidenced by frequencies 

for the six translational and rotational modes having non-zero values || < 0.2 cm
1

. 

The six lowest frequencies from the “all frequencies” method have values < 50 cm
1

 but it is 

not possible to associate these with the six librations without inspection of the corresponding 

normal modes, since there is coupling between the internal and external degrees of freedom. Note 

also that the frequencies the entering the EXC and ZPE factors in eqs. 12 and 13 are not the same 

as, nor can they be associated simply with, the 3Ns – 6 pure internal vibrational frequencies 

involved in eqs. 7 and 8. It is illuminating to observe that the vibrational products VP taken over 

all 3Ns = 972 vibrational frequencies of the -D3/-H3 isotopologues of both RS and TS are 

virtually identical, and each agree with the square root of the product of ratios of isotopic masses 

[(1.007825/2.014102)
3
]

3/2
 to about 1 part in 10

9
, which is obviously greater than the number of 

significant figures in the masses themselves. This provides a convincing test of eq. 10 and 

suggests that there is negligible error involved in evaluating IPFRs and KIE directly by the “all 

frequencies” method with subset hessians. The Teller-Redlich product rule is therefore 

unnecessary and superfluous when working with subset hessians. 

The factors contributing to the IPFR for the -D3/-H3 isotopologues of the TS behave in a 

similar manner but give fTS  2003. Relatively more microstates are effectively accessible to the 

heavier isotopologue in the TS than in the RS, leading to an inverse KIE = fRS/fTS  0.836. This 

result is, of course, in accord with the well-known mnemonic that ‘the lighter isotope prefers the 

situation with looser bonding’ which, in the case, is RS. The VP evaluated for the 3Ns  6 internal 

vibrational frequencies of the TS (including ‡) leads to the quotient TR = VP/MI deviating from 

unity by 6 parts in 10
5
, showing that the Teller-Redlich product rule is satisfied quite well. The 

larger discrepancy for TS than for RS is probably due to inaccuracies in the construction of the B 
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matrix that transforms from cartesians into internal valence coordinates. GRACE contains a utility 

to generate a set of valence coordinates automatically, which is very useful for very large systems 

(such as this with 966 valence coordinates) but the resulting set is neither unique nor always best 

suited for the required purpose when, for example, three atoms approach collinearity. 

The differences in fRS and fTS as between the two methods for treating the external modes may 

be expressed as percentage errors with respect to the values for the “all frequencies” method: 

errors < 0.1% are satisfyingly small. As noted above, it is likely that treating the external modes 

as translations and rotations overestimates their freedom. The dimensionless Gibbs free energy 

(G – )/RT with respect to the classical potential energy minimum
23

 for the light (unsubstituted) 

isotopologue of RS at 298.15 K and 1 atmosphere is 2626 with all degrees of freedom treated as 

vibrations and 2589 with the external motions treated as translations and rotations, of which 2833 

and 2831, respectively, are the zero-point energy contributions – very slightly larger when the 

extra six low-valued frequencies are included. Replacing these modes by translational and 

rotational motions slightly reduces the excitational contribution from 207 to 199 but increases 

the translational + rotational contribution by much more, from 0 to 43. The correct free energy 

of the subset within its environment would require an anharmonic treatment of the external 

modes for its evaluation, but it is likely that the true value is closer to that obtained within the 

harmonic approximation for six quantized librations than the ideal-gas, rigid-rotor approximation 

for six classical translations and rotations. For this reason the “all frequencies” method, utilizing 

the Teller-Redlich product rule, is taken as the point of reference against which all other results in 

this study are compared.  

The error in the -D3 KIE from the “translation/rotation” method appears to be very small 

(0.01%) when expressed as a percentage of the ratio (fRS/fTS)af. However, it is usual to interpret 

KIEs in terms of the extent to which they differ from unity: of course, the natural logarithm of the 

KIE is proportional to the free-energy difference arising from isotopic substitution, as well as 

being approximately equal to 1 – KIE for small differences from unity. Arguably, therefore, it is 

more appropriate to consider the error in ln(KIE): at 0.07% this is still very small but reflects a 

larger error in the deviation of the -D3 KIE from unity. The errors in ln(fRS) and ln(fTS) are each 

~ 0.01%. 

The results for the other isotopologous pairs (-
12

C/-
13

C, 
32

Slg/
34

Slg, 
16

Onu/
18

Onu), although 

much smaller in magnitude, are similar in kind to those just discussed above and will not be 
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discussed in detail. The errors in ln(fRS), ln(fTS) and lnKIE for -
12

C/-
13

C are very small, but the 

error lnKIE is larger (0.77%) for 
32

Slg/
34

Slg and very much larger (10.3%) for 
16

Onu/
18

Onu. The 

latter KIE is very close to unity, and so the multiplicative effect of small errors in each of the 

contributing factors happens to create a large error in the final result; this could be significant if 

calculated the KIE were to be compared with an experimental value. 

