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The last couple of years has seen a remarkable number of new, explicit
examples of the Wiener–Hopf factorization for Lévy processes where pre-
viously there had been very few. We mention, in particular, the many cases
of spectrally negative Lévy processes in [Sixth Seminar on Stochastic Anal-
ysis, Random Fields and Applications (2011) 119–146, Electron. J. Probab.
13 (2008) 1672–1701], hyper-exponential and generalized hyper-exponential
Lévy processes [Quant. Finance 10 (2010) 629–644], Lamperti-stable pro-
cesses in [J. Appl. Probab. 43 (2006) 967–983, Probab. Math. Statist. 30
(2010) 1–28, Stochastic Process. Appl. 119 (2009) 980–1000, Bull. Sci. Math.
133 (2009) 355–382], Hypergeometric processes in [Ann. Appl. Probab. 20
(2010) 522–564, Ann. Appl. Probab. 21 (2011) 2171–2190, Bernoulli 17
(2011) 34–59], β-processes in [Ann. Appl. Probab. 20 (2010) 1801–1830]
and θ -processes in [J. Appl. Probab. 47 (2010) 1023–1033].

In this paper we introduce a new family of Lévy processes, which we call
Meromorphic Lévy processes, or just M-processes for short, which overlaps
with many of the aforementioned classes. A key feature of the M-class is the
identification of their Wiener–Hopf factors as rational functions of infinite de-
gree written in terms of poles and roots of the Laplace exponent, all of which
are real numbers. The specific structure of the M-class Wiener–Hopf factor-
ization enables us to explicitly handle a comprehensive suite of fluctuation
identities that concern first passage problems for finite and infinite intervals
for both the process itself as well as the resulting process when it is reflected
in its infimum. Such identities are of fundamental interest given their repeated
occurrence in various fields of applied probability such as mathematical fi-
nance, insurance risk theory and queuing theory.

1. Introduction. The theory of Lévy processes forms the cornerstone of an
enormous volume of mathematical literature which supports a wide variety of ap-
plied and theoretical stochastic models. One of the most obvious and fundamental
problems that can be stated for a Lévy process, particularly in relation to its role as
a modeling tool, is the distributional characterization of the time at which a Lévy
process first exits either an infinite or finite interval together with its overshoot
beyond the boundary of the interval. As a family of stochastic processes, Lévy
processes are now well understood and the exit problem has seen many different
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approaches dating back to the 1960s. See, for example, [2, 6, 8, 13, 15, 18, 32, 39],
to name but a few.

Despite the maturity of this field of study, it is surprising to note that, until very
recently, there were less than a handful of examples for which explicit analytical
detail concerning the first exit problem could be explored. Given the closeness
in mathematical proximity of the first exit problem to the characterization of the
Wiener–Hopf factorization, one might argue that the lack of concrete examples of
the former was a consequence of the same being true for the latter. The landscape
for both the Wiener–Hopf factorization problem and the first exit problem has
changed quite rapidly in the last couple of years, however, with the discovery of
a number of new, mathematically tractable families of Lévy processes. We men-
tion, in particular, the many cases of spectrally negative Lévy processes in [20,
33], hyper-exponential and generalized hyper-exponential Lévy processes [23],
Lamperti-stable processes in [9, 10, 13], Hypergeometric processes in [30, 32],
β-processes in [28] and θ -processes in [29].

In this paper we introduce a new family of Lévy processes, which we call Mero-
morphic Lévy processes, or just M-class for short, that overlaps with many of the
aforementioned classes. Our definition of the M-class of processes will allow us
to drive features of their Wiener–Hopf factors through to many of the fluctuation
identities which are of pertinence for a wide variety of applications. In the theory
of actuarial mathematics, the problem of first exit from a half-line is of fundamen-
tal interest with regard to the classical ruin problem and is typically studied within
the context of an expected discounted penalty function. The latter is also known
as the Gerber–Shiu function following the first article [17] of a long series of pa-
pers found within the actuarial literature. In the setting of financial mathematics,
the first exit of a Lévy process, as well as a Lévy process reflected in its infimum,
from an interval is of interest in the pricing of barrier options and American-type
options [1] as well as certain credit risk models [19, 34]. In queueing theory exit
problems for Lévy processes play a central role in understanding the trajectory of
the workload during busy periods as well as in relation to buffers [16, 26]. Many
optimal stopping strategies also turn out to boil down to first passage problems
for both Lévy processes and Lévy processes reflected in their infimum, classic ex-
amples of which include McKean’s optimal stopping problem [37], as well as the
Shepp–Shiryaev optimal stopping problem [2, 4].

It is not our purpose, however, to dwell on these applications. As alluded to
above, the main objective will be to expose a comprehensive suite of fluctuation
identities in explicit form for the M-class of Lévy processes. We thus conclude the
introduction with an overview of the paper.

In the next section we give a formal definition of meromorphic Lévy processes,
dwelling, in particular, on their relationship with discrete completely monotone
functions. In Section 3 we consider several classes of existing families of Lévy
processes that have appeared in recent literature. Next, in Section 4 we establish
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explicit identities for the exponentially discounted first passage problem. In par-
ticular, we deal with (what is known in the actuarial literature as) the Gerber–Shiu
measure describing the discounted joint triple law of the overshoot, undershoot and
undershoot of the maximum at first passage over a level as well as the marginal
thereof which specifies the law of the discounted overshoot. It is important to note
that the discounting factor which appears in all of the identities means that one
is never more than a Fourier transform away from the naturally associated space–
time identity in which the additional law of the time to first passage is specified.
This last Fourier inversion appears to be virtually impossible to produce analyti-
cally within the current context, but the expressions we offer are not difficult to
work with in conjunction with straightforward Fourier inversion algorithms.

