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Abstract 

The purpose of this paper is to analyse the possibility to manufacture and verify the self-sensing 

capability of composite materials plates with an embedded network of NiTi shape memory alloys 

(SMA) used as transducers for structural integrity. Firstly, the thermo-electrical material properties 

of SMAs were investigated to assess their capability to sense strain within. The results showed that 

the electrical resistance variation provided by the shape memory alloys network enables a built in 

and fast assessment of the stress distribution over the entire structure. Then, by transmitting a low 

amperage current, results in an electric and thermal  flow through the entire SMA network. Using an 

IR Camera it is possible to capture the emitted thermal waves from the sample and create an image 

of the thermal field within the material. Consequently, analysing the behaviour of the heating curves 

on different points of the sample, it is possible to identify potential variation in the apparent 

temperature of the composite, leading to the identification of damages within the composite 

structure. 
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1. Introduction 

The possibility to develop materials that can be tailored to various structural needs has led to an 

increased use of carbon fibre-reinforced composites (CFRP) for those applications which require 

high mechanical properties and very low weight, such as aerospace and automotive sector.   

However, one of the major drawbacks of composite materials is that they can be seriously damaged 

from impact of foreign objects, leading to various types of damages such as microcracks, 

delamination and barely visible impact damages (BVID). Mechanical properties of the part can be 

severely affected by the presence of these localised impact damages, which can result in dramatic 

failures. Although several authors have studied the behaviour of composite structures when 

subjected to impact [1-4], the possibility of monitoring the structural integrity of key parts is still an 

issue because of the intrinsic complexity of composite materials and the need to further improve the 

safety of structures. Several Non Destructive Evaluation (NDE) techniques such as shearography [5], 

thermography, eddy current and radiography are used to inspect the integrity of a part, however most 

of them require that all parts have to be taken out from the structure and to be analysed separately, 

resulting in time consuming and expensive procedures [6]. To solve this problem, the past decade 

has seen the rapid development of Structural Health Monitoring systems, which imply the 

integration of NDE methods in a material in order to enable autonomous state awareness for 

structural integrity. A new-generation materials is being developed characterised by an embedded 

complex sensor-based network integrating signal analysis and transmission capabilities, resulting in 

a smart material able to provide information about the integrity of structural components. The 

sensors network can be obtained exploiting peculiar properties of specific materials, such as 

piezoelectric components [7], carbon nanotubes [8], optical fibres [9] and Micro-Electro-Mechanical 
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Systems (MEMS) [10]. Shape Memory Alloys (SMA) are novel materials with the unique ability to 

recover their initial shape after a solicitation and they have been studied as a possible reinforcement 

media to improve impact resistance and damping properties of composite panels [11-14]. Moreover, 

because of their electro-thermal properties, these new generation materials can be exploited as 

sensors and actuator for SHM in composite parts [15]. Hence, unlike other smart materials, SMA-

reinforced CFRP are simultaneously structural, functional and smart materials, due to their high 

mechanical properties, high thermal and electrical conductivity and SHM properties. This work is 

focused on the characterisation of a new multifunctional material, obtained embedding SMA wires 

within traditional carbon fibres reinforced epoxy composites. The multifunctionality of the material 

lies in the possibility to use SMA not only to increase impact resistance but also, exploiting their 

intrinsic properties, to create a network of sensors that can be employed for SHM and NDT. 

 

 

2. Material and Methods 

2.1.  SMA Overview 

The particular properties of a SMA rise from the presence of two different crystalline phases within 

its structure [16]: the martensitic phase (M) and the austenitic phase (A). The martensitic phase is 

stable below a specific value of temperature called martensite finish transformation temperature 

(Mf), while the austenitic phase is stable above the austenite finish transformation temperature (Af), 

with Af>Mf (Figure 1).  The peculiar properties of SMA are the result of the thermoelastic phase 

transition between austenite and martensite. This mechanism is defined as diffusionless as it does not 

involve chemical modification of the material but only a rearrangement of the crystalline structure at 

the lower energy configuration for a given temperature. Indeed, each phase is characterised by a 

specific crystalline structure, i.e. martensite is arranged in a tetragonal body centred configuration 

and austenite presents a face centred cubic structure.   

