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The effect of coadsorption with deoxycholic acid (DCA) on the performance of dye-sensitized solar cell based on perylene 
monoimide derivative (PCA) as sensitizer and liquid electrolyte had been investigated. The current-voltage characteristics under 
illumination and incident photon to current efficiency (IPCE) spectra of the DSSCs showed that the coadsorption of DCA with the 
PCA dye results in a significant improvement in short circuit photocurrent and slight increase in the open circuit photovoltage, 
which lead to an overall power conversion efficiency. The enhancement of short circuit current was attributed to the increased 
electron injection efficiency from the excited state of PCA into the conduction band of TiO2 and charge collection efficiency. The 
current-voltage characteristics in dark indicates a positive shift in the conduction which also supports the enhancement in the 
photocurrent. The coadsorption with DCA suppressed charge recombination as indicated from the electrochemical impedance 
spectra and thus improved the open circuit photovoltage. 

1. Introduction and black dye have achieved PCEs up to 11%, due to their 
intense and wide range absorption of visible light [7–10]. 

Dye-sensitized solar cells (DSSCs) represent one of the most However, due to the relatively high cost and environmental 
promising candidates for developing new renewable energy concerns associated with the use of Ru-based dyes have 
sources due to their low cost and high efficiency [1–6]. inspired strenuous efforts to develop metal-free dyes as 
Typical DSSCs consist of a dyed semiconductor TiO2 photoe- the alternative sensitizers [11–14]. Moreover, high molar 
lectrode, a Pt counterelectrode, and redox electrolyte. Among extinction coefficients of metal-free dyes allow the use of 
these components, the sensitizer, that is, dye, is one of the thinner TiO2 film, which is beneficial for charge separation 
key components that affects the overall power conversion [15, 16]. Another important advantage over Ru-based dyes 
efficiency (PCE) of the DSSC. The dye must absorb sunlight is the availability of versatile functional molecules associated 
over a wide region of visible and near infrared (NIR) and with tuning the electronic and optical properties. Recently, 
inject the photoexcited electrons into the conduction band of the DSSCs performance based on organic dye has been 
the semiconductor in the photoelectrode. The typical dyes at remarkably improved and reached impressive PCE more 
present times are Ruthenium-based dyes, such as N3, N719, than 9% [15] and 11% by porphyrin dyes [17, 18]. 
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Scheme 1: Chemical structure of perylene monoimide derivative PCA. 

Perylene dyes are well known as the key chromophores 
among the metal-free dyes [19–26]. Their solubility, absorp
tion, and emission behavior can be efficiently controlled 
using a variety of synthetic procedures, which include func
tionalization of peri- or bay-positions of perylene core. 
Moreover due to their outstanding photophysical and photo
chemical stability as well as their high fluorescence quantum 
yields, perylene derivatives have been used as active compo
nents for application in organic electronic devices [27–35]. 
Systematic tuning of HOMO and LUMO levels of perylene 
dyes improve both light harvesting properties and electron 
injection capabilities to TiO2 conduction band for obtaining 
the high PCE. Several perylene dyes have been used as 
sensitizers in DSSCs [36–45]. Edvinsson et al. reported that 
by attaching a bulky nonplanar di-p-tert-octylphenylamino 
and an anhydride moiety to the perylene core, which not 
only suppresses the aggregation of dye molecules but also 
improves the stability of the organic sensitizer [46]. With 
two additional phenylthio groups in the 1,6-positions of 
the perylene unit, a new perylene sensitizer yields 87% 
incident monochromatic photon-to-current conversion effi
ciency (IPCE) and 6.8% power conversion efficiency under 
standard AM 1.5 solar conditions [47]. 

Another strategy for enhancing the PCE is to incor
porate donor-linker-acceptor (D-π-A) into the framework. 
Introducing D-π-A groups increases intramolecular charge 
transfer from donor to acceptor side of the molecule by π 
linker, which results a strong electron transfer from excited 
state of dye molecule to the conduction band of TiO2. 

