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Abstract—Patterns of human encounters, which are difficult to 
observe directly, are fundamental to the propagation of mobile 
malware aimed at infecting devices in spatial proximity. We 
investigate errors introduced by using scanners that detect the 
presence of devices on the assumption that device copresence 
at a scanner corresponds to a device encounter. We show in 
an ideal static model that only 59% of inferred encounters 
correspond to actual device copresence. To investigate the effects 
of mobility, we use a simulator to compare encounters between 
devices with those inferred by scanners. We show that the 
statistical properties of scanned encounters differ from actual 
device encounters in ways which impact malware propagation 
dynamics, a form of aggressive data dissemination. In addition to 
helping us understand the limitations of encounter data gathered 
by scanners in the field, our use of virtual scanners suggests 
a practical method for using these empirical datasets to better 
inform simulations of proximity malware outbreaks and similar 
data dissemination applications. 

I. INTRODUCTION 

Understanding the dynamics of propagation and assessing 

the effectiveness of countermeasures in outbreaks of self-

replicating computer malware relies on understanding two 

factors: the mechanism by which the malware infects a sus

ceptible host, and the patterns of contact between hosts. For 

network-borne malware these contacts are practically instan

taneous and enabled by network topology rather than spatial 

relationships. For malware targeting cellphones, propagation 

may take place over the infrastructure network, but also 

through direct “proximity connections”. Recently, malware 

has propagated over short-range radio connections, such as 

Bluetooth [1], [2]; at the same time, organizers of large events 

increasingly encourage Bluetooth activation for advertisements 

and crime prevention [3], increasing the risk of such malware 

threats. In the case of such proximity connections, the patterns 

of contact between people carrying the devices are critical in 

developing an understanding of the propagation dynamics. 

When attempting to understand and model proximity-based 

propagation the availability of relevant and generalizable em

pirical data is limited. Here, we consider the approach of 

deploying scanners which use the same radio technology as 

devices carried by users. These scanners connect to users’ 

devices when they pass within range and store information 
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about the detected devices. Devices which are detected simul

taneously by a given scanner are considered to be spatially 

co-located (corresponding to observed “encounters” within the 

scanner’s radio range). The main benefit of such an approach 

is that once the scanners are deployed, large amounts of data 

can be gathered easily and at low cost, allowing longitudinal 

comparisons of encounter patterns. However, there are also 

some drawbacks when such scanner data is used as a basis 

for inferring proximity-based malware propagation dynamics: 

(i) Scanner deployments in the real world tend to be of 

relatively low density, typically covering a small fraction of 

an area under consideration, such as a campus or a part of a 

city. Hence, within this already limited area, the majority of 

encounters between devices will take place out of range of the 

scanners. (ii) Moreover, as we limit the area of consideration, 

we would expect the frequency with which particular devices 

appear at any scanner to decrease, artificially lengthening 

device inter-contact times. 

Despite these obvious limitations, if scanned data is used 

carefully (i.e., accounting for the effects of missed encounters) 

it would still appear to be a good source of empirically-derived 

data on human encounters. Superficially, the encounters which 

are captured should consist of a subset of the actual device 

encounters taking place in the area under study at a particular 

time. In fact, we find that the process of inferring copres

ence encounters between pairs of devices based on empirical 

evidence of simultaneous sightings by third-party scanners 

leads to the introduction of errors. Here, we investigate the 

extent to which errors are introduced, and make the following 

contributions. 

•	 We derive analytical results on errors introduced in 

scanner-based measurements for a simplified case where 

all scanners and devices are static, and where radio prop

agation details are omitted. We examine the differences 

between device copresence as inferred by the scanners 

and actual copresence between the devices, and classify 

the discrepancies. 

•	 Based on this classification, we then derive the proba

bilities with which each type of discrepancy will occur. 

Using simulation we validate our analytical finding that 

approximately 41% of copresence encounters inferred by 

scanners do not correspond to actual device copresence. 



•	 Also using simulation, we demonstrate the extent and 

impact of errors when device mobility is included. As a 

concrete application, we study the effect on proximity-

based malware propagation, an example of flooding-

based data dissemination which depends heavily on the 

patterns of device encounters. We find that, in addition 

to the expected cases of missed and spuriously inferred 

encounters, the set of encounters inferred from scanners 

differs from the actual encounters simulated in the model 

in terms of duration distribution and probability of en

countering previously unmet devices. While the magni

tude of these errors increases when simulated mobility is 

more diffusive, in all the cases we considered malware 

propagation models showed slower propagation using 

scanned encounters compared to actual encounters for 

devices with the same mobility characteristics. 

II. RELATED WORK 

Several studies have considered propagation dynamics of, 

and defence strategies against, malware using proximity-based 

propagation [1], [4]–[7]. However, access to empirical data 

on which to base such studies is currently limited. What is 

required is either direct data on malware propagation, which 

is not generally available, or information about device encoun

ters, with which one can model propagation of malware. 

In the absence of direct encounter data, human mobility data 

can also be used to infer encounters by considering spatial 

proximity between individuals. While human mobility data 

can be captured at a fine resolution under certain conditions, 

e.g., by using GPS traces, requiring users to record their 

movements is typically considered intrusive and onerous. As a 

result, studies which attempt to gather such data have typically 

involved dozens or, at most, hundreds of users in a limited 

geographical area [8], [9]. 