 

 (a) (b) 
Figure 1- a) Different phase transitions for SMA; b) shape memory effect 

Due to the high symmetry of austenite, when a single austenitic crystal is cooled below Mf, the 

martensite phase can assume multiple configurations, called variants. Therefore, two different 

typology of martensite can be distinguished:  stress-free martensite, characterised by a multi-variant 

twinned configuration (TM) and stress-induced martensite, characterised by a detwinned 

configuration (DTM). The difference between these two configurations relies in the different 

response to an external deformation. Indeed, while stress-free martensite can minimise only the 

effect of small local deformation, stress-induced martensite is able to withstand higher macroscopic 
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deformations due to the alignment of all the variants. As it is possible to observe from Figure 1, for 

temperatures below Mf the material is in its fully martensitic phase, hence, applying a stress it is 

possible to observe an initial elastic deformation (A) followed from the transformation from 

multivariant to single-variant martensite (B) once a critical stress value is reached. When the external 

stress is removed an elastic recovery takes palace (C). At this point, when the temperature is 

increased above Af, the phase transformation between de-twinned martensite and austenite is 

activated (D), resulting in a full recovery of the initial shape. 

 

2.2. Samples Manufacturing 

In order to analyse the SHM ability of SMA-reinforced composites, several samples were 

manufactured, embedding NiTi SMA wires with a diameter of 350m (Figure 2) within laminates 

obtained with different lay-up sequence. The prepreg used was a M21 carbon fibres prepreg. All the 

samples were prepared via manual stratification and hot press curing at 180ºC for 2 hours. 

 

 
Figure 2 - Optical microscope image of a single NiTi wire 

(a) (b) 
Figure 3 - a) single NiTi embedded CFRP sample; b) multiple NiTi embedded CFRP sample with single PFTE patch (4 layers) 

In order to test the thermo-electrical behaviour of the SMA composites, a first sample was obtained  



4 

 

embedding a single NiTi wire within a 4 layers laminate, labelled as Sample A (Figure 3a).   

Afterwards, a different sample design was developed in order to test the sensitivity of the SHM 

system (Sample B). This layout counts two different series of NiTi disposed at 0º and 90º in order to 

form a SMA sensors grid with an inter-wire distance of 10 mm. The wires were embedded within a 

laminate with the stack sequence shown in Figure 3b. In order to simulate the presence of a damage 

a patch of PTFE was inserted in the middle plane of the sample.  

The last sample, labelled Sample C, was prepared in such a way to embed multiple damages in a 

thicker plate. The laminate was obtained with 16 plies and three different PFTE patches were layered 

at different depth (1.25, 1 and 0.575 mm for the top surface). The orthogonal SMA network was 

included in the sample with the same inter-wires distance of the previous sample (Figure 4). 

 

 

 
Figure 4 - NiTi network embedded CFRP sample with multiple PFTE patches (16 layers) 

 

3. Strain Sensing 

 

The capability of using SMA as sensors for real time monitoring of strain distribution was studied, 

exploiting the variation of particular properties of the material. Indeed, being able to measure such 

variations, it is possible to control when a structural key point of a part is undergone to tensile or 

compressive strength above a certain critical value. 

 

3.1. Strain Sensing Results and discussion 

 

Results obtained from Cui et al [17] have shown that there is a relationship between the strain and 

the electrical resistance variation of SMA wires. However, such a relationship is linear and 

temperature independent only when the material is in its fully martensite phase, whilst for the 

austenitic phase it becomes more complicated. Therefore, temperature during all the tests was set in 

order to be always below Mf.  The sensing ability of SMA wires were first tested by loading a single 

NiTi wire (R0=2.5 ) in a tensile machine and measuring the resistance variation with a 6-digit 

precision multimeter (Figure 5a). As it is possible to observe from Figure 5b, after an initial elastic 

deformation, the stress-strain curve of NiTi wires exhibits the typical SMA plateau, which 

corresponds to the de-twinning of martensite. However, during the martensite phase transformation, 

the variation of the electrical resistance still increases almost linearly with the strain, confirming the 
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sensing ability of NiTi wires [11].  Nevertheless, an impact event is characterised by a very different 

stress distribution in comparison with a pure tensile loading. Indeed, while during the tensile test the 

SMA wires are loaded only in the longitudinal direction, during an impact the material is stressed 

also in the out of plane direction and under compressive stresses. As a consequence, in order to 

investigate the sensitivity of SMA-based composites, flexural tests were carried on Sample A in 

three-point-bending mode (Figure 6a). Figure 6b represents the results from the flexural test 

showing that the electrical resistance variation remains linear with the increase of the flexural 

extension. As a result, monitoring the dynamic behaviour of electrical resistance is it possible to 

analyse the strain distribution within the composite part.  