 

Cut-off models 

Table 2 contains the specification for each cut-

off model of the subset hessians for RS and 

TS, and may be understood in conjunction 

with Fig. 2. Models 1 to 5 include cut-offs 

involving only hydrogen-bonds and other non-

covalent interactions between water molecules 

and between solvent and solute; models 6 to 9 

include cut-offs involving covalent bonds of 

the reacting solutes. Table 3 contains the EX 

and ZP factors contributing to the IPFRs for 

both RS and TS, along with the ratio (‡/‡') of isotopic transition frequencies and the KIE, 

evaluated at 298.15 K using the cut-off AM1/TIP3P subset Hessians with external modes treated 

as vibrations: eq. 12 is used for (fRS)af (with products taken over 3Ns frequencies) and eq. 13 is 

used for (fTS)af (with products taken over 3Ns  1 frequencies). The VP factors for RS and TS are 

omitted from Table 3 because they have constant values equal to [(1.007825/2.014102)
3
]
3/2

 for 

the H3/D3 isotopologous pair and (12/13.003354826)
3/2

, (31.9720707/33.96786665)
3/2

 and 

(15.99491463/17.991603)
3/2

, respectively, for the 
12

C/
13

C, 
32

S/
34

S and 
16

O/
18

O pairs. Similarly, 

Table 4 contains the MI, EX and ZP factors contributing to the IPFRs for both RS and TS, along 

with the KIE, evaluated at 298.15 K using the cut-off AM1/TIP3P subset Hessians with external 

modes treated as translations and rotations: eq. 7 is used for (fRS)tr (with products taken over 3Ns 

 6 frequencies) and eq. 8 is used for (fTS)tr (with products taken over 3Ns  7 frequencies). The 

errors in these results for the two methods are presented together in Table 5 in order to facilitate 

their comparison. Finally, the approximate quantum corrections (eq. 14) for motion along the 

transition vector are given in Table 6. 

 
 

Figure 2. Atoms included in RS cut-off model 4, 

together with the limits for the 3-bond (model 6, 

gold), 2-bond (model 7, green), 1-bond (model 8, 

blue) and 0-bond (model 9, lilac) cut-offs. 
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Consider first the results for treating the external modes as vibrations (Tables 3 and 5). 

Although the total zero-point energy for each species decreases markedly as the number of atoms 

Ns retained in the cut-off subset hessian decreases, the isotopic sensitivity as expressed by the 

ratio ZP increases. This is partly compensated by a dimunition in value of the EX factor as the 

extent of the cut-off increases, but the resultant is a small increase in both (fRS)af and (fTS)af as the 

size of the hessian is decreased. It is important to note that this is purely a kinetic energy effect: 

the elements of the hessian corresponding to particular subset atoms are unchanged in each cut-

off model. It is remarkable that the errors in ln(fRS)af and ln(fTS)af for the H3/D3 and 
12

C/
13

C 

substitutions do not exceed 0.15% for even the more severe cut-off model 9. Larger errors (up to 

16%) are found in the extreme for the 
32

S/
34

S and 
16

O/
18

O pairs: this is to be expected as these are 

terminal atoms are directly connected to atoms deleted in model 9. Overall, the “2-bond” cut-off 

(model 7) recommended by Stern and Wolfsberg
2
 involves errors in ln(f) consistently less (and 

usually much less) than 1% when all 3Ns degrees of freedom of the subset are treated as harmonic 

vibrations. The errors (not shown) in KIE = (fRS/fTS)af may appear to be quite modest; however, 

the errors in ln(KIE) are significantly larger: although less than 0.1% for -H3/-D3 and 

32
Slg/

34
Slg with the 2-bond cut-off model 7, this model gives ln(KIE) errors of -4.9% and +4.1%, 

respectively, for -
12

C/-
13

C and 
16

Onu/
18

Onu substitutions, and even larger errors for the more 

extreme cut-offs. These ln(KIE) errors more truly reflect the error in the actual isotope effect, 

which is usually only a small difference from unity. In order to ensure that the error in ln(KIE) 

remained less than 1% for all four isotopic substitutions considered here, it would be necessary to 

work with cut-off model 4, which retains all solvent water molecules whose O atom is less than 

4.5 Å from any isotopically substituted atom. 

Now consider the results for treating the external modes as translations and rotations (Tables 4 

and 5). The MI factor is not constant in value and so is shown, but otherwise the trends in EX, ZP 

and (f )tr for both RS and TS are generally similar to those for the “all-frequencies” method. Note 

that the trends in ZP and (f )tr are not monotonic for all cut-off models. The results for models 8 

and 9 might seem to be anomalous but are in fact correct: the changes in the total zero-point 

energy of the 3Ns  6 internal vibrations for each isotopologue of RS and TS are indeed 

monotonic but, as the absolute magnitude of the zero-point energy decreases, the ratios that 

determine the ZP factors vary unpredictably for the most extreme cut-offs. As if this were not 

warning enough in regard to the reliability of this method, the errors in ln(fRS)tr and ln(fTS)tr can 
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reach nearly 500%! In general, treating the external modes as translations and rotations leads to 

errors in ln(fRS)tr and ln(fTS)tr very much larger than when those modes are treated as vibrations: 

for the 2-bond cut-off model the difference is a factor of about 10
4
. Note that the Teller-Redlich 

product rule is satisfied very well in every case: the magnitude of ln(VP/MI), which expresses the 

deviation from unity of the ratio, is typically in the range 10
5

 to 10
8

. The trends in the ln(KIE) 

errors are not monotonic, and even the larger subset hessians may lead to errors of a few percent 

in an unpredictable manner: the Stern and Wolfsberg
2
 recommended 2-bond cut-off (model 7) 

gives errors in ln(KIE) ranging from 6.7% to +12% depending upon the nature of the isotopic 

substitution. 