In the present paper, perylene monoimide (PCA) has 
been employed as sensitizer for nanocrystalline TiO2 DSSC. 
PCA contains an electron-donating cyclohexyl ring, which 
is connected with perylene core act as electron acceptor via 
imide nitrogen. Moreover, PCA carriers bulky alkylphenoxy 
groups at the 1,7 bay positions of perylene core, the alkyl 

chains of which enhance the solubility of the compound. 
Finally, PCA contains an acid anhydride as anchoring group 
for TiO2 surface. We have used PCA as sensitizer for the 
DSSC based on TiO2 nanocrystalline photoanode and liquid 
electrolyte. The effect of deoxycholic acid (DCA) as coad
sorbent on the photovoltaic performance of DSSCs based 
on PCA had been investigated. The improvement in the 
overall PCE is attributed to enhancement in both Jsc and 
Voc. The enhancement in the Jsc of DSSC upon the DCA 
coadsorption was attributed to the increased efficiency of 
electron injection and/or charge collection efficiency. The 
coadsorption of DCA suppressed charge recombination and 
thus improved Voc. 

2. Experimental Part 

The synthesis of PCA has been reported by us in our earlier  
communication [48]. The chemical structure of the PCA is  
shown in Scheme 1. The UV-visible absorption spectra of the 
dye-loaded TiO2 film was recorded on a Shimdzu UV-visible 
spectrophotometer. The cyclic voltammograms were mea
sured with a three electrode electrochemical cell on poten
tiostat/Galvanostat PGSTAT30 electrochemical analyzer. The 
dye-loaded TiO2 film, platinum and Ag/Ag+ (0.01 M AgNO3 

+ 0.1 MTBAP in acetonitrile) were employed as working, 
counter, and reference electrodes, respectively. The sup
porting electrolyte was 0.1 M LiClO4 in acetonitrile. The 
potential of the reference electrode is 0.49 V versus normal 
hydrogen electrode (NHE) and is calibrated with ferrocene 
immediately after cyclic voltammogram measurement. 

TiO2 paste was prepared by mixing 1 g of TiO2 powder 
(P25, Degussa), 0.2 mL of acetic acid, 1 mL of water. Then  
60 mL of ethanol was slowly added while sonicating the 
mixture for 3 h. Finally, Triton X-100 was added and a well
dispersed colloidal paste was obtained (TiO2). The whole 
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procedure is slow under vigorous stirring. The mixture was 
stirred vigorously for 2–4 h at room temperature and then 
stirred for 4 h at 100◦C to form a transparent colloidal 
paste. The TiO2 paste was deposited on the F-doped tin 
oxide- (FTO-) coated glass substrates by the doctor blade 
technique. The TiO2 coated FTO films were sintered at 450◦C 
for 30 min. After cooling to room temperature, the electrodes 
were impregnated in 0.05 M titanium tetrachloride aqueous 
solution, washed with distilled water, and again sintered at 
450◦C for 30 min followed by cooling to room temperature. 
The thickness of the TiO2 layer is about 12 μm. PCA dye 
solutions (0.5 mM) with and without DCA (10 mM) were 
prepared in THF and used to sensitize the TiO2 electrodes 
by immersing the TiO2 films in these dye solution for 24 h 
and then washed. 

A thin Pt layer was deposited on an FTO conducting glass 
by thermal pyrolysis of H2PtCl4 in isopropanol solution and 
then heated at 450◦C for 30 min in air. One drop of elec
trolyte solution (0.6 M 1-propyl-2,3 dimethyl-imidazolium 
iodide DMPImI, 0.1 M LiI, 0.05 M iodine, and 0.5 M tetra
butyl pyridine in acetonitrile) was deposited onto the surface 
of dye-sensitized TiO2 electrode and penetrated inside the 
TiO2 via capillary action. The Pt-coated FTO electrode was 
then clipped onto the top of TiO2 working electrode to 
form the complete DSSC. The active area of each DSSC thus 
prepared was about 0.4 cm2. 

The current-voltage characteristics of DSSCs were mea
sured on a computer controlled source meter (Keithley, 
2400). An AM 1.5 solar simulator with 150 W xenon lamp 
and an AM filter were used as the light source. Light intensity 
corresponding to AM 1.5 (100 mW/cm2) was calibrated 
using a standard silicon solar cell. Monochromatic incident 
photon-to-current conversion efficiency (IPCE) for the solar 
cell, plotted as a function of excitation wavelength, was re
corded on a monochromator system. The output current 
under short circuit condition at each wavelength was mea
sured using the Keithley electrometer. 

Electrochemical impedance spectra for DSSCs in dark 
and under illumination were measured with electrochemical 
analyzer, equipped with FRA software. The spectra were 
scanned in the frequency range of 0.01–105 Hz at room tem
perature with applied potential set at open circuit voltage. 
The magnitude of modulation signal was set at 20 mV. 