 

 

(a) (b) 

(Figure 5 – a) Experimental setup; b) Stress-Strain behaviour and electrical resistance variation of NiTi wires in tensile mode 

 

(a) 
(b) 

Figure 6 – a) Experimental setup; b) Flexural Load versus Flexural Extension and electrical resistance variation for SMA-based 

composites  

 

4. Thermography  

 

Active Infrared Thermography (IT) is based on the analysis of the temperature gradients responses at 

the medium surface due to heat stimulation. Data are recorded using an infrared camera (IR) and can 

give information about the integrity status of structural components. These thermal responses can 

identify the internal state of the material due to the difference in the heat diffusion rate that rises 

when the thermal waves flow by diffusion on a damaged part [18]. IT can be performed using 

different approaches, depending on how the thermal waves are generated and the most common 

techniques are lock-in, pulsed and step heating thermography [19, 20]. Lock-in thermography (LT) 
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employs a periodic heat excitation to achieve information on the structural damage, by using the 

reflected and incident thermal waves magnitude or phase. However, as the probing depth is 

determined by the excitation frequency, LT is time consuming for defects located at various depths 

in the test specimen, and requires sophisticated data acquisition systems to input the heat source. In 

pulsed thermography (PT), a short duration energy pulse is applied and the specimen subsurface 

structure is revealed through the surface temperature evolution. Nevertheless, this approach is not 

suitable for thick and low conductive materials, as the intensity of the pulse is limited to avoid 

damaging the structure. Unlike PT, in step-heating thermography (SHT) a low intensity pulse (heat 

source) is applied for a long period, thus enabling a longer heating time to locate deeper defects. 

However, one of the major drawbacks of all these approaches is that they all need an external heat 

source such as high-power flashes or infrared radiators [21], leading to expensive and time-

consuming techniques that cannot be employed for in situ assessment of the defects. The use of the 

composite parts reinforced with SMA can overcome this issue using the NiTi network wires as an 

internal heat source to generate an in situ low power resistive heating (Joule effect), resulting in a 

built in SHM system for composite structures. 

 

4.1. Experimental Set-up 

 

As it is possible to observe from Figure 7a, the samples were heated by applying on the NiTi 

network a long pulse of electric current at constant amplitude of 1 A. Current was provided using a 

power supply and an electrically cooled Infra-red Camera (CEDIP) was used to acquire the thermal 

images.  

 

(a) (b) 

 
(Figure 7 - a) Experimental Setup; b) observation time of the IR camera in the step-heating process 

The resolution of the camera was 320x240, while temperature sensitivity and maximum frame rate 

were 30 mK and 150 Hz respectively.  In order to analyse the temperature evolution during and after 

the heating process, SHT was chosen as active thermography method for the evaluation of the 

apparent temperature at the test piece surface. Thermal images were acquired with an interval of 0.01 

sec for a total observation time () of 5 sec. To overcome the effects given by imperfect heating or 
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heat noise, a background subtraction was carried out on the first 100 frames (1 sec) of acquisition, 

computing the average for every pixel of the IR camera (Figure 7b). In the following images units of 

temperature will not be reported because the surface temperature is proportional to the camera’s 

digital level output .However, the same scale is used for all tests carried out. 

 

4.2. Thermography Results and Discussion 

Tests conducted on Sample B are shown in Figure 8 and 9 and they represent the thermograms 

measured at the end of the step-heat excitation (t=3 sec). Epoxy resin within the CFRP is 

characterised by a low thermal diffusivity, thus the heat generated via Joule effect in the NiTi wires 

does not spread immediately but it is initially confined only in the area surrounding the SMA. This is 

clearly shown in Figure 8a and 8b, which represent the thermal response of the composite when the 

current flows on a vertically and horizontally aligned NiTi wire through undamaged areas. As it is 

possible to notice from the images, the variation in apparent temperature changes uniformly all over 

the area in which the current is flowing, while the rest of the sample is not affected.   