The imaginary transition frequencies TF are surprisingly sensitive to the size of the subset 

hessian for both methods: the errors for the heavy isotopologues are shown in Table 5 with 

respect to the magnitude of this frequency for the largest hessian (model 1). The “all-frequencies” 

method gives errors smaller by a factor of about 2 for the most extreme cut-offs, as compared to 

the “translation/rotation” method, but less severe cut-offs give similar values for each method. 

Consequently several cut-off models show quite similar differences in the ratios ‡/‡' as between 

the two methods, although the largest errors again occur with the“translation/rotation” method. 

Finally, the quantum corrections ‡/‡' to ‡/‡' (eq. 14) are rather small (Table 6), but show 

significant dependence on the size of the subset hessian: errors in ln(‡/‡') are more than 100% 

for some cut-off models with the “translation/rotation” method. Including the quantum correction 

in the -H3/-D3 KIE involves a relatively small error (0.5% or less for even the most extreme 

cut-off) with the “all-frequencies” method but much larger for smaller hessians with the 

“translation/rotation” method. However, when the semi-classical KIE has a small magnitude, as 

for 
12

C/
13

C, the effect of the quantum correction is much greater with both methods. To ensure a 

< 2% error in ln(KIEcorr) for all four isotopic substitutions considered here, it would be necessary 

to work with cut-off model 4, which retains all solvent water molecules whose O atom is less 

than 4.5 Å from any isotopically substituted atom. 

 

Relation to previous work 

Li and Jensen described
24

 a method for ‘partial hessian vibrational analysis’ (PHVA) of large 

systems which, as we already noted, was apparently similar to the procedure in our previous 

work.
10

 Their method divides the whole N-atomic system into two blocks (in our terminology an 
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Ns-atomic subset and its environment) and computes the subset hessian explicitly while setting 

the diagonal elements for the environment equal to a very small value. The full 3N  3N hessian 

is subjected to the projection procedure of Miller et al.,
25

 mass-weighted and diagonalized, and 

yields six zero frequencies for overall translation and rotation of the whole system, 3(N – Ns) – 6 

small (< 1 cm
1

) frequencies corresponding essentially to vibrational motion within the 

environment, 3 frequencies (typically <10 cm
1

) for motion of the subset relative to its 

environment and 3Ns  3 frequencies corresponding mainly to vibrational motion within the 

subset but also including motion coupled with the environment. This method differs from ours in 

that it treats the coupling of the subset with the environment neither as six librations nor as six 

translations and rotations. At the extra expense of projecting and diagonalizing a 3N  3N matrix 

rather than a 3Ns  3Ns one, it includes the dynamical influence of the environment treated, in 

effect, as having atoms with near-infinite masses. However, for the purpose of calculating KIEs 

(which Li and Jensen
24

 did not report) it is unlikely that isotopically-sensitive frequencies would 

be affected by inclusion of the environment in this way, provided that the subset is not too small. 

Ghysels et al.
26

 have discussed a variety of partial-hessian-based methods for normal mode 

analysis that have been proposed by themselves and others over recent years to obtain vibrational 

spectra for large systems. Their mobile block hessian (MBH) method has been applied in 

calculations of partition functions within the transition-state theory of reaction rates, but not to 

KIEs; their procedures seem to treat librational degrees of freedom as both vibrations and as 

translations/rotations at the same time.
27

 An implementation of the MBH method with QM/MM 

hessians has recently been reported, and it has been suggested that it could be applied usefully in 

KIE calculations; however, it was incorrectly asserted that IPFRs (rather than partition functions 

per se) are governed by the low-frequency modes.
28

 

Świderek et al.
29

 have described a procedure that first uses a low-level QM method to identify 

which normal modes and frequencies contribute most to an IPFR and then generates a hessian 

with a higher-level method in the reduced-dimensionality space spanned by these eigenvectors. 

This method converges from below towards the correct value of an IPFR and gives small (and 

possibly acceptable) errors using only about one-third of the total number of frequencies for the 

full system. However, the resulting errors on KIEs (or equilibrium isotope effects) were not 

presented; moreover, with refreshing candour these authors also reported that the partial hessian 

approach was superior to their scheme, giving accurate IPFRs with only a very small number of 
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subset atoms. Świderek and Paneth
30

 recently reported equilibrium isotope effects upon inhibitor 

binding to an enzyme calculated by a QM/MM method with explicit water using variously-sized 

models, which they claimed did not give meaningfully different results; however, their version of 

the Bigeleisen equation for these binding isotope effects involves products over 3N – 6 

frequencies for each species, and so it is not clear how the six librational modes were treated. 

Schaad et al. investigated
31

 the consequences of introducing small random errors into cartesian 

force constants or frequencies into KIE calculations using either eq. 2 or eq. 5; these authors 

concluded that results from eq. 5 containing the VP factor were less affected than by these errors 

than those from eq. 2 containing the MMI factor instead. In this context it is of interest to read 

Wolfsberg’s comments regarding the presence of non-zero translational/rotational frequencies in 

GAUSSIAN03 calculations and their effect upon the reliability of the Teller-Redlich product 

rule.
32

  

There was a clear advantage in using the Bigeleisen equation for equilibrium isotope effects 

back in the time when vibrational frequencies were obtained experimentally and with greater 

precision than the moments of inertia were known for molecules of interest. However, since 

nowadays it is just as simple for a computer to determine the MMI factor as it is to evaluate VPR 

and ‡/‡', the reason why most KIE programs coupled with quantum-chemistry packages use the 

Bigeleisen equation seems to be that it is easier to deliberately omit low frequencies of uncertain 

reliability without introducing large errors. 