3. Results and Discussion 

Figure 1 depicts the optical absorption spectra of the PCA 
in THF solution and PCA adsorbed into the TiO2 nanocrys
talline film. The absorption curve in solution shows an 
optical absorption maximum around 510 nm and is broad 
extended up to 680 nm. Therefore the PCA exhibits very nice 
absorption coverage over the visible and near infrared (NIR) 
region, which is desirable for the photovoltaic application. 
The absorption onset is located around 645 nm that corre
sponds to an optical band gap around 1.92 eV. 

When PCA dye was sensitized on TiO2 surface, the ab
sorption maxima was redshifted by about 20 nm in compar
ison to those in solution (Figure 1), due to the J aggregation 
on the semiconductor surface [23, 49]. 

350 400 450 500 550 600 650 700 750 

Wavelength (nm) 

In solution
 
PCA adsorbed on TiO2
 

Figure 1: Optical absorption spectra of PCA in THF solution and 
adsorbed on TiO2 nanocrystalline thin film. 

To evaluate the possibility of electron injection occurring 
from the excited state of dye molecules to the conduction 
band of TiO2, the electrochemical oxidation and reduction 
potentials of the dyes were measured by cyclic voltammetry 
(CV) using three electrode cells. 

The oxidation potential of the ground state of PCA, 
which corresponds to their HOMO level is 1.05 V versus 
NHE. This value is sufficiently more positive than the 
I−/I3 

− redox potential (0.4 V versus NHE) and indicates that 
the oxidized PCA formed after the injection of electrons 
into the conduction band of TiO2 could accept the electrons 
from I− ions thermodynamically. The reduction potential 
of PCA dye, which corresponds to their LUMO level is 
−0.95 V versus NHE, which is more negative that the TiO2 

conduction band edge (−0.5 V versus NHE). The energy gap 
between the LUMO level of PCA and the conduction band 
level of TiO2 is 0. 0.45 V. Since the energy gap of around 0.2 V 
is necessary for efficient electron injection [50], the energy 
gap values of the dyes were above this value indicates that the 
excited electrons of the dye molecule can be injected into the 
conduction band of TiO2 thermodynamically. 

The current-voltage characteristics of the DSSCs based 
on PCA with and without DCA was measured at 100 mW/ 
cm2 and shown in Figure 2(a). The photovoltaic parameters 
are complied in Table 1. The DSSC based on PCA without 
DCA coadsorbent gave a Jsc of 8.7 mA/cm2, Voc of 0.63 V, and 
an FF of 0.56, corresponding to overall PCE of 3.07%. Under 
the same conditions, when DCA is incorporated into the dye 
solution, the DSSC showed a Jsc of 10.8 mA/cm2, Voc of 0.68, 
and FF of 0.61, resulting an overall PCE of 4.48%. 

Figure 2(b) compares the photocurrent action spectra of 
the DSSCs before and after coadsorption with DCA, where 
incident photon to current efficiency (IPCE) is plotted as a 
function of wavelength. The IPCE values of DSSC based on 
PCA with CDA are higher than those for PCA without DCA, 
in the whole wavelength region. Because IPCE is a product of 
electron injection efficiency, light harvesting efficiency, and 
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Table 1: Photovoltaic parameters of DSSCs based on PCA with and 
without DCA coadsorbent. 

Dye Jsc (mA/cm2) Voc (V) FF PCE (%) 

PCA 8.7 0.63 0.56 3.07 

DCA-PCA 10.8 0.68 0.61 4.48 
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Figure 3: Dark current-voltage characteristics of DSSCs based on 
PCA with and without DCA. 

band enlarge the driving force for electron injection from the 
excited state of dye into the conduction band of TiO2 which 
results in the values of IPCE and Jsc. In addition, coadsorp
tion can break up the dye aggregation, and the nonaggre
gated dye molecules are favorable for electron injection. 