In Section 5 we look at the more complicated two-sided exit problem. Inspired
by a technique of Rogozin [39], we solve a system of equations which characterize
the discounted overshoot distribution on either side of the interval in question. The
same technique also delivers explicit expressions for the discounted entrance law
into an interval. In Section 6 we look in analytical detail at what can be said of
the ascending and descending ladder variables. In particular, we offer expressions
for their joint Laplace exponent and jump measure. Section 7 mentions some addi-
tional examples of fluctuation identities which enjoy explicit detail and, finally, in
Section 8 we describe some numerical experiments in order to exhibit the genuine
practical applicability of our method.

2. Meromorphic Lévy processes. Recall that a general one-dimensional
Lévy process is a stochastic process issued from the origin with stationary and
independent increments and almost sure right continuous paths. We write X =
{Xt : t ≥ 0} for its trajectory and P for its law. As X is necessarily a strong Markov
process, for each x ∈ R, we will need the probability Px to denote the law of X

when issued from x with the understanding that P0 = P. The law P of Lévy pro-
cesses is characterized by its one-time transition probabilities. In particular, there
always exist a triple (a, σ,�) where a ∈ R, σ ∈ R and � is a measure on R \ {0}
satisfying the integrability condition

∫
R
(1 ∧ x2)�(dx) < ∞, such that, for all

z ∈ R,

E[eizXt ] = etψ(iz),(1)

where the Laplace exponent ψ(z) is given by the Lévy–Khintchine formula

ψ(z) = 1

2
σ 2z2 + μz +

∫
R

(
ezx − 1 − zxh(x)

)
�(dx).(2)

Here h(x) is the cutoff function which is usually taken to be h(x) ≡ I{|x|<1}. How-
ever, everywhere in the present paper we will work with the Lévy measures �(dx)

which have exponentially decaying tails, thus, we will take h(x) ≡ 1. Note that the
exponential decay of the tails of the Lévy measure also implies that the Laplace
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exponent can be analytically continued into some vertical strip a < Re(z) < b for
a < 0 < b.

Everywhere in this paper we will denote the tails of the Lévy measure as
�̄+(x) = �((x,∞)) and �̄−(x) = �((−∞,−x)) for x > 0. Let us define the
supremum/infimum processes Xt = sups≤t Xs , Xt = infs≤t Xs and denote by e(q)

an independent, exponentially distributed random variable with rate q > 0. Finally,
the first passage time above x is defined as τ+

x = inf{t > 0 :Xt > x}, and, similarly,
τ−
y = inf{t > 0 :Xt < y}.

Let us recall some basic facts about completely monotone functions. A function
f : (0,∞) �→ R is called completely monotone if f ∈ C∞ and (−1)nf (n)(x) ≥ 0
for all n ∈ N ∪ {0} and x > 0. According to Bernstein’s theorem (see Theorem 1.4
in [40]), the function f is completely monotone if and only if it can be represented
as the Laplace transform of a positive measure on [0,∞):

f (x) =
∫
[0,∞)

e−zxμ(dz), x > 0.(3)

Note that if f (0+) = 1, then μ(dx) is a probability measure and 1−f (x) is the cu-
mulative distribution function of a positive infinitely divisible random variable Z,
whose distribution is a mixture of exponential distributions. We will denote the
class of completely monotone functions as C M.

Next, let us introduce a subclass of completely monotone functions, which will
be important for us later. We will call f : (0,∞) �→ R a discrete completely mono-
tone function if the measure μ(dz) in the representation (3) is discrete, and the
support of the measure μ(dz) is infinite and does not have finite accumulation
points. This implies that the measure μ(dz) is an infinite mixture of atoms of
size an at the points bn,

μ(dz) = ∑
n≥1

anδbn(dz),

where δb(dx) denotes the Dirac measure at x = b, for all n ≥ 1 we have an > 0,
bn ≥ 0 and bn → ∞ as n → ∞ (without loss of generality we can also assume
that the sequence {bn}n≥1 is strictly increasing). From (3) it follows then that any
discrete completely monotone function can be represented as an infinite series of
exponential functions

f (x) = ∑
n≥1

ane
−bnx, x > 0.(4)

We will denote the class of discrete completely monotone functions as D C M.

DEFINITION 1 (M-class). A Lévy process X is said to belong to the Mero-
morophic class (M-class) if �̄+(x), �̄−(x) ∈ D C M.
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We see that, according to our definition of the discrete completely monotone
functions, the process is Meromorphic if and only if the Lévy measure �(dx) has
a density with respect to the Lebesgue measure, given by

π(x) = I{x>0}
∑
n≥1

anρne
−ρnx + I{x<0}

∑
n≥1

ânρ̂ne
ρ̂nx,(5)

where all the coefficients an, ân, ρn, ρ̂n are positive, the sequences {ρn}n≥1 and
{ρ̂n}n≥1 are strictly increasing, and ρn → +∞ and ρ̂n → +∞ as n → +∞.

PROPOSITION 1. Assume that π(x) is given by (5). The integral
∫
R

x2π(x)dx

converges if and only if both series
∑

n≥1 anρ
−2
n and

∑
n≥1 ânρ̂

−2
n converge.