 

Conclusions 

A hessian computed for a subset of Ns atoms within a larger system generally yields 3Ns non-zero 

vibrational eigenvalues corresponding to the six external degrees of freedom for the subset 

librating with respect to its environment. In the case of an isotopologous pair of subset atoms, the 

product of the isotopic ratios for all 3Ns frequencies is equal to the three-halves power of the 

product of the ratios of atomic masses for the specific isotopic substitution. There is no need to 

invoke the Teller-Redlich product rule when a subset hessian is used, since this is necessary only 

when there are zero eigenvalues for separable translation and rotation degrees of freedom. 

Consequently, for the evaluation of IPFRs and KIEs, there is no need to use the Bigeleisen 

equation in its conventional form, where products are taken over 3Ns – 6 or 3Ns – 7 vibrational 
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frequencies for minima and saddle points respectively. It is more appropriate to use a simpler 

form (eqs. 11 - 13) in which products are taken over 3Ns or 3Ns – 1 frequencies. 

The SN2 methyl transfer from S-adenosylmethionine to catecholate in water has been used as a 

model system. IPFRs and KIEs evaluated using a large AM1/TIP3P subset hessian 

(corresponding to 324 atoms) have been compared for two alternative methods for treating the six 

external modes. It is found that it is better to treat these as harmonic vibrations (the “all-

frequency” method) is than to treat them as free translations and rotations along with a projected 

hessian from which the translational and rotational contributions have been eliminated (the 

“translation/rotation” method). 

A series of smaller subset hessians, generated by deletion of rows and columns corresponding 

to particular atoms being removed, has allowed the validity of “cut-off” procedures for 

computation of kinetic isotope effects to be assessed. These calculations leave the elements of the 

hessian corresponding to retained atoms unchanged for each successive cut-off, and are 

equivalent to removing atoms from the kinetic energy part of the molecular vibrational problem. 

Errors in IPFRs and KIEs have been evaluated using a range of cut-off models with AM1/TIP3P 

subset hessians down to as small as only the six atoms involved in the isotopic substitutions 

considered here (-H3/-D3,-
12

C/-
13

C, 
32

Slg/
34

Slg and 
16

Onu/
18

Onu). Again, the “all-frequency” 

method is demonstrated to be superior to the “translation/rotation” method, giving considerably 

smaller errors in general. The “2-bond cut-off” rule proposed by Stern and Wolfsberg gives 

respective errors in the natural logarithms of the KIEs (without tunnelling) of 0.06%, 5%, 

0.05% and 4% for these isotopic substitutions with the “all-frequency” method, but 7%, 4%, 

6% and 12% for the same substitutions with the “translation/rotation” method. However, to 

ensure that the error in ln(KIE) remains less than 1% (or 2% for the quantum-corrected KIE) for 

all four isotopic substitutions considered here, it is necessary to use a less-restrictive cut-off 

procedure which retains all covalently-bonded atoms to a distance of at least 3-bonds together 

with solvent water molecules whose O atom is less than 4.5 Å from any isotopically substituted 

atom. 

To the extent that KIEs (and also equilibrium isotope effects) may be treated to a satisfactory 

degree of approximation by means of a “cut-off” procedure, it implies that these ratios of rate (or 

equilibrium)-constants are essentially local properties of the system, reflecting changes in 

curvature of the potential energy surface in the immediate vicinity of the position(s) of isotopic 
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substitution. However, the surprising degree of sensitivity of KIE values to the extent of cut-off 

implies that these are not entirely local properties of the system. These findings have important 

practical implications for reliable computational simulation of kinetic isotope effects for large 

systems, for example, in solution or within an enzyme active site. To obtain reliable KIEs 

requires not only an appropriate choice of (say) QM/MM method but also an adequate 

description of the environment in regard to both its potential energy and kinetic energy influence 

upon the positions of isotopic substitution. The bottom line is this: regardless of considerations of 

the choice of QM/MM method, for accurate calculations of KIEs in large systems it is 

recommended to select a subset of atoms including all covalently-bonded atoms to a distance of 

at least 3-bonds from any isotopically substituted atom, together with any solvent atoms within 

4.5 Å. 
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Table 1. Isotopic partition function ratios, kinetic isotope effects and contributing factors at 298.15 K evaluated using the 

largest AM1/TIP3P subset hessian corresponding to 324 atoms. 

________________________________________________________________________________________________________________________________________ 

 

 “all-frequencies” method (eqs. 12 and 13) “translation/rotation” method with products taken (eqs. 7 and 8) 

 ________________________________________ _________________________________________________________________________ 

isotopic VP EX ZP ( f )af VP TR MI EX ZP ( f )tr % error in 

substitution ln(f) or lnKIE 

_______________________________________________________________________________________________________________________________________ 

-D3 RS 0.044347 1.722473 21938.08 1675.782 0.044452 1.000000 0.044452 1.717391 21966.50 1676.968 0.01 

 TS 0.044347 1.542157 29289.28 2003.105 0.044450 0.999936 0.044453 1.537843 29325.92 2004.779 0.01 

 KIE 1 1.116925 0.749014 0.836592   0.999982 1.116753 0.749047 0.836485 -0.07 

-13C RS 0.886520 1.049739 1.196608 1.113582 0.887196 1.000000 0.887196 1.048837 1.196748 1.113603 0.02 

 TS 0.886520 1.038529 1.138539 1.048227 0.887190 0.999982 0.887205 1.037667 1.138663 1.048280 0.11 

 KIE 1 1.010795 1.051003 1.062348   0.999990 1.010765 1.051011 1.062314 -0.05 

34Slg RS 0.913174 1.044557 1.081951 1.032033 0.914565 1.000000 0.914565 1.042908 1.082018 1.032037 0.01 