At the other end of the spectrum in terms of number of 

users and data granularity, recent work has utilized information 

from mobile network operators, where cell phone connectivity 

to the nearest base station can be tracked [10]–[12]. This 

provides coarse mobility data for large numbers of users in a 

potentially large geographic area, but does not make it possible 

to determine when individual devices encounter each other 

and, for instance, are able to connect via Bluetooth. 

Another option, when interested in Bluetooth connectivity, 

is to directly collect data by deploying an application on 

participants’ Bluetooth devices which periodically scans for 

discoverable Bluetooth devices in range. However, as in the 

case of gathering GPS data, this approach is challenging in 

terms of both user effort and privacy. The Reality Mining 

project collected Bluetooth traces from approximately 100 

users over a period of nine months [13], using an application 

installed on cellphones; however, the devices scanned only 

once every five minutes, which is likely to have led to shorter 

copresence encounters going undetected. In [14], portable 

Bluetooth scanners were carried by up to twelve users for 

a period of five days, with scans being conducted every two 

minutes. 

Some of the earliest papers on Bluetooth malware included 

empirical tests where Bluetooth devices were carried around to 

collect data on other discoverable Bluetooth devices encoun

tered [1], [15]. In both of these studies, however, the volume 

of data gathered directly from devices was not sufficient to be 

used as a veridical source of encounter data for modelling a 

malware outbreak. Instead, [1] used encounter data from [13], 

while [15] used characteristics derived from their empirical 

data to parameterise a mobility trace generator based on social 

network theory [16]. 

Given the difficulty in gathering sufficient data directly 

from devices, some work has been done using fixed Bluetooth 

scanners to collect data on other Bluetooth devices passing by, 

including inference of what we call “copresence encounters” 

from the simultaneous presence of devices within the scanner’s 

range [2], [17], [18]. 

The Bluetooth scanning approach enables the collection of 

data for large numbers of devices over long periods of time, 

but has some problems in studying proximity-based malware 

propagation. These issues have not been systematically exam

ined in the literature. 

III. FROM DEVICE CONTACTS TO INFERRED ENCOUNTERS 

The data captured by scanners is not necessarily an accurate 

representation of the real contacts taking place between mobile 

devices—even if we consider only the subset of real contacts 

taking place within the scanner’s range. Scanners infer copres

ence encounters when a device pair is simultaneously sighted 

at the same scanner. We assume throughout that the scanner 

has the same radio range as the devices. Simple geometry 

indicates that a scanner, if capable of the same radio range 

as the devices moving around it, will be able to make contact 

with pairs of devices which are simultaneously within range 

of the scanner, but not within range of each other. This effect, 

which we term “bridging”, leads to the incorrect inference of 

encounters between devices which did not actually meet (see 

Figure 2). 

A. Static Analysis 

To begin to understand the relationship between scanned 

encounters and actual contacts between mobile devices, we 

first consider a simplified case: a single time instance in 

which all devices and scanners are static. We derive simple 

expressions for the expected number of different encounter 

types as seen by an array of fixed scanners. 

We consider n devices, each equipped with a short-range 

radio. We assume that this radio behaves ideally, producing a 

disc of constant signal strength with radius r. The devices are 

uniformly distributed over a rectangular area of size a×b, and 

are observed by m scanners using the same radio technology 

and placed in the same area. We assume that the coverage 

areas of scanners do not overlap. 

Let Xi (i = 1, . . . , n) denote the position of each device. 
We assume that these 2-dimensional random vectors Xi are 

independent and identically uniformly distributed (iid) over 

the rectangle [0, a] × [0, b]. Using a simplified “perfect disc” 
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radio propagation assumption, we say that two devices i and j 

are in contact if they are within radio range, that is �Xi −
Xj � ≤ r. With a slight abuse of notation, we write r(Xi,Xj ) 
as a shorthand for this relation, and r(Xi,Xj ) as a shorthand 
for its negation (i.e., �Xi − Xj � > r). 

Similarly let yk (k = 1, . . . , m) denote the scanner posi
tions. Then, using our shorthand notation, the event that device 

i is in range of the kth scanner can be expressed as r(Xi,yk). 

In our model, a scanner k registers an inferred contact be

tween two devices, i and j, if both devices are simultaneously 

within the scanner’s range; or, more formally: 

r(Xi,yk) ∧ r(Xj ,yk). 

Note that an inferred contact need not correspond to an actual 

device contact, since two devices may both be in range of 

the same scanner without being in range of one another (the 

“bridging effect”). On the other hand, not all actual device 

contacts will be inferred by a scanner, since either one or 

both of the devices involved in a contact with each other may 

be outside scanner range. The following analysis classifies all 

possible relationships between device contacts and the contacts 

inferred by scanners. 

1) Types of Contacts Considered: Not all device contacts 

can be inferred by scanners, and not all contacts which the 

scanners do observe correspond to actual contacts between 

devices. We set out to derive expressions for the expected 

number of: 

• real contacts between devices, 

• contacts inferred by scanners (consisting of): 

– correctly inferred contacts (“inferred real”), 

– incorrectly inferred contacts (“inferred fake”), 

•	 real device contacts missed by scanners, because


– one device is outside coverage (“missed one”),


– both devices are outside coverage (“missed two”). 