PROOF. The “if” part was established in Proposition 1 in [29]. The “only if”
part follows from (5) and the Monotone Convergence Theorem. �

Recall that a function g : C �→ C∪{∞} is called meromorphic if it does not have
any other singularities in the open complex plane except for poles. A function g(z)

is called a real meromorphic function if it is meromorphic and g(z) ∈ R ∪ {∞} for
all z ∈ R, or, equivalently, if g(z) = g(z̄).

THEOREM 1. The following conditions are equivalent:

(i) X is Meromorphic.
(ii) �̄+(x), �̄−(x) ∈ C M and the Laplace exponent ψ(z) is meromorphic.

(iii) For some q > 0 (and then, for every q > 0) the functions P(Xe(q) > x) and
P(−Xe(q) > x) restricted to x > 0 belong to the class D C M.

(iv) For some q > 0 (and then, for every q > 0) the functions P(Xe(q) > x) and
P(−Xe(q) > x) restricted to x > 0 belong to the class D C M.

(v) For some q > 0 (and then, for every q > 0) we have the factorization

q − ψ(z) = q
∏
n≥1

1 − z/ζn

1 − z/ρn

∏
n≥1

1 + z/ζ̂n

1 + z/ρ̂n

, z ∈ C,(6)

where all roots {ζn,−ζ̂n} of ψ(z) − q are real and interlace with the poles
{ρn,−ρ̂n}

· · · − ρ̂2 < −ζ̂2 < −ρ̂1 < −ζ̂1 < 0 < ζ1 < ρ1 < ζ2 < ρ2 < · · · .(7)

(vi) The Laplace exponent ψ(z) is a real meromorphic function, which satisfies
Im(ψ(z)/z) > 0 for all z in the half-plane Im(z) > 0.

PROOF. The main ideas and tools needed for the proof of this theorem come
from the proofs of Theorem 2 in [38] and Theorem 1 in [29].
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(i) ⇒ (ii) Using (5) and (2), we find that

ψ(z) = 1

2
σ 2z2 + μz + z2

∑
n≥1

an

ρn(ρn − z)
+ z2

∑
n≥1

ân

ρ̂n(ρ̂n + z)
, z ∈ C,(8)

which shows that ψ(z) is a meromorphic function. Since D C M ⊂ C M, this
proves (ii).

(ii) ⇒ (vi) We know that ψ(z) is a meromorphic function, and that ψ(0) = 0,
therefore, ψ(z) is analytic in some neighborhood of zero. From the proof of Theo-
rem 2 in [38] we find that (a) ψ(z) can be analytically continued in the half-planes
Im(z) > 0 and Im(z) < 0, (b) Im(ψ(z)/z) > 0 for all z in the half-plane Im(z) > 0.
Since ψ(z) = ψ(z̄), we conclude that ψ(z) is a real meromorphic function. Using
this fact and the above statement (b), we obtain (vi).

(vi) ⇒ (v), ∀q > 0. For q > 0 and Im(z) > 0 it is true that Im(−q/z) > 0, thus,
(vi) implies that Im((ψ(z)− q)/z) > 0 for all z in the half-plane Im(z) > 0. Using
Theorem 1 on page 220 in [35] (the statement of this result can also be found in
the proof of Theorem 1 in [29]), we find that (v) is valid for all q > 0.

(v) ⇒ (iii) This follows from Theorem 1 in [29].
(iii) ⇒ (iv) One can also check that if two functions f (x) and g(−x) belong to

the class D C M, then the same is true for I{x>0}(f ∗ g)(x) and I{x<0}(f ∗ g)(x),
where f ∗ g is the convolution. The result (iv) then follows easily from this fact

and the Wiener–Hopf decomposition which says that Xe(q)
d= Y1 + Y2, where the

random variables Y1 and Y2 are independent, Y1
d= Xe(q) and Y2

d= Xe(q).
(iv) ⇒ (i) From (iv) and the definition of the D C M class we know that for some

q > 0 there exist α0 ≥ 0 and positive constants αn, βn, α̂n, β̂n such that

P
(
Xe(q) ∈ dx

)
(9)

= α0δ0(dx) +
[
I{x>0}

∑
n≥1

αnβ
−1
n e−βnx + I{x<0}

∑
n≥1

α̂nβ̂
−1
n eβ̂nx

]
dx.

Note that the condition P(Xe(q) ∈ R) = 1 implies that both series
∑

n≥1 αnβ
−2
n

and
∑

n≥1 α̂nβ̂
−2
n converge. Let us define ψ̃(z) = z2

E[exp(zXe(q))]. Using (9), we
obtain

ψ̃(z) = α0z
2 + z2

∑
n≥1

αn

βn(βn − z)
+ z2

∑
n≥1

α̂n

β̂n(β̂n + z)
, z ∈ C.

Comparing the above formula with (8), we conclude that ψ̃(z) is a Laplace expo-
nent of a Meromorphic Lévy process. We have already proved that (i) implies (vi),
therefore, Im(ψ̃(z)/z) > 0 for all z in the half-plane Im(z) > 0.

Next, using the definition of the Laplace exponent (1), it is easy to verify that
E[exp(zXe(q))] = q/(q − ψ(z)). Therefore,

ψ(z) − q

z
= − qz

ψ̃(z)
.
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As we have already established, Im(ψ̃(z)/z) > 0 for all z in the half-plane
Im(z) > 0. Using this fact and the above identity, we conclude that Im((ψ(z) −
q)/z) > 0. Applying Theorem 1 on page 197 in [12] (the statement of this result
can also be found in the proof of Theorem 1 in [29]), we find that ψ(z) admits a
representation of the form (8), which in turn implies that the process X is mero-
morphic.