 TS 0.913174 1.045113 1.076553 1.027430 0.914581 1.000030 0.914554 1.043437 1.076623 1.027398 -0.11 

 KIE 1 0.999468 1.005015 1.004480   1.000012 0.999493 1.005012 1.004515 0.77 

18Onu RS 0.838239 1.079712 1.242839 1.124840 0.839791 1.000000 0.839791 1.077759 1.242803 1.124851 0.01 

 TS 0.838239 1.068512 1.248618 1.118348 0.840227 1.000576 0.839743 1.066168 1.248390 1.117693 -0.52 

 KIE 1 1.010482 0.995372 1.005805   1.000056 1.010872 0.995524 1.006404 10.3 

_______________________________________________________________________________________________________________________________________ 
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Table 2. Specification of subset hessians. 

_________________________________________________________________________________________________________________ 

cut-off number of atoms, Ns description comment 

model ________________ 

 RS TS 

_________________________________________________________________________________________________________________ 

1 324 324 all atoms of AdoMet, catecholate and 87 waters all atoms in Fig. 1 

2 231 237 delete waters with O atom > 7.5 Å from any isotope   

3 176 170 delete waters with O atom > 6.0 Å from any isotope  

4 111 105 delete waters with O atom > 4.5 Å from any isotope all atoms in Fig. 2 

5 63 63 delete all waters  

6 27 27 delete atoms > 3 bonds from any isotope includes gold, green, blue and lilac circles in Fig. 2 

7 17 17 delete atoms > 2 bonds from any isotope includes green, blue and lilac circles in Fig. 2 

8 9 9 delete atoms > 1 bonds from any isotope includes blue and lilac circles in Fig. 2 

9 6 6 include only isotopically substituted atoms includes lilac circles in Fig. 2 

_________________________________________________________________________________________________________________ 
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Table 3. Isotopic partition function ratios, kinetic isotope effects and contributing factors at 298.15 K evaluated using the cut-off AM1/TIP3P subset 

hessians with external modes treated as vibrations (the “all-frequencies” method). 
___________________________________________________________________________________________________________________________ 

isotopic cut-off RS TS 

substitution model products taken over 3Ns frequencies (eq. 12) products taken over 3Ns  1frequencies (eq. 13) 

 ____________________________________ ______________________________________ 

 EX ZP (fRS)af EX ZP (fTS)af ‡/‡' KIE 

___________________________________________________________________________________________________________________________ 