Figure 1 shows a diagram relating these contact types. We 

assume a sufficiently sparse scanner arrangement to preclude 

missed contacts where both devices are in scanner range, but 

the two devices are in the range of two different scanners. 

missed 

missed 

one 

real 

inferred 

fake 

inferredtwo 

Fig. 1. Contact types: real (thick ellipse) and inferred (thin ellipse) contacts 

2) Real Contacts: Intuitively, the expected number of de

vice contacts (without regard to which of these are inferred 

or missed by the scanners) for n iid devices should equal the 

number of possible device pairs, n 
2 , times the probability of 

contact between any two devices. In the following derivations 

P denotes probabilities. Let us denote the ratio of a coverage 
area to the total observation area by 

. r2π 
p = .	 (1) 

ab 

Now, one can write the expected number of real contacts as 

n 
creal = p(1 − δ) (2) 

2 

where δ is an error term accounting for border effects. In the 

model, the border effects can be removed, e.g., by having edge 

wrap-around (effectively forming a torus), in which case the 

error term can be omitted. 
3) Observed Contacts: For a single scanner at position y ∈

[r, a − r] × [r, b − r], we have 

P [r(Xi,y)] = p, ∀i. 

Thus, the expected number of inferred contacts for this scanner 

equals n 
2 p2; i.e., the number of device pairs times the 

probability that both devices “independently” fall inside the 

scanner’s coverage area. For m scanners, whose coverage areas 

do not overlap and lie completely inside the measurement area, 

the above probability for a single scanner is simply multiplied 

by m to yield the expected number of inferred contacts. 

n 
cinferred = m p 2 ≈ mp creal (3) 

2 

The result may appear intuitively satisfying, as it suggests 

that the scanners capture the fraction of real contacts cor

responding to their combined coverage area. Unfortunately, 

this intuition is somewhat misleading, since a sizable portion 

of these inferred contacts are in fact “fake” and result from 

bridging, as we show next. 
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Fig. 2. Bridging probability. The position and coverage area of the scanner 
are shown by a + and the solid circle, while those of the first device by 
an × and a dashed circle. If the position of the second device falls inside 
the dark-shaded area to the right, the scanner will infer a contact while none 
actually occurs. 

The bridging probability β is the conditional probability 

that two devices both inside the same scanner’s coverage area 

are not within range of one another. Pictorially speaking, this 

corresponds to the average fraction of the darker half-moon

shaped area to the right in Figure 2. While we omit the full 

derivation for brevity, we have 

.	 3
√

3 
β = P [r(X1,X2) | r(X1,y1), r(X2,y1)] = 

4π 
(4) 
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In other words, over 41% of inferred contacts are fake, 

introduced by bridging; and, consequently, only about 59% 

of inferred contacts correspond to real device contacts. The 

resulting formulas for the expected number of real and fake 

inferred contacts can be written as follows. 

cinferred,real = m 
n 

2 
p 2(1 − β) ≈ 0.5865 cinferred (5) 

� � 

cinferred,fake = m 
n 

2 
p 2β ≈ 0.4135 cinferred (6) 

4) Missed Contacts: As noted earlier, due to our assump

tions on scanner placement, we consider only two types of 

missed contacts. In the first, one of the devices is inside 

scanner range while the other one is outside; and in the second 

type, both devices are outside scanner range. 

Another careful look at Figure 2 reveals that the conditional 

probability of a device outside a given scanner’s range being in 

range of another device inside the same scanner’s range also 

equals the bridging probability β (as this case corresponds 

to the unshaded half-moon-shaped area on the right in the 

figure). Given that, viewed as an ordered pair, either of the 

two devices in this type of missed contact could be inside or 

outside scanner range, the following formula obtains: 

n 
cmissed,one = 2m p 2β = 2 cinferred,fake ≈ 0.827 cinferred (7) 

2 

where one factor of p corresponds to r(X1,y1) (i.e., the 
probability that the “first” device is in scanner range) and the 

other to r(X1,X2) (i.e., that the two devices are within range 
of one another). 

When both devices are outside scanner range, the analysis 

naturally splits into two sub-cases: one that accounts for border 

effects around the edges of the observation area, and another 

that accounts for similar effects near each scanner, when 

the scanner’s and the devices’ coverage areas intersect, as 

illustrated in Figure 3. 
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Fig. 3. Border effect near a scanner. If the first device is within distance 2r 
of a scanner (dotted circle), the position of the second device must fall inside 
the dark-shaded area to the left in order to guarantee that both devices end 
up outside scanner range. 