Finally, note that if (v) is true for some q > 0, then (iii) and (iv) are valid for
the same value of q > 0. But as we have already demonstrated, any of the condi-
tions (iii), (iv), (v) implies (i) which is equivalent to (v) being valid for all q > 0.
Thus, if one of the conditions (iii), (iv), (v) is valid for some q > 0, then it must be
valid for all q > 0. �

Statement (ii) in Theorem 1 shows that the M-class of Lévy processes might
also be called “processes with completely-monotone Lévy measure and meromor-
phic Laplace exponent,” which explains the origin of the name “Meromorphic
Lévy processes.” Note, however, that there exist Lévy processes with meromor-
phic Laplace exponent but not completely monotone Lévy measure.

The following technical result on partial fraction decomposition of infinite prod-
ucts will be very important for us later.

LEMMA 1. Assume that we have two increasing sequences ρ = {ρn}n≥1 and
ζ = {ζn}n≥1 of positive numbers, such that ρn → +∞ as n → +∞ and the fol-
lowing interlacing condition is satisfied:

ζ1 < ρ1 < ζ2 < ρ2 < · · · .(10)

Define

φ(z) = ∏
n≥1

1 + z/ρn

1 + z/ζn

, z > 0.(11)

Then for all z > 0,

φ(z) = a0(ρ, ζ ) + ∑
n≥1

an(ρ, ζ )
ζn

ζn + z
,(12)

1

φ(z)
= 1 + zb0(ζ, ρ) + ∑

n≥1

bn(ζ, ρ)

[
1 − ρn

ρn + z

]
,(13)

where

a0(ρ, ζ ) = lim
n→+∞

n∏
k=1

ζk

ρk

, an(ρ, ζ ) =
(

1 − ζn

ρn

) ∏
k≥1
k �=n

1 − ζn/ρk

1 − ζn/ζk

,(14)

b0(ζ, ρ) = 1

ζ1
lim

n→+∞

n∏
k=1

ρk

ζk+1
, bn(ζ, ρ) = −

(
1 − ρn

ζn

) ∏
k≥1
k �=n

1 − ρn/ζk

1 − ρn/ρk

.(15)
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Moreover, a0(ρ, ζ ) ≥ 0, b0(ζ, ρ) ≥ 0 and for all n ≥ 1 we have an(ρ, ζ ) > 0,
bn(ζ, ρ) > 0.

PROOF. The convergence of the infinite product in (11) and the partial fraction
decomposition (12) follow from Theorem 1 in [29]. To prove the second partial
fraction decomposition, rewrite the infinite product as(

1 + z

ζ1

) ∏
n≥1

1 + z/ζn+1

1 + z/ρn

,

and note that sequences {ζn+1}n≥1 and {ρn}n≥1 satisfy the interlacing condition,
thus, we can apply the same method. The details are left to the reader. �

Using the Monotone Convergence Theorem, one can show that formulas (12)
and (13) are equivalent to

φ(z) = a0(ρ, ζ ) +
∫

R+

[∑
n≥1

an(ρ, ζ )ζne
−ζnx

]
e−zx dx,(16)

1

φ(z)
= 1 + zb0(ζ, ρ) +

∫
R+

[∑
n≥1

bn(ζ, ρ)ρne
−ρnx

]
(1 − e−zx) dx.(17)

Before stating our next result, we recall that a Lévy process creeps upward if
for some (and then all) x ≥ 0, P(Xτ+

x
= x|τ+

x < ∞) > 0. Moreover, we say that 0

is irregular for (0,∞) if and only if P(τ+
0 > 0) = 1. (Note that this probability can

only be 0 or 1 thanks to the Blumenthal zero–one law.) We refer to Bertoin [5],
Doney [14] or Kyprianou [31] for more extensive discussion of these subtle path
properties.

We also need to introduce some more notation. In the forthcoming text every-
thing will depend on the coefficients {an(ρ, ζ ), an(ρ̂, ζ̂ )}n≥0 defined using (14)
and {bn(ζ, ρ), bn(ζ̂ , ρ̂)}n≥0 defined using (15). We define for convenience a col-
umn vector

ā(ρ, ζ ) = [a0(ρ, ζ ), a1(ρ, ζ ), a2(ρ, ζ ), . . .]T ,

and similarly for ā(ρ̂, ζ̂ ), b̄(ζ, ρ) and b̄(ζ̂ , ρ̂). Next, given a sequence of positive
numbers ζ = {ζn}n≥1, we define a column vector v̄(ζ, x) as a vector of distribu-
tions

v̄(ζ, x) = [δ0(x), ζ1e
−ζ1x, ζ2e

−ζ2x, . . .]T ,

where δ0(x) is the Dirac delta function at x = 0.
From here on, unless otherwise stated, we shall always assume that X is a Lévy

process belonging to the M-class and that X is not a compound Poisson process.



MEROMORPHIC LÉVY PROCESSES AND THEIR FLUCTUATION IDENTITIES 1109

THEOREM 2 (Properties of Meromorphic processes). (i) The Wiener–Hopf
factors are given by

φ+
q (iz) = E[e−zXe(q)] = ∏

n≥1

1 + z/ρn

1 + z/ζn

,

(18)

φ−
q (−iz) = E[ezX e(q)] = ∏

n≥1

1 + z/ρ̂n

1 + z/ζ̂n

.