-D3 1 1.722473 21938.08 1675.782 1.542157 29289.28 2005.348 1.001120 0.836592 

 2 1.722294 21940.40 1675.785 1.542034 29291.63 2005.356 1.001124 0.836593 

 3 1.722158 21942.29 1675.797 1.541932 29293.53 2005.384 1.001139 0.836600 

 4 1.721562 21950.50 1675.844 1.541448 29302.73 2005.452 1.001173 0.836624 

 5 1.714194 22058.25 1676.863 1.536587 29408.41 2006.467 1.001237 0.836763 

 6 1.710417 22107.19 1676.880 1.529184 29554.40 2006.911 1.001336 0.836669 

 7 1.707843 22141.15 1676.928 1.525860 29619.05 2007.126 1.001434 0.836686 

 8 1.700505 22241.27 1677.274 1.522178 29690.96 2007.766 1.001745 0.836850 

 9 1.698610 22271.21 1677.660 1.520399 29730.60 2008.286 1.001839 0.836905 

-13C 1 1.049739 1.196608 1.113582 1.038529 1.138539 1.084455 1.034562 1.062348 

 2 1.049712 1.196639 1.113582 1.038503 1.138515 1.084429 1.034585 1.062397 

 3 1.049695 1.196660 1.113583 1.038484 1.138352 1.084333 1.034659 1.062569 

 4 1.049626 1.196741 1.113585 1.038412 1.137947 1.084108 1.034885 1.063023 

 5 1.049121 1.197332 1.113600 1.037840 1.137488 1.083704 1.035487 1.064053 

 6 1.048464 1.198084 1.113601 1.036214 1.138321 1.083836 1.036480 1.064944 

 7 1.048087 1.198517 1.113603 1.035605 1.138409 1.083893 1.037062 1.065489 

 8 1.046878 1.199942 1.113640 1.034707 1.138134 1.083744 1.038072 1.066708 

 9 1.046528 1.200431 1.113722 1.034360 1.138191 1.083718 1.038343 1.067091 

34Slg 1 1.044557 1.081951 1.032033 1.045113 1.076553 1.028206 1.000755 1.004480 

 2 1.044516 1.081993 1.032033 1.044993 1.076675 1.028204 1.000754 1.004481 

 3 1.044493 1.082017 1.032033 1.044976 1.076692 1.028201 1.000752 1.004482 

 4 1.044303 1.082215 1.032034 1.044902 1.076765 1.028195 1.000749 1.004486 

 5 1.044132 1.082394 1.032035 1.044747 1.076914 1.028181 1.000745 1.004496 

 6 1.042626 1.083957 1.032035 1.043232 1.078477 1.028174 1.000739 1.004497 

 7 1.040808 1.085876 1.032059 1.041526 1.080285 1.028178 1.000705 1.004482 

 8 1.032384 1.096403 1.033631 1.032782 1.091202 1.029703 1.000563 1.004380 

 9 1.030151 1.099562 1.034366 1.029835 1.095430 1.030798 1.000616 1.004079 

18Onu 1 1.079712 1.242839 1.124840 1.068512 1.248618 1.122388 1.003613 1.005805 

 2 1.079692 1.242864 1.124842 1.068497 1.248639 1.122388 1.003609 1.005804 

 3 1.079569 1.243015 1.124851 1.068478 1.248675 1.122388 1.003598 1.005801 

 4 1.079213 1.243438 1.124862 1.068278 1.248917 1.122383 1.003587 1.005804 

 5 1.076410 1.246979 1.125136 1.064616 1.253518 1.122660 1.003590 1.005804 

 6 1.070406 1.254141 1.125286 1.060111 1.259185 1.122606 1.003270 1.005666 

 7 1.067263 1.258216 1.125627 1.057689 1.262580 1.122774 1.003016 1.005564 

 8 1.062819 1.266644 1.128449 1.054130 1.270311 1.125203 1.002440 1.005332 

 9 1.052333 1.298877 1.145749 1.047078 1.293405 1.137848 1.002312 1.009272 
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Table 4. Isotopic partition function ratios, kinetic isotope effects and contributing factors at 298.15 K evaluated using the cut-off AM1/TIP3P subset 

hessians with external modes treated as translations and rotations (the “translation/rotation” method). 
_____________________________________________________________________________________________________________________________________ 

isotopic cut-off RS TS 

substitution model products taken over 3Ns – 6 frequencies (eq. 7) products taken over 3Ns  7frequencies (eq. 8) 

 ________________________________________________ _____________________________________________ 

 MI EX ZP (fRS)tr MI EX ZP (fTS)tr KIE 

_____________________________________________________________________________________________________________________________________ 

-D3 1 0.044452 1.717391 21966.50 1676.968 0.044453 1.537843 29325.92 2004.78 0.836485 

 2 0.044485 1.715420 21983.62 1677.584 0.044483 1.536362 29343.43 2005.39 0.836537 

 3 0.044527 1.713325 21996.60 1678.101 0.044536 1.534361 29358.34 2006.20 0.836458 

 4 0.044624 1.708041 22034.99 1679.516 0.044661 1.529415 29396.36 2007.92 0.836445 

 5 0.044838 1.694889 22113.05 1680.489 0.044864 1.521216 29428.92 2008.47 0.836701 

 6 0.045379 1.548531 29846.38 2097.310 0.045421 1.427099 38129.52 2471.56 0.848577 

 7 0.046171 1.378118 44781.98 2849.434 0.046194 1.308680 55674.92 3365.76 0.846595 

 8 0.047959 1.110456 173157.52 9221.797 0.047989 1.081960 226729.51 11772.28 0.783349 

 9 0.063023 1.096119 77948.68 5384.735 0.068125 1.061559 87250.10 6309.80 0.853393 

-13C 1 0.887196 1.048837 1.196748 1.113603 0.887205 1.037667 1.138663 1.048280 0.941341 

 2 0.887404 1.048528 1.196832 1.113614 0.887392 1.037388 1.138650 1.048207 0.941266 

 3 0.887662 1.048182 1.196887 1.113621 0.887724 1.036991 1.138521 1.048079 0.941145 

 4 0.888257 1.047386 1.197022 1.113647 0.888495 1.036082 1.138074 1.047657 0.940744 

 5 0.889539 1.045854 1.196985 1.113588 0.889754 1.034752 1.136728 1.046557 0.939806 

 6 0.892410 1.035190 1.210004 1.117819 0.892563 1.026400 1.145762 1.049663 0.939028 

 7 0.895869 1.026008 1.221044 1.122346 0.895796 1.019497 1.154160 1.054049 0.939148 

 8 0.901255 1.014967 1.237245 1.131763 0.900838 1.011378 1.165879 1.062218 0.938552 

 9 0.915390 1.010508 1.219523 1.128070 0.909280 1.008690 1.157326 1.061478 0.940968 

34Slg 1 0.914565 1.042908 1.082018 1.032037 0.914554 1.043437 1.076623 1.027398 0.995506 

 2 0.915081 1.042277 1.082064 1.032038 0.915018 1.042732 1.076665 1.027265 0.995375 

 3 0.915622 1.041670 1.082057 1.032040 0.915683 1.042136 1.076673 1.027432 0.995536 

 4 0.916908 1.040200 1.082070 1.032043 0.917009 1.040701 1.076598 1.027433 0.995533 

 5 0.919033 1.038073 1.081781 1.032045 0.918947 1.038774 1.076313 1.027425 0.995523 

 6 0.927199 1.027413 1.084214 1.032840 0.926684 1.028751 1.078421 1.028088 0.995399 

 7 0.937006 1.018739 1.082880 1.033679 0.936140 1.020319 1.077065 1.028771 0.995251 

 8 0.952228 1.008389 1.077309 1.034449 0.951533 1.009190 1.071799 1.029225 0.994950 

 9 0.979198 1.003247 1.035669 1.017419 0.980262 1.003491 1.025640 1.008906 0.991633 

18Onu 1 0.839791 1.077759 1.242803 1.124851 0.839743 1.066168 1.248390 1.117693 0.993637 

 2 0.840239 1.077156 1.242842 1.124858 0.840140 1.065550 1.248362 1.117547 0.993501 