The geometry of the dark shaded area in Figure 3 is 

essentially the same as the geometry of the dark shaded 

area in Figure 2, with the notable exception that the distance 

between the scanner’s and the device’s position varies between 

r and 2r (compared to 0 and r for the bridging probability). 
Consequently, λk, the corresponding conditional probability 

for scanner yk, can be obtained in the same fashion, giving: 

. 
λk = P [r(X2,yk) r(X1,X2), 2r(X1,yk), r(X1,yk)] √

3 

|
β 

= 1 − = 1 −	 (8) 
4π 3 

Using equation (8) and subject to the constraints that: 

a) the distance between any two scanners is at least 4r, 

which avoids simultaneous interactions with multiple 

scanners, and 

b) the distance between any scanner and the edge of the 

observation area is at least 3r, excluding interactions 

between scanners and edge effects, 

the expected number of missed contacts due to both devices 

being outside scanner coverage can be derived as follows. 

n 
cmissed,two = P r(X1,X2), r(X2,yl), r(X1,yl)

2 
l l 

 

n	
� 

= P r(X1,X2) � 2r(X1,yl) (1 − δ − 4mp)
2	 � 

l 
 

+	 λkp(4p − p) 

k 

n	 β 
= p(1 − δ − 4mp) + m(4p− p)p(1 − )

2	 3 
n 

= p (1 − δ − mp(1 + β))	 (9) 
2 

=creal − (cinferred,real + cmissed,one) (10) 

B. Validation 

To validate our analysis, we performed a simple simulation. 

Using the same constraints as above on scanner arrangement, 

we randomly placed 5,000 devices and 144 scanners, both with 

a range r = 10m, within a simulated area of size 500m ×
500m. We then compared the encounters recorded directly by 

the devices with the encounters inferred by the scanners over 

100 simulation runs. 

In our simulation an average of 41.347% (SD=1.29%) of 

encounters inferred by the scanners were “fake”, that is, they 

did not correspond to pairs of devices which were in range of 

each other. We further found that the mean number of pairwise 

encounters missed by scanners because only one device was in 

range, divided by the total number of encounters which were 

inferred by scanners, was 0.829 (SD=0.044). These values 

compare to the expectations of 41.35% (Eq. 6) and 0.827 

(Eq. 7) which were derived in our previous analysis. 

IV.	 SCANNER ERRORS IN MOBILE DATA 

In Figure 1 we defined the four possible classifications of 

contact types in a static scenario: inferred-real, inferred-fake, 

missed-one, missed-two. These contact types describe all the 
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Fig. 4. Relating device contacts to scanned encounters 

ways in which a scanner might (or might not) register an 

encounter between two devices at a particular moment in time. 

When mobility and time are introduced, the way in which 

a scanner infers (or misses) an encounter can be thought of 

as a sequence of successive static contacts over a period of 

time. The relationship between the device encounter and what 

is inferred (or not) by the scanner falls into four possible 

classifications, each characterised by which of the four contact 

types makes up the sequence. We show the relationship 

between device encounters and scanned encounters, and their 

corresponding contact types, in Figure 4. The top time-series 

shows the ground truth of the encounters of two devices, and 

the bottom time-series shows the different ways a scanner 

may infer (or miss) device encounters. The shading on each 

scanned encounter relates to the contact types from which 

it is composed over time. While we separately considered 

the distinct probabilities of missed-one and missed-two in our 

static analysis, the distinction is not useful from here on; in 

both cases a device encounter goes undetected by all scanners. 

•	 Exact matches. Encounters between two devices that 

take place entirely within scanner range. Devices are only 

within range of a scanner for the period of time that 

they are within range of each other. These encounters 

are composed entirely of inferred-real contacts, as in the 

encounter in Figure 4 beginning at time tn+1. 

•	 Missed encounters. Encounters between two devices that 

take place beyond the range of scanners are composed of 

missed-one or missed-two contacts. In Figure 4 this is 

shown by an unbordered solid area at time tn+4. 

•	 Spurious matches. Encounters between two devices 

when the devices are each within range of a scanner, 

yet are never actually in range of each other. These 

encounters are composed entirely of successive inferred-

fake contacts, as in the encounter in Figure 4 at time 

tn+8. 

•	 Partial matches. Encounters between pairs of devices 

which are composed of more than one of the four types of 

contact (other than a mixture of missed-one and missed-

two). Compared to the actual encounter the scanner may 

infer one or more longer or shorter encounters which 

partially overlap in time with the actual encounter. In 

Figure 4 two such encounters are shown beginning at 

times tn+10 and tn+16. 

The extent to which the encounters inferred (or missed) 

by scanners fall into each of these categories is critical when 

considering the degree of error which is likely to appear in 

malware propagation models based on them. 

Consider an ideal scanner, which was somehow able to 

accurately infer all device encounters which passed within its 

range. For this scanner, all of its inferred encounters would 

fall into one of the first two categories above. As such, they 

would be composed entirely of inferred real and missed one 

or missed two contacts. By definition, the encounters inferred 

by this scanner would be a subset of the total set of device 

encounters which took place in the area under study. While 

those encounters which never passed in range of the scanner 

would be missed, if we assume that devices are dispersed 

uniformly around the area then we would expect the selection 

of encounters which the scanner did infer to be unbiased. 

As such, a deployment of a number of these ideal scanners 

would together collect a subset of total device encounters (once 

de-duplicated to account for encounters which pass through 

multiple scanners). We would expect the relative numbers of 

encounters inferred to reflect the ratio of scanner coverage area 

to the total area under study. If we compared the property 

distributions (e.g., encounter duration) of the scanner and 

device encounters, we would expect to see no difference. As a 

consequence, once we adjusted for the lower encounter rates 

in the scanner data, we would expect to see identical dynamics 

of propagation between the two sources of encounter data. 