(ii) For x ≥ 0,

P
(
Xe(q) ∈ dx

) = ā(ρ, ζ )T × v̄(ζ, x) dx,
(19)

P
(−Xe(q) ∈ dx

) = ā(ρ̂, ζ̂ )T × v̄(ζ̂ , x) dx.

(iii) a0(ρ, ζ ) (a0(ρ̂, ζ̂ )) is nonzero if and only if 0 is irregular for (0,∞) [cor-
respondingly, (−∞,0)].

(iv) b0(ζ, ρ) (b0(ζ̂ , ρ̂)) is nonzero if and only if the process X creeps upward
(correspondingly, downward).

(v) For every q > 0,

P
(
Xe(q) ∈ dx

) = q

[
I{x>0}

∑
n≥1

e−ζnx

ψ ′(ζn)
− I{x<0}

∑
n≥1

eζ̂nx

ψ ′(−ζ̂n)

]
dx.(20)

PROOF. Parts (i) and (ii) were established in Theorem 1 in [29]; these results
also follow easily from formulas (6), (16) and the structure of the Wiener–Hopf
factorization. Let us prove (iii). We note that 0 is irregular for (0,∞) if and only
if, for any q > 0, Xe(q) has an atom in its distribution at 0. From part (ii) this is
clearly the case if and only if a0(ρ, ζ ) is nonzero. For part (iv) of the proof, we
note that we may necessarily write

φ+
q (iz) = κ(q,0)

κ(q, z)
,

where κ(q, z) is the Laplace exponent of the bivariate subordinator which de-
scribes the ascending ladder process of X. It is also known that a Lévy pro-
cess creeps upward if and only if the subordinator describing its ladder height
process has a linear drift component. The drift coefficient is then described by
limz↑∞ κ(q, z)/z ∈ [0,∞), where the limit is independent of the value of q ≥ 0.
Inspecting (17), we see that the required drift coefficient is nonzero if and only if
b0(ζ, ρ) is nonzero. The conclusion thus follows.

Finally, let us prove (v). From part (iv) of Theorem 1 we know that P(Xe(q) ∈
dx) can be written in the form (9), where α0 = 0 due to our assumption
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that X is not a compound Poisson process. Combining this fact and the identity
E[exp(zXe(q))] = q/(q − ψ(z)), we conclude that

q

q − ψ(z)
= ∑

n≥1

αn

βn(βn − z)
+ ∑

n≥1

α̂n

β̂n(β̂n + z)
, z ∈ C.(21)

We see that the function on the right-hand side of the above equation has poles
at the points βn and −β̂n, while the left-hand side has poles at ζn and −ζ̂n [this
follows from (6)]. Therefore, we conclude that βn = ζn and β̂n = ζ̂n. Comparing
the residues of both sides of (21) at the pole z = ζn, we see that

αn

βn

= −Res
(

q

q − ψ(z)
: z = ζn

)
= q

ψ ′(ζn)
.

Similarly, we find

α̂n

β̂n

= Res
(

q

q − ψ(z)
: z = −ζ̂n

)
= − q

ψ ′(−ζ̂n)
.

Combining the above two identities and (9), we obtain (20). �

We would like to emphasize the importance of statement (v) of Theorem 2. It is
well known that there exist only a few specific examples of Lévy processes (such
as Variance Gamma or Normal Inverse Gaussian processes) for which the law
of Xt is known explicitly (for every t > 0). While we do not know the law of Xt

for Meromorphic processes, the result in Theorem 2(v) shows that Meromorphic
processes have an advantage that at least the distribution of Xe(q) can be easily
computed (for every q > 0). The formula is given in terms of the roots ζn and ζ̂n,
but as we will see in Section 8, computing these numbers is a rather simple task
and it can be done very efficiently.

As the next corollary shows, the Lévy measure of a Meromorphic process X

can be easily reconstructed from zeros and poles of q − ψ(z). This has the spirit
of Vigon’s theory of philanthropy (cf. [41]) in that we construct the Lévy measure
from the Wiener–Hopf factors.

COROLLARY 1. Assume that q > 0 and the Wiener–Hopf factors are given
by (18). Then X is Meromorphic and it’s Lévy measure is given by (5), where
{ρn}n≥1 and {ρ̂n}n≥1 are poles of the Wiener–Hopf factors φ+

q (−iz) and φ−
q (iz)

and coefficients an and ân are given by

an = bn(ζ, ρ)
q

φ−
q (−iρn)

, ân = bn(ζ̂ , ρ̂)
q

φ+
q (iρ̂n)

.(22)

PROOF. The fact that X is Meromorphic was already established in part (iii)
of Theorem 1. Assume that the density of the Lévy meausre π(x) is given by (5),
then as we have established in the proof of Theorem 1, the Laplace exponent ψ(z)
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can be expressed in the form (8). Comparing this equation with (6), we conclude
that the exponents ρn and ρ̂n in (5) must coincide with the poles of ψ(z).

From (8) it also follows that anρn = −Res(ψ(z) : z = ρn). Using the Wiener–
Hopf factorization

q − ψ(z) = q

φ+
q (−iz)φ−

q (−iz)
,(23)

and the fact that φ−
q (−iz) is nonzero at ρn, we see that

anρn = Res
(
φ+

q (−iz)−1 : z = ρn

) × q

φ−
q (−iρn)

.