 

 
 

Figure 8 - Thermography images for undefective parts of sample B at t=3s 

 
 

Figure 9 - Thermography images for defective parts of sample B at t=3s 

Images 9a and 9b represent instead the thermal response of the composite when damaged parts are 
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 analysed. Indeed, the presence of damage within the thickness is immediately identified by a large 

variation in the apparent temperature of the sample. This effect is generated because the heat flow, 

due to Joule heating, is impeded by the increase of thermal resistance (PTFE patch) around the 

damaged area. In other words, the diffusion rate at that specific point is reduced by the presence of a 

subsurface discontinuity, resulting in a recorded apparent temperature variation on the surface. 

Information regarding the structural integrity of the sample can be also investigated by analysing the 

time history of the apparent temperature for the pixels associated to a non-defective area in 

comparison with those from a defective area. Figure 10 represents the behaviour of the observed 

temperature during the entire test for a damaged (continuous curve) and an un-damaged point 

(dashed curve). 

 

 

 
Figure 10 - Apparent temperature variation over time for damaged and undamaged areas 

Analysing the curves it is possible to observe that the presence of the damage has several effects on 

apparent temperature over time. Indeed, not only the peak of apparent temperature is lower for a 

damaged part in comparison with an un-damaged one (which is the effect seen in the thermograms), 

but also both heating and cooling rates are affected by the PFTE discontinuity. Another important 

results obtained with this technique is the possibility to assess the severity of a detected damage with 

high spatial resolution (even below the inter-wire distance). Indeed, by simply recording the thermal 

waves after heating two NiTi wires surrounding the damage and then looking at the high apparent 

temperature variation around the PTFE patch, it is possible to obtain a qualitative image of the defect 

size (Figure 11). By means of a simple calibration obtained with a priori knowledge of the inter-

wire distance and the length of the SMA wires, a rough estimation of the size of the internal damage 

was provided (approximately 10 mm length and 10 mm width).  

Further tests were conducted on Sample C, in order to analyse the behaviour of the SMA-based 

composite when multiple damages are located within the thickness. Figure 12 represents the results 

for the experiments carried out on the multi-damaged sample. A current of 1A was driven in two 

different NiTi wires using a two-channel power supply, in order to analyse the sensitivity of the 

technique with damages far from the top surface. As it is depicted in Figure 12a, the technique 

provides remarkable results also for damages that are located deeper within the sample. Indeed, the 
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positions of PTFE3 (positioned at 1.25 mm from the surface) and PFTE1 (positioned at 0.575 mm 

from the surface) are immediately detected by the IR-camera as the apparent temperature shows 

large variations for both discontinuities. Signals acquired from the camera were analysed separately 

and a contrast observed temperature analysis was carried out in order to evaluate only the effect 

given by the damages, according to the following equation:   

 

𝐶𝐴𝑖 = ‖𝐴𝑢𝑛𝑑𝑖 − 𝐴𝑑𝑎𝑚𝑖
‖ 

 

where CAi is the contrast signal, Aundi is the signal recorded for a undamaged part on the ith wire and 

Adami is the signal recorder for a damaged point on the same ith wire. Results in Figure 12b show a 

slight decrease of the apparent temperature peak for PFTE3 in comparison with PFTE1.   

 

 

 

Figure 11 - Thermal image of the apparent temperature for sample A obtained at t=3 sec with double vertically 

aligned NiTi wires surrounding the PFTE patch 

 

(a) (b) 

 
(Figure 12 – a) Thermography images for multiple defective parts of Sample C at t=3s; b) Amplitude contrast of apparent temperature 

variation for PFTE1 (0.575mm) and PFTE3 (1.25) 
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5. Conclusions 

 

The work presented in this paper investigates a novel in situ approach for the evaluation of health  

status for advanced composite structures using SMA-embedded composite material. Such a smart 

material, exploits the unique SMA properties not only to increase the mechanical properties of 

composite parts, but also to employ them as a strain gauge sensor and damage detection system. The 

electrical resistance variation and the internal Joule heating source provided by a network of NiTi 

wires, allowed a quick detection of the material strain distribution, and an in situ damage imaging 

using a step heating thermography process. In order to validate the efficiency of these techniques, 

several tests were carried on a number of laminates with different configurations. Results clearly 

show that the strain sensing and damage detection were achieved with high accuracy, without the 

need to use large external heaters or complex signal processing techniques as the heat source is 

embedded into the material.  
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