 3 0.840972 1.076186 1.242893 1.124871 0.841005 1.065017 1.248626 1.118375 0.994225 

 4 0.842670 1.073981 1.242957 1.124890 0.843226 1.062394 1.248438 1.118399 0.994230 

 5 0.846872 1.067983 1.243650 1.124814 0.847118 1.056673 1.249091 1.118095 0.994026 

 6 0.853422 1.056330 1.250094 1.126954 0.855407 1.045103 1.252700 1.119898 0.993739 

 7 0.865037 1.045375 1.250027 1.130385 0.866833 1.035139 1.250813 1.122346 0.992889 

 8 0.892312 1.025577 1.237661 1.132626 0.892147 1.018970 1.231671 1.119676 0.988567 

 9 0.946619 1.012936 1.094623 1.049595 0.938559 1.011476 1.098737 1.043064 0.993778 
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Table 5. Errors in isotopic partition function ratios, kinetic isotope effects, product rule and transition frequencies at 298.15 K evaluated using cut-off AM1/TIP3P subset hessians with the 

“all-frequencies” (af) and “translation/rotation” (tr) methods. 

_________________________________________________________________________________________________________________________________________ 

 % error in ln(IPFR)  % error in ln(KIE) ln(VP/MMI)tr % error in |‡'| % error in ln(‡/ ‡') 

 ________________________________________ __________________ __________________ __________________________________ 

 

 subset (fRS)af (fTS)af (fRS)tr (fTS)tr (KIE)af (KIE)tr RS TS af tr af tr 

_________________________________________________________________________________________________________________________________________ 

-D3 1 0 0 0.071 -0.028 0 0 -5.5-8 -6.4-5 0 0 0 0 

 2 2.0-4 4.0-4 0.11 0.002 -0.0011 -0.035 1.1-7 1.4-5 -0.14 -0.11 0.3 -0.5 

 3 9.0-4 1.8-3 0.14 0.042 -0.0056 0.018 1.7-7 2.4-7 -0.63 -0.61 1.6 0.8 

 4 3.7-3 5.2-3 0.22 0.13 -0.021 0.026 3.2-7 -1.3-6 -1.8 -1.8 4.7 3.9 

 5 0.065 0.056 0.28 0.16 -0.11 -0.14 -1.7-7 1.4-6 -4.2 -4.2 10 9.2 

 6 0.066 0.078 25 23 -0.052 -8.0 -8.6-8 -2.9-5 -5.2 -5.3 19 -15 

 7 0.068 0.089 70 68 -0.063 -6.7 -2.4-8 3.9-8 -5.7 -6.6 28 -34 

 8 0.089 0.12 450 490 -0.17 37 -7.7-9 -1.9-9 -7.5 -13 56 192 

 9 0.11 0.15 220 210 -0.21 -11 -2.0-8 -4.8-9 -8.8 -16 64 456 

-13C 1 0 0 1.9-3 -3.3 0 0 -3.5-8 -1.8-5 0 0 0 0 

 2 -4.2-9 -2.4-3 2.8-3 -3.3 0.076 0.13 -8.9-9 1.1-5 -0.15 -3.3 0.1 0.0 

 3 1.0-4 -0.011 3.5-3 -3.4 0.34 0.34 -8.9-9 3.6-8 -0.63 -3.8 0.3 0.2 

 4 3.0-4 -0.032 5.9-3 -3.4 1.0 1.0 -5.3-8 5.3-8 -1.8 -5.0 0.9 0.8 

 5 1.6-3 -0.069 5.7-4 -3.5 2.7 2.7 -3.6-8 1.3-7 -4.3 -7.4 2.6 2.6 

 6 1.7-3 -0.057 0.38 -3.2 4.0 4.1 7.1-8 -1.9-6 -5.3 -8.5 5.5 3.6 

 7 1.9-3 -0.052 0.79 -2.8 4.9 3.9 0.0 0.0 -5.9 -9.7 7.1 2.3 

 8 5.2-3 -0.066 1.6 -2.1 6.8 4.9 0.0 0.0 -7.8 -16 10 -1.5 

 9 0.013 -0.068 1.3 -2.1 7.4 0.66 9.2-9 0.0 -9.0 -18 11 -6.1 
34Slg 1 0 0 3.7-4 -0.079 0 0 -2.3-7 3.0-5 0 0 0 0 

 2 2.9-9 -2.0-4 4.8-4 -0.092 0.022 2.9 -2.6-7 1.6-4 -0.14 -0.072 -0.1 0.9 

 3 2.9-9 -5.0-4 6.6-4 -0.075 0.045 -0.67 -2.1-7 -2.4-7 -0.62 -0.58 -0.4 0.1 

 4 1.0-4 -1.1-3 9.9-4 -0.075 0.13 -0.61 -6.2-7 -4.1-7 -1.8 -1.7 -0.9 -0.4 

 5 2.0-4 -2.4-3 1.2-3 -0.076 0.36 -0.39 0.0 -7.3-7 -4.2 -4.2 -1.3 -0.7 

 6 2.0-4 -3.1-3 0.078 -0.012 0.38 2.4 -1.3-7 0.0 -5.1 -5.3 -2.1 14 

 7 2.5-3 -2.7-3 0.16 0.055 0.045 5.7 9.4-9 0.0 -5.7 -6.6 -6.6 41 

 8 0.15 0.15 0.23 0.099 -2.2 12 0.0 0.0 -7.4 -13 -25 149 

 9 0.23 0.251 -1.4 -1.9 -8.9 87 0.0 9.8-9 -8.7 -16 -19 241 
18Onu 1 0 0 8.6-3 -0.42 0 0 8.4-8 5.8-4 0 0 0 0 