In order to finish the proof, we only need to check that Res(φ+
q (−iz)−1 : z = ρn) =

ρnbn(ζ, ρ), which follows from (13). �

Note that the coefficients an and ân given in (22) [which define the Lévy mea-
sure via (5)] depend on q on the right-hand side but not on the left-hand side. It
is therefore tempting to take limits as q ↓ 0 on the right-hand side. This is not as
straightforward as it seems, as the limits of an and ân are not easy to compute. It
would be more straightforward to start with the Wiener–Hopf factorization for the
case that q = 0 and then perform the same analysis as in Corollary 1. The next
corollary provides us with the aforementioned Wiener–Hopf factorization. We re-
call that ζn = ζn(q) [resp. ζ̂n = ζ̂n(q)] denote the nonnegative solutions to equation
ψ(z) = q (resp. ψ(−z) = q).

COROLLARY 2.

(i) Assume that E[X1] > 0. As q → 0+ we have q/ζ1(q) → E[X1] and for
n ≥ 1,

ζn+1(q) → ζn+1(0) �= 0, ζ̂n(q) → ζ̂n(0) �= 0.

We have the Wiener–Hopf factorization −ψ(z) = κ(0,−z)κ̂(0, z), where

κ(0, z) = lim
q→0+

q

φ+
q (iz)

= zE[X1]
∏
n≥1

1 + z/ζn+1(0)

1 + z/ρn

,

(24)

κ̂(0, z) = lim
q→0+

1

φ−
q (−iz)

= 1

φ−
0 (−iz)

= ∏
n≥1

1 + z/ζ̂n(0)

1 + z/ρ̂n

.

(ii) Assume that E[X1] = 0. As q → 0+ we have
√

q/ζ1(q) → √
Var(X1)/2,√

q/ζ̂1(q) → √
Var(X1)/2 and for n ≥ 2,

ζn(q) → ζn(0) �= 0, ζ̂n(q) → ζ̂n(0) �= 0.
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We have the Wiener–Hopf factorization −ψ(z) = κ(0,−z)κ̂(0, z), where

κ(0, z) = lim
q→0+

√
q

φ+
q (iz)

= z

√
Var(X1)

2

∏
n≥1

1 + z/ζn+1(0)

1 + z/ρn

,

(25)

κ̂(0, z) = lim
q→0+

√
q

φ−
q (−iz)

= z

√
Var(X1)

2

∏
n≥1

1 + z/ζ̂n+1(0)

1 + z/ρ̂n

.

PROOF. Let us prove part (i). Since E[X1] > 0, we know that Xe(q) → +∞
and Xe(q) → X∞ as q → 0+, and also that X∞ < ∞ with probability one. There-
fore, if z > 0, the Wiener–Hopf factor φ+

q (iz) = E[exp(−zXe(q))] must converge
to 0 as q → 0+ while φ−

q (−iz) = E[exp(zXe(q))] must converge to E[exp(zX∞)]
as q → 0+. Since all roots ζn(q) and ζ̂n(q) have nonzero limits as q → 0+ if n ≥ 2
[this is true due to the interlacing condition (7) and the fact that ψ(z) is a meromor-
phic function], we conclude that ζ1(q) must go to zero while ζ̂1(q) → ζ̂1(0) �= 0.
The function ψ(z) is analytic in the neighborhood or z = 0, and it’s derivative
ψ ′(0) = E[X1] �= 0, thus, using the Implicit Function Theorem, we conclude that
ζ1(q) is an analytic function of q in some neighborhood of q = 0, and taking
derivative with respect to q of the equation ψ(z) = q , we find that

d

dq
ζ1(q) = 1

ψ ′(ζ1(q))
.

Since ψ ′(0) = E[X1], we conclude that q/ζ1(q) → E[X1] as q → 0+. Using
this fact and the formulae in (18) for the Wiener–Hopf factors, we obtain expres-
sions (24).

The proof of part (ii) is very similar. We use the fact that ψ ′(0) = E[X1] = 0
and ψ ′′(0) = Var(X1) to conclude that ψ(z) = 1

2 Var(X1)z
2 + O(z3) as z → 0.

This implies that when q is small and positive, the equation ψ(z) = q has two
solutions in the neighborhood of zero, ζ1 = √

2q/Var(X1) + o(
√

q) and −ζ̂1 =
−√

2q/Var(X1) + o(
√

q). Using this information, the uniqueness of the Wiener–
Hopf factorization and taking the limit as q → 0+ in (6), we obtain (25). �

3. Examples of Meromorphic processes. There are four particular families
of Lévy processes which have featured in the recent literature, all of which have
relevance to a number of applied probability models and all of which have ex-
hibited some degree of mathematical tractability in the context that they have oc-
curred. These processes are as follows:

Hyper-exponential Lévy processes: The elementary but classical Kou model [27]
consists of a linear Brownian motion plus a compound Poisson process with two-
sided exponentially distributed jumps. The natural generalization of this model
(which therefore includes the Kou model) is the hyper-exponential Lévy process



MEROMORPHIC LÉVY PROCESSES AND THEIR FLUCTUATION IDENTITIES 1113

for which the exponentially distributed jumps are replaced by hyper-exponentially
distributed jumps. That is to say, the density of the Lévy measure is written

π(x) = I{x>0}
N∑

i=1

aiρie
−ρix + I{x<0}

N̂∑
i=1

âi ρ̂ie
ρ̂ix,

where ai , âi , ρi and ρ̂i are positive numbers and N , N̂ are positive integers. One
can verify that the Laplace exponent is a rational function of the form (8), where
we have finite sums instead of infinite series, and that hyper-exponential Lévy
processes have finite activity jumps and paths of bounded variation unless σ 2 > 0.