In DSSC the value of Voc is theoretically the difference 
between the Fermi level of TiO2 under light and the redox 
potential of the redox couple I−/I3 

−, the positive shift of 
conduction band edge upon coadsorption with DCA will 
result in a decrease in Voc. However, we have observed a 
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Figure 2: (a) Current-voltage characteristics under illumination 
and (b) IPCE spectra of the DSSCs based on PCA sensitizer with 
and without DCA coadsorbent. 

charge collection efficiency, it is interesting to analyze which 
factor affects IPCE and Jsc. We have estimated the amount of 
adsorbed dye on the TiO2 surface by desorbing the dye with 
basic solution and found that the surface concentration of 
PCA with and without DCA is about 4.6 × 10−7 and 1.5 × 
10−7 mol/cm2, respectively. Upon coadsorption with DCA, 
although the amount of dye adsorbed on the TiO2 surface is 
reduced, the IPCE spectra become broader with maximum 
IPCE improved from 60% to 71%. It is observed that the dye 
loading reduced on the coadsorption, resulted the reduction 
in LHE. Therefore, the IPCE improvement is attributed to 
the enhancements of electron injection efficiency and charge 
collection efficiency. 

It has been already reported in literature that upon 
coadsorption with DCA, the TiO2 surface is protonated and 
conduction band edge shifts positively due to the proton 
adsorption [12, 50, 51]. This positive shift of conduction 

slight increase in the Voc after coadsorption with DCA that 
is attributed to the suppression of charge recombination. 
To understand the role of DCA in improving performance 
parameters, effect of DCA on dark current was studied as 
shown in Figure 3. It is observed that the dark current onset 
potential shifted to a larger value, and also the dark current 
was also reduced upon the DCA adsorption. The addition 
of DCA in the dye solution, the surface properties of TiO2 

nanoparticle thin film layer by the passivation effect had 
similar result as also reported by De La Graza et al. for the 
modified TiO2 layer by enediol ligands [52]. This effect of 
surface states leads to shifts the flat band potential and to 
decrease the charge recombination. The shift of the onset 
potential of dark current (Figure 3), in the presence of DCA 
in the dye solution, can also reflect less participation of 
surface state in the charge transfer and leads to suppression 
of charge recombination between the injected electrons and 
I− ions in the electrolyte, favorable for improvement in 3 

Voc. The enhancement of Voc is usually associated with the 
negative shift on conduction band edge or suppression of 
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Figure 4: Electrochemical impedance spectra (EIS) of DSSCs based on PCA with and without DCA coadsorbent (a) Nyquist plots, (b) Bode 
phase plots. 

charge recombination. Consequently, suppression of charge 
recombination may compensate for the Voc loss because of 
proton exchange from DCA to the TiO2 surface, resulting in 
Voc improvement. 

To further classify the DCA effect on the photovoltaic 
parameters, electrochemical impedance spectrum (EIS), 
which is a powerful tool to elucidate the electronic and ionic 
transport processes in DSSCs was measured in dark under 
a forward bias of −0.65 V. Three semicircles were observed 
in the Nyquist plots (Figure 4(a)). The large semicircle in 
the Nyquist plots located in the middle is attributed to the 
dark reaction impedance caused by charge transportation 
at the TiO2/dye/electrolyte interface, and other two small 
semicircles located in the low and high frequency regions 
are assigned to the charge transfer at counter electrode and 
diffusion of I3 

− in the electrolyte, respectively [12, 52–55]. It 
can be seen from Figure 4(a) that the radius of the semicircle 
in middle frequency region is larger for the DSSC based on 
DCA coadsorbent PCA that that for PCA only, indicating 
that the electron recombination resistance is higher for 
former than that for latter. The higher charge recombination 
resistance observed for the DSSC with DCA coadsorbent 
also indicated that there exists efficient suppression of back 
reaction of injected electron with I3 

− ions in the electrode, 
which is reflected from the improvement in the both Voc and 
Jsc, yielding substantially enhanced overall power conversion 
efficiency. The electron lifetime derived from the Bode plots 
of EIS spectra (Figure 4(b)) is 12.7 ms and 18.3 ms for 
PCA- and DCA-PCA-based DSSCs, respectively. The longer 
electron lifetime in the TiO2 film for the DSSCs sensitized 
with DCA coadsorbent as compared to that for with DCA 
also supports the higher value of IPCE and PCE. 

4. Conclusion 

We have investigated the photovoltaic response of the 
DSSC based on PCA dye using TiO2 nanocrystalline TiO2 

photoanode and liquid electrolyte and achieved overall PCE 
of about 3.07%. The effect of coadsorption of the DCA on 
the photovoltaic performance of DSSC based on PCA dye 
was also studied. We found that DCA improves both Jsc and 
Voc. As a consequence, overall efficiency has been enhanced 
up to 4.48%. 
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