 2 1.7-3 4.1-9 1.4-3 -0.43 -0.017 2.1 1.3-7 7.1-4 -0.14 -0.35 -0.1 -0.5 

 3 8.5-3 4.1-9 0.024 -0.36 -0.069 -9.3 9.3-8 -2.8-7 -0.62 -0.86 -0.4 -0.1 

 4 0.017 -4.0-4 0.038 -0.36 -0.017 -9.3 3.7-7 7.5-7 -1.8 -2.0 -0.7 -0.4 

 5 0.22 0.024 -0.02 -0.38 -0.017 -6.1 -2.5-7 1.2-6 -4.2 -4.5 -0.6 -0.6 

 6 0.34 0.019 1.6 -0.22 -2.4 -1.6 3.0-7 -1.7-6 -5.1 -5.6 -9.5 -2.1 

 7 0.60 0.034 4.2 -3.7-3 -4.1 12 8.7-9 -4.3-8 -5.6 -6.9 -17 4.5 

 8 2.7 0.25 5.9 -0.24 -8.1 80 8.9-9 0.0 -7.4 -13 -32 38 

 9 16 1.4 -59 -7.1 59 -2.2 0.0 0.0 -8.6 -16 -36 61 

________________________________________________________________________________________________________________________________________ 



26 

 

Table 6. Errors in quantum-corrected kinetic isotope effects at 298.15 K evaluated using cut-off AM1/TIP3P subset hessians. 

_______________________________________________________________________________________________________ 

 “all frequencies” “translation/rotation” 

 ____________________________________________ ___________________________________________ 

 subset /' ln(/') KIEcorr ln(KIEcorr) /' ln(/') KIEcorr ln(KIEcorr) 

_______________________________________________________________________________________________________ 

-D3 1 1.000530 0 0.837035 0 1.000528 0 0.836927 0 

 2 1.000534 0.7 0.837040 0.00 1.000529 -0.2 0.836981 0.04 

 3 1.000547 3.2 0.837058 -0.02 1.000543 2.3 0.836912 0.08 

 4 1.000579 9.3 0.837108 -0.05 1.000575 8.4 0.836926 0.07 

 5 1.000645 22 0.837302 -0.18 1.000638 20 0.837234 -0.13 

 6 1.000710 34 0.837263 -0.15 1.000507 -4.3 0.849007 -8.0 

 7 1.000771 45 0.837331 -0.20 1.000407 -23 0.846940 -6.6 

 8 1.000971 83 0.837663 -0.42 1.002009 279 0.784922 36 

 9 1.001047 97 0.837781 -0.50 1.003983 650 0.856791 -13 

-13C 1 1.016871 0 1.080272 0 1.016863 0 1.080228 0 

 2 1.016938 0.4 1.080392 0.1 1.016921 0.3 1.080376 0.1 

 3 1.017163 1.7 1.080806 0.6 1.017146 1.6 1.080753 0.6 

 4 1.017726 5.0 1.081866 1.9 1.017706 4.9 1.081810 1.8 

 5 1.018974 12 1.084242 4.8 1.018970 12 1.084234 4.7 

 6 1.019869 18 1.086103 7.0 1.019569 16 1.085770 6.6 

 7 1.020411 21 1.087237 8.3 1.019802 17 1.085880 6.7 

 8 1.021664 28 1.089816 11 1.021186 25 1.088045 9.3 

 9 1.022291 32 1.090877 13 1.020905 24 1.084952 5.6 

34Slg 1 1.000358 0 1.004839 0 1.000360 0 1.004876 0 

 2 1.000358 0.3 1.004841 0.04 1.000362 1.2 1.005010 3.5 

 3 1.000362 1.2 1.004845 0.1 1.000363 1.6 1.004849 0.2 

 4 1.000370 3.4 1.004858 0.4 1.000372 3.9 1.004860 0.4 

 5 1.000389 8.8 1.004887 1.0 1.000391 9.4 1.004890 1.0 

 6 1.000393 9.9 1.004892 1.1 1.000460 29 1.005084 5.1 

 7 1.000379 6.1 1.004863 0.5 1.000583 63 1.005357 11 

 8 1.000313 -12 1.004694 -3.0 1.001152 222 1.006234 29 

 9 1.000350 -2.0 1.004431 -8.4 1.001643 359 1.010094 108 

18Onu 1 1.001715 0 1.007529 0 1.001713 0 1.008127 0 

 2 1.001719 0.3 1.007533 0.05 1.001710 -0.3 1.008263 9.7 

 3 1.001734 1.1 1.007545 0.2 1.001739 1.4 1.007558 0.4 

 4 1.001777 3.6 1.007591 0.8 1.001781 3.9 1.007595 0.9 

 5 1.001876 9.4 1.007691 2.1 1.001875 9.4 1.007896 4.9 

 6 1.001741 1.5 1.007417 -1.5 1.001890 10 1.008202 8.9 

 7 1.001624 -5.3 1.007197 -4.4 1.002072 21 1.009249 23 

 8 1.001359 -21 1.006698 -11 1.003064 79 1.014665 94 

 9 1.001317 -23 1.010601 41 1.003708 116 1.009993 33 
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