In practice, we can easily identify ways in which scanners 

deviate from ideal behaviour. In our previous analysis, we 

have shown that bridging leads scanners to incorrectly infer 

copresence in around 41% of device pair sightings. These 

incorrect inferences will give rise to partial matches and 

spurious matches appearing in the scanner data, which differ 

from, or do not actually appear in, the device encounters. In 

addition, when we consider moving devices over time, even 

in the absence of bridging, scanners can report encounters 

which differ from actual device encounters. For example, a 

pair of devices may remain in range of each other while 

moving on equal vectors. They may pass in and out of the 

ranges of a number of scanners, which will report numerous 

shorter encounters between the pair, instead of one continuous 

meeting. In this particular example, the scanner data will 

contain a number of partial match encounters. If we again 



consider the distribution of encounter duration in the scanner 

encounters, a disparity will clearly be introduced compared to 

the device encounters. 

Having shown the circumstances in which the use of scan

ners to infer copresence can introduce errors, the remainder 

of the paper investigates how often these errors occur, and the 

extent to which they lead to inaccurate estimates of proximity 

borne malware propagation as one concrete application. 

A. Methodology 

Compared to our analytical solution for the static case, a 

similar analytic model for the dynamic case of devices that 

are mobile over time is substantially more complex. On the 

other hand, obtaining empirical data with which to compare 

the incidence of errors in scanned encounters is also difficult. 

To understand the extent of errors introduced by the use of 

scanners in the case of mobile devices, we require data on 

both the real encounters (as detected by devices themselves) 

and the encounters inferred from scanners for the same set of 

devices at the same time. Most datasets consist of either high 

volume scanned data or relatively low volume GPS trace data, 

but not both. 

Lacking empirical data, we instead use a mobility simulator 

to produce complete traces of mobile devices moving within a 

simulated two-dimensional space. To obtain a baseline for the 

actual encounters between devices, we process the mobility 

traces generated by the simulator to identify the encounters 

between pairs of devices over time. Using the same definition 

as in the static case above, we say that a pair of devices i and 

j with positions given by two-dimensional vectors Xi and Xj 

are within radio range while �Xi − Xj � ≤ r. As the devices 

move over time, we say that they are in a pairwise encounter 

for any contiguous time period during which they remain in 

radio range, i.e., for an encounter between times tm and tn 

(where m < n): 

�Xi(ts) − Xj (ts)� ≤ r ∀s : m ≤ s ≤ n 

We then simulated the deployment of “virtual scanners” in the 

simulated area to generate encounters inferred from scanner 

observations. From the perspective of a scanner, two devices 

have an encounter when both devices are simultaneously 

within range of the scanner for a specified time period. 

With these two data sets, we can then compare the baseline 

“actual” encounters with the inferred “scanner” encounters 

to understand the nature and frequency of encounter errors 

introduced by the use of scanners. The use of simulation also 

allows us to investigate the effects of scanner density on the 

accuracy and completeness of scanned data by deploying up 

to thousands of scanners per square kilometer. 

1) Mobility simulator: We employ a mobility simulator 

which implements the Lévy walk mobility model described 

in [9]. We note that a considerable variety of synthetic 

mobility models have been proposed over time, including 

models proposed after the Lévy walk model (e.g., SLAW [19], 

SWIM [20], and individual-mobility [21]). We sidestep de

bates about the “best” mobility model, and instead observe 

that the Lévy model has the merits of validation with large 

realistic traces [9] and is relatively popular and increasingly 

well understood (e.g., [22]). Other models might result in 

different absolute values for malware propagation times and 

encounter distributions, but, given the inherent approach of 

using scanners to infer device encounters, we believe that the 

effects we observe are illustrative of the problem and not the 

mobility model. 

We consider a number of agents, each carrying a device with 

a radio range of 10m (a typical range for proximity commu

nication using Bluetooth), and we consider a pair of devices 

to be copresent if both are within the other’s radio range. 

As before, we make the simplifying assumption that radios 

produce a sharply-demarcated disc of constant signal strength. 

The agents move in steps, with each step being comprised of a 

flight — motion in a single direction θ (randomly chosen from 

a uniform distribution such that 0◦ 360◦) — followed ≤ θ ≤
by a pause, during which the agent is stationary. For each step, 

the flight length and pause time are chosen randomly from two 

Lévy distributions respectively having scale factors α (flight 

length) and β (pause time). Additionally, for flight length and 

pause time values, we apply unit scale factors c and d, and 

maximum values tf and tp. 

As in [9] flight time (and hence velocity) is related to flight 

length to reflect the greater probability that longer flights use 

a mode of transportation other than walking. Flight length is 

given by tf = kl1−p, where k and p are constants and 0 ≤ p ≤
1. For flights of less than 500m, we use values of k = 18.72 
and p = 0.79. For longer flights over 500m, we use values of 

k = 1.37, p = 0.46. We set unit scale factors for flight length 

c of 10m, and pause time d of 1 second in all simulations. 

To reduce the effects of reflection on device mobility 

patterns, we define a large square area within which devices 

move (3000m 3000m). If devices reach the edge of this ×
area, their flights reflect off the outer boundary and continue 

their current flight step. We also define a smaller central inner 

area (1000m × 1000m) as the area of device interaction, and 

consider encounters between devices only within this area. 