Strictly speaking, the Hyper-exponential Lévy processes do not belong to the
class of Meromorphic processes, as in this case the Laplace exponent ψ(z) has
only a finite number of poles ρn, −ρ̂n. However, all the results presented in this
paper are still correct when we have a process with positive and/or negative hyper-
exponential jumps, provided that the results are interpreted in the correct way; see
Remark 1 below.

β-class Lévy processes: The β-class of Lévy processes was introduced by
Kuznetsov [28]. The Laplace exponent is given by

ψ(z) = 1

2
σ 2z2 + az + c1

β1

{
B

(
α1 − z

β1
,1 − λ1

)
− B(α1,1 − λ1)

}

+ c2

β2

{
B

(
α2 + z

β2
,1 − λ2

)
− B(α2,1 − λ2)

}
,

where B(x, y) = �(x)�(y)/�(x + y) is the Beta function, with parameter range
a ∈ R, σ ≥ 0, ci, αi, βi > 0 and λi ∈ (0,3) \ {1,2}. The corresponding Lévy mea-
sure �(dx) has density

π(x) = I{x>0}c1
e−α1β1x

(1 − e−β1x)λ1
+ I{x<0}c2

eα2β2x

(1 − eβ2x)λ2
.

With the help of binomial series, one can check that π(x) is of the form (5), thus,
β-processes are Meromorphic.

The large number of parameters allows one to choose Lévy processes within the
β-class that have paths that are both of unbounded variation [when at least one of
the conditions σ �= 0, λ1 ∈ (2,3) or λ2 ∈ (2,3) holds] and bounded variation [when
all of the conditions σ = 0, λ1 ∈ (0,2) and λ2 ∈ (0,2) hold] as well as having
infinite and finite activity in the jump component [accordingly as both λ1, λ2 ∈
(1,3) or λ1, λ2 /∈ (1,3)]. The β-class of Lévy processes includes another recently
introduced family of Lévy processes known as Lamperti-stable processes; cf. [9,
10, 13].

θ -class Lévy processes: The θ -class of Lévy processes was also introduced by
Kuznetsov [29] as a family of processes with Gaussian component and two-sided
jumps, characterized by the density of the Lévy measure

π(x) = I{x>0}c1β1e
−α1x�k(xβ1) + I{x<0}c2β2e

α2x�k(−xβ2),
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where �k(x) is the kth order (fractional) derivative of the theta function θ3(0, e−x):

�k(x) = dk

dxk
θ3(0, e−x) = I{k=0} + 2

∑
n≥1

n2ke−n2x, x > 0.

The parameter χ = k + 1/2 corresponds to the exponent of the singularity of π(x)

at x = 0, and when χ ∈ {1/2,3/2,5/2} (χ ∈ {1,2}) the Laplace exponent of X is
given in terms of trigonometric (digamma) functions. Again, due to the fact that
the density of the Lévy measure is of the form (5), we conclude that θ -processes
are Meromorphic.

Hypergeometric Lévy processes: These processes were introduced in Kyprianou
et al. [30, 32] as an example of how to use Vigon’s theory of philanthropy. Their
Laplace exponent is given by

ψ(z) = 1
2σ 2z2 + az + �1(−z)�2(z),(26)

where a,σ ∈ R and �1,�2 are the Laplace exponents of two subordinators from
the β-class of Lévy processes. Note that such Laplace exponents necessarily take
the form

�(θ) = k+ δθ + c

β
{B(1 − α + γ,−γ ) − B(1 − α + γ + θ/β,−γ )}.(27)

Compared with the previous examples, it is less obvious that hypergeometric
processes are Meromorphic, however, it is not hard to establish this result with
the help of Theorem 1. We know that β-processes are meromorphic, thus, the
process X̃ with the Laplace exponent ψ̃(z) = �1(−z)�2(z) is Meromorphic [this
is due to part (v) of Theorem 1]. Finally, the hypergeometric process defined by
the Laplace exponent via (26) and the process X̃ have the same Lévy measure,
therefore, X is also Meromorphic.

REMARK 1. Within the scope of Definition 1, when the process Xt has hyper-
exponential positive jumps (a mixture of N exponentials), we have only a finite
sequence {ρn}n=1,2,...,N and either N (or N +1) negative roots ζN . All the formulas
presented in this paper are still valid in this case if we adopt notation ρk = ∞ for
k > N and ζk = ∞ for k > N (or k > N + 1). For example, expression (18) for the
Wiener–Hopf factor becomes a finite product

φ+
q (iz) =

N∏
n=1

1 + z/ρn

1 + z/ζn

or φ+
q (iz) =

[
N∏

n=1

1 + z/ρn

1 + z/ζn

]
1

1 + z/ζN+1
,

depending on whether we have N or N + 1 negative roots ζn. The same remark
holds true when we have hyper-exponential negative jumps.

REMARK 2. When the process X has hyper-exponential positive jumps, the
calculation of coefficients a(ρ, ζ ) and b(ρ, ζ ) is much easier, since the corre-



MEROMORPHIC LÉVY PROCESSES AND THEIR FLUCTUATION IDENTITIES 1115

sponding expressions in (14) and (15) are just finite products. Moreover, calcu-
lation of the coefficients a(ρ̂, ζ̂ ) and b(ρ̂, ζ̂ ) is also simplified considerably even if
the sequence {ρ̂n}n≥1 is infinite, since we can use Wiener–Hopf factorization (23)
and the fact that −ζ̂n and −ρ̂n are simple roots (poles) of function ψ(z) − q . For
example, we can compute coefficients an(ρ̂, ζ̂ ) as follows:

an(ρ̂, ζ̂ ) = 1

ζ̂n

Res
(
φ−

q (−iz) : z = −ζ̂n

)

= 1

ζ̂n

Res
(

q

(q − ψ(z))φ+
q (−iz)

: z = −ζ̂n

)
= − q

ζ̂nψ ′(−ζ̂n)φ
+
q (iζ̂n)

,

and this last expression is more convenient than (14), since usually we know ψ ′(z)
explicitly and φ+

q (z) is just a rational function.