Inside the central inner area we deploy “virtual scanners” 

at fixed locations. These static scanners, like the mobile 

devices, have a 10m radio range and are placed at least 20m 

apart to avoid overlapping coverage areas. For simplicity of 

implementation, the scanners were placed on a square lattice, 

resulting in scanner coverage of 79% of the total area. 

To investigate whether differing mobility parameters af

fected the extent and nature of errors in the scanned data, we 

use three sets of parameters for the scale factors of flight length 

(α) and pause time (β) distributions in the Lévy walk model. 

Each of these three pairs of α and β values represent simula

tion parameters found to fit well with empirical GPS datasets 

gathered from sets of walkers in three separate locations [9]: 

San Francisco (α = 0.75, β = 1.68), NCSU (α = 0.86, 
β = 0.99) and KAIST (α = 0.97, β = 0.45). For each of the 

three mobility parameter sets we performed 25 simulation runs 

lasting one week of simulated time, each for 900 devices. We 

assume all devices are susceptible, corresponding to malware 



propagation among mobile users who share devices with the 

same platform (and are a subset of all mobile users [2]). In 

each case, we deployed 2,500 scanners within the inner area 

(1000m × 1000m) of the simulation. 

B. Simulation results 

Our simulations produced datasets containing, for each 

mobility trace, a set of device encounters sensed by the 

mobile devices themselves, and a set of scanned encounters 

inferred by the “virtual scanners”. In comparing the two sets 

of encounters, our aim was to highlight the errors introduced 

by incorrect inferences leading to partial match and spurious 

match scanner encounters and their impact on simulations of 

malware propagation models using the encounter data. 

1) Comparing malware propagation dynamics: As an ini

tial test of our assertion that the use of scanned encounter data 

may lead to inaccurate estimates of malware propagation, we 

performed a simple malware propagation simulation using the 

encounter data from our simulator. At a high level, proximity

based malware propagation is a form of data dissemination in 

opportunistic ad-hoc networks. As such, since such malware 

propagation strongly depends upon the distributions of device 

contacts and contact durations, it is particularly useful for eval

uating the sensitivity of such data dissemination applications 

to errors in device encounter data. As discussed above, our 

aim is to investigate the errors which arise in encounter data 

as a result of the scanners’ deviation from ideal behaviour. A 

deployment of ideal scanners would infer a subset of device 

encounters, selected without bias, whose size is related to the 

proportion of area under scanner coverage. 

Since scanner coverage in our simulation was incomplete, 

we would not expect propagation between the scanned and 

device encounters to match, even in the unlikely event that 

our virtual scanners behaved ideally. To control for the effects 

of incomplete scanner coverage, we created a normalised set 

of device encounters for use in our propagation model. This 

dataset consists of a subset sampled at random from the set of 

device encounters such that, for each mobility trace, the subset 

contains the same number of encounters as the corresponding 

set of scanned encounters. While we make no attempt to match 

the particular encounters taking place at scanner sites in this 

subset, we would expect the aggregate characteristics of the 

encounters to match those which our scanners would have 

inferred had they behaved ideally. 

Figure 5 shows mean propagation over time over 100 

runs on each mobility trace. Each simulation run assumed 

one initially infected device in a standard susceptible-infected 

(SI) model, with all devices susceptible and a latency for 

propagation of 30 seconds. For all three of the mobility 

parameter sets we see, as expected, that propagation proceeds 

more slowly in the “normalised” subset of device encounters. 

It is also apparent that when the scanned encounter sets 

are used in the model, despite having the same number of 

encounters as the normalised subsets of device encounters, 

propagation is slower still in all three mobility traces. The 

difference between propagation using the normalised device
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Fig. 5. Malware propagation, comparing device encounters, normalised 
device encounters and scanned encounters. 

encounters and the scanner encounters is large. After two days 

of simulation time, the respective mean proportions of infected 

devices are: SF 40.2% vs. 26.4%, NCSU 61.6% vs. 46.4%, and 

KAIST 67.9% vs. 60.8%. 

This experiment shows that the use of scanned encounters, 

when compared to subsets of device encounters, leads to an 

underestimation of propagation rates in proximity malware 

models. The deviation suggests that our scanners are not 

behaving ideally, and are introducing wrongly inferred partial 

match and spurious match encounters. The extent of these 

errors of inference is sufficient to alter the characteristics of 

the whole set of device encounters. 

2) Encounter overlaps: Our malware propagation simula

tion shows that the sets of scanned encounters differ from 

those detected directly by the mobile devices, and that this 

difference is attributable to incorrect inferences by the scanners 

which lead to the reporting of erroneous encounters. To 

better understand the nature of these erroneous encounters, 

we directly compared the scanner and encounter data from 

each individual mobility trace. By considering the encounters 

between each device pair which met (or was inferred to 

have met) at least once during the simulation, we show the 

proportion of encounter types present in the scanned encounter 



data (including missed encounters). 

For each encounter between devices, we determined 

whether, in the set of scanned encounters, an encounter 

between the same two devices existed with the same start 

and end time (an exact match), or whether one or more 

partial matches existed which overlapped it in time. Device 

encounters where no match or overlap was found correspond 

to missed encounters (combining missed-one and missed-two 

static contacts). Repeating the process from the perspective of 

the scanned encounters revealed the spurious matches which 

did not overlap any device encounters. 
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Fig. 6. Relationships between device and scanner encounters by encounter 
type. 

We first compared all encounters in the device and scanned 

encounter sets for each mobility parameter set (i.e., a minimum 

encounter duration of zero). We see that approximately two-

thirds of device encounters have a corresponding exact match 

or partial match in the scanned encounters. There is little 

difference in this proportion between the three mobility sets. 

The incidence of exact matches is low, representing 6.5%, 

5.5% and 4.4% of total device encounters in the San Francisco, 

NCSU and KAIST mobility parameters, meaning that almost 

all of the encounters actually inferred by the scanners are either 

partial matches or spurious matches. 

Given the sensitivity of proximity-based malware propaga

tion to encounter duration (since infection latency may be 30 

seconds or more), we repeated the experiment using subsets 

of the device and scanner encounters with successively higher 

minimum durations. For all of the mobility traces, we first see 

that, once a minimum threshold of 15 seconds is imposed, 

the proportion of exact matches becomes vanishingly small. 

Where exact matches do occur, they are typically between 

encounters of short duration. This result is not unexpected, 

and suggests that very short encounters may simply offer less 

opportunity for erroneous inferences to take place. 

We also see that the proportion of missed encounters 

and spurious encounters rises for all three mobility traces 

as the minimum encounter duration threshold increases. A 

calculation of correlation between the proportion of missed 

encounters to total device encounters and minimum latency 

threshold suggests that a strong relationship exists in all cases 

(SF r2 = 0.96, NCSU r2 = 0.96, KAIST r2 = 0.92). A 

TABLE I 
ENCOUNTERS EXCEEDING EXAMPLE MALWARE PROPAGATION LATENCIES 

(IN SECONDS) 

P (D) n(D)
Device encs. (m) Scanned encs. (m) 

P (S) n(S) 

SF 

All 3.20 (100.0%) 2.84 (100.0%) 0.0% -11.1% 

>15 0.38 (11.9%) 0.28 (10.0%) -15.9% -25.2% 

>30 0.14 (4.3%) 0.09 (3.2%) -25.6% -33.8% 

>45 0.57 (1.8%) 0.03 (1.2%) -34.7% -41.9% 

>60 0.02 (0.7%) 0.01 (0.4%) -42.6% -49.0% 

NCSU 

All 2.53 (100.0%) 2.24 (100.0%) 0.0% -11.4% 

>15 0.42 (16.5%) 0.32 (14.2%) -13.8% -23.6% 

>30 0.17 (6.8%) 0.12 (5.3%) -22.1% -31.0% 

>45 0.80 (3.2%) 0.05 (2.3%) -28.4% -36.6% 

>60 0.04 (1.5%) 0.02 (1.0%) -33.2% -40.9% 

KAIST 

All 1.40 (100.0%) 1.19 (100.0%) 0.0% -15.3% 

>15 0.37 (26.1%) 0.29 (24.0%) -8.0% -22.0% 

>30 0.19 (13.9%) 0.15 (12.4%) -10.6% -24.3% 

>45 0.12 (8.6%) 0.09 (7.6%) -11.8% -25.3% 

>60 0.08 (5.7%) 0.06 (5.0%) -12.4% -25.8% 

similar calculation of correlation between the proportion of 

spurious encounters and minimum encounter duration showed 

a less strong relationship which appeared to strengthen in the 

less diffusive mobility parameter sets (SF r2 = 0.71, NCSU 
r2 = 0.82, KAIST r2 = 0.89). 
The relationship between encounter length and proportion of 

missed encounters appears counter-intuitive. While practically 

all encounters over 15 seconds for all mobility traces do not 

match exactly between the scanner and device encounters, 

we had expected that longer encounters would experience 

a higher level of partial overlaps, if only by chance. Our 

experiments showing the opposite to be true suggest that there 

are differences between the distribution of encounter durations 

in the scanner and encounter datasets, with the scanner datasets 

simply including fewer long encounters to match against the 

device encounters. 
3) Encounter duration: The correlation between increasing 

encounter duration and incidence of missed and spuriously 

matched encounters in the scanner data led us to investigate 

the distribution of encounter duration between the device and 

scanner encounter sets. The duration of encounters is important 

when modelling the propagation of proximity-borne malware, 

where propagation between devices might occur only during 

uninterrupted connections of 30 seconds or more. 

For each of the three mobility parameter sets, all simulation 

runs were combined to produce large sets of device encounters 

and scanner encounters. We calculated the proportion of 

encounters within each encounter set which were longer than a 

set of latency thresholds for proximity malware transmission. 

As Table I shows, in all cases a smaller proportion of the 

scanned encounters exceeds the latency thresholds. In other 

words, the scanned encounters underestimate the duration of 
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the device encounters considerably. For longer but still realistic 

latency values of one minute, the proportion of scanned 

encounters lasting long enough to allow malware propagation 

to occur is lower than the device encounters by between 12% 

and 42% across the three sets of mobility parameters. 
4) Encounter “uniqueness”: We have shown that the 

scanned encounters generated by our simulator differ from 

the device encounters by having characteristics which lead to 

underestimation of malware propagation when these scanned 

encounters are used as source data. To further investigate the 

extent to which the scanned encounters differ from the device 

encounters, we compared the distribution of contact degrees 

of each set of encounter data. The distribution of contact 

degrees is a key driver of malware propagation: the dynamics 

of epidemic spread in networks with heavy-tailed distributions 

of encounter degrees differ significantly from “fully-mixed” 

models in which all agents are equally likely to meet [23]. 
However, contact degree is related to encounter rates, and 

the incomplete coverage of the area provided by scanners 

will likely result in lower encounter rates. As a result the 

contact degrees of device and scanned encounters cannot be 

directly compared. To address this, we calculated a normalised 

metric, encounter uniqueness, which is the proportion of 

unique devices within the total devices encountered in a given 

period. In the case where a device meets each other device only 

once, all its encounters can be described as unique, giving a 

value of 1.0. As the proportion of encounters with previously

seen devices increases the ratio of unique encounters falls. For 

encounters with similar distributions of encounter duration, we 

would expect higher encounter uniqueness to correspond to 

increased rates of malware propagation. 
To ensure comparability across our simulation data, we 

calculated the uniqueness values for encounters from the 

simulation start until each device in the simulation had met a 

given number of unique devices. We repeated this process for 

each of the mobility traces across all three mobility parameter 

sets. Figure 7 shows the distribution of the uniqueness ratio 

for the device and scanned encounters. 
As expected, the more diffusive mobility parameter sets 

(NCSU, SF) show a higher encounter uniqueness. Longer 

flight lengths mean that devices are less likely to repeatedly 

encounter devices they have previously met. However, the two 

more diffusive mobility parameter sets are also most affected 

by underestimation of encounter uniqueness in the scanned 

encounters, while the least diffusive mobility parameter set 

(KAIST) shows very little difference in encounter uniqueness 

between the device encounters and the scanned encounters. 

V. CONCLUSIONS AND FUTURE WORK 

Our detailed examination of errors induced by inferring 

device encounters from third party scanners suggests caution in 

the use of such data sets, for instance, for the study of flooding

based data dissemination applications like proximity malware 

propagation. However, it is also suggestive of a potential way 

forward. 
We have demonstrated the circumstances in which “bridg

ing” errors between pairs of out-of-range devices occur. 

Further, we have shown, under assumptions of equal and 

homogeneous communication ranges, that over 41% of de

vice encounters inferred from simultaneous scanner sightings 

were incorrect. In the case of mobile devices, these incor

rect inferences have a complex effect on the accuracy of 

scanned encounters as they accumulate over time. As well 

as encounters which are missed or spuriously inferred by 

considering sightings at scanners, unreliable inference results 

in inferred encounters which have shorter durations than the 

actual encounters between devices, and underestimates the 

extent to which the devices encounter new, unmet devices. 

The magnitude of these differences is sensitive to the un

derlying mobility characteristics of the devices being scanned, 

with more diffusive mobility correlating with increased errors. 

In all three sets of mobility parameters we tested (each 

closely matching GPS trails gathered from human movement), 

the extent of errors introduced through inferring copresence 

by simultaneous presence at scanners led to a significant 

underestimation of the rate at which proximity-based malware 

would spread amongst devices. 

On the other hand, our use of a mobility simulator to 

compare actual encounters observed from mobility trails with 

encounters inferred from sightings at scanners suggests a 

method for mitigating erroneous inferences of copresence in 

data gathered by scanners deployed in the field. In cases 

of highly diffusive mobility, where the errors introduced by 

bridging appear to be most pronounced, the quality of scanned 

encounter data might be materially improved, leading to more 

accurate simulations of malware spread and countermeasures. 

Estimated or observed characteristics of mobility patterns 

around the scanners, such as the distribution of velocities, 

flight lengths and pause times would be used to set initial 

parameters for a mobility simulator. This simulator would then 

be populated with virtual scanners similar to those used in the 

field, and used to infer simulated encounters. The mobility 

parameters used in the simulation could then be improved 

iteratively until the simulated encounters closely matched the 

statistical properties of those gathered from the field scanners. 



The malware propagation model could then be based on 

the direct encounters between devices in the simulator. Since 

the same fundamental geometry leads to errors in simulated 

scanners and the real deployed scanners we would expect 

the incidence of bridging errors in both cases to be similar, 

provided the simulator’s mobility parameters closely match 

the observed characteristics of mobility around the deployed 

scanners. This being the case, the direct encounters between 

devices in the simulator should capture the observed properties 

of human mobility at the scanner sites, while reducing errors 

from incorrect inferences — and in doing so be closer to the 

real human encounters which took place around the scanners. 
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INFOCOM 2011, 2011, pp. 3128–3136. 

[23] M. E. J. Newman, “Spread of epidemic disease on networks,” Phys. Rev. 
E, vol. 66, no. 1, p. 016128, 2002. 

http://bit.ly/8YETHC
http://dx.doi.org/10.1038/nature06958
http://www.sciencemag.org/cgi/content/abstract/327/5968/1018
http://dx.doi.org/10.1007/s00779-005-0046-3
http://www.nature.com/nphys/journal/v6/n10/full/nphys1760.html
http:K.Lee,Y.Kim,S.Chong,I.Rhee,andY.Yi