4. One-sided exit problem. Doney and Kyprianou [15] have given a detailed
characterization of the one-sided exit problem through the so-called quintuple law.
The latter can be easily integrated out to give the following discounted triple law
which is also known in the actuarial mathematics literature as the Gerber–Shiu
measure (cf. [7]).

LEMMA 2. Fix c > 0. Define

τ+
c = inf{t > 0 :Xt > c}.

For all q, y, z > 0 and u ∈ [0, c ∨ z], we have

E[e−qτ+
c I(Xτ+

c
− c ∈ dy; c − Xτ+

c − ∈ dz; c − Xτ+
c − ∈ du)]

= 1

q
P

(
Xe(q) ∈ c − du

)
P

(−Xe(q) ∈ dz − u
)
�(dy + z).

Taking account of formulas (19), this gives us the following immediate corollary
for the M-class of Lévy processes.

COROLLARY 3. Fix c > 0. For all q, y, z > 0 and u ∈ [0, c ∨ z], we have

E[e−qτ+
c I(Xτ+

c
− c ∈ dy; c − Xτ+

c − ∈ dz; c − Xτ+
c − ∈ du)]

= 1

q
[ā(ρ, ζ )T × v̄(ζ, c − u)][ā(ρ̂, ζ̂ )T × v̄(ζ̂ , z − u)]�(dy + z) dz du.

Often, one is only interested in the discounted overshoot distribution. In princi-
ple, this can be obtained from the above formula by integrating out the variables z

and u. However, it turns out to be more straightforward to prove this directly,
particularly as otherwise it would require us to specify in more detail the Lévy
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measure in terms of poles and roots for the M-class (cf. Corollary 1). The follow-
ing result does precisely this, but, in addition, it also gives us the probability of
creeping.

THEOREM 3. Define a matrix A = {ai,j }i,j≥0 as

ai,j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, if i = 0, j ≥ 0,

ai(ρ, ζ )b0(ζ, ρ), if i ≥ 1, j = 0,

ai(ρ, ζ )bj (ζ, ρ)

ρj − ζi

, if i ≥ 1, j ≥ 1.

(28)

Then for c > 0 and y ≥ 0, we have

E[e−qτ+
c I(Xτ+

c
− c ∈ dy)] = v̄(ζ, c)T × A × v̄(ρ, y) dy.(29)

PROOF. We start with the formula from Lemma 1 in [1],

E
[
e
−qτ+

c −z(X
τ
+
c

−c)] = E[e−z(Xe(q)−c)
I(Xe(q) > c)]

E[e−zXe(q)]
.(30)

Using formula (19), we find that

E
[
e−z

(
Xe(q)−c

)
I
(
Xe(q) > c

)] = ∑
i≥1

ai(ρ, ζ )
ζi

z + ζi

e−ζic.

Next, using (18) and (13), after some algebraic manipulations, we find that

1

(z + ζi)E[e−zXe(q)]
= 1

(z + ζi)

∏
n≥1

1 + z/ζn

1 + z/ρn

= b0(ζ, ρ) + ∑
j≥1

bj (ζ, ρ)

ρj − ζi

ρj

ρj + z
.

Combining the above three equations, we find

E
[
e
−qτ+

c −z(X
τ
+
c

−c)] = ∑
i≥1

ai(ρ, ζ )b0(ζ, ρ)ζie
−ζic

+ ∑
i≥1

∑
j≥1

ai(ρ, ζ )bj (ζ, ρ)

ρj − ζi

ζie
−ζic

ρj

ρj + z
,

which allows for a straightforward inversion in z, thereby completing the proof.
�
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5. Entrance/exit problems for a finite interval. The two-sided exit problem
is a long standing problem of interest from the theory of Lévy processes and there
are very few cases where explicit identities have been extracted for the (discounted)
overshoot distribution on either side of the interval. Classically, the only examples
with discounting which have been analytically tractable are those of jump diffusion
processes with (hyper)-exponentially distributed jumps (see, e.g., [25, 42]) and, up
to knowing the so-called scale function, spectrally negative processes, [31]. Other-
wise, the only other examples, without discounting, are those of stable processes,
[39] and Lamperti-stable processes [13].

Recall that

τ+
a = inf{t > 0 :Xt > a}, τ−

0 = inf{t > 0 :Xt < 0}.
For f ∈ L∞(R), the space of positive, measurable and uniformly bounded func-
tions on R, and x ∈ R, define the following operators:

(Gf )(x) = I(0 ≤ x ≤ a)Ex[e−qτ+
a f (Xτ+

a
)I(τ+

a < τ−
0 )],

(31)
(Ĝf )(x) = I(0 ≤ x ≤ a)Ex[e−qτ−

0 f (Xτ−
0
)I(τ−

0 < τ+
a )],

and for any subset I ∈ R define

(PI f )(x) = I(x ∈ I )Ex[e−qτ+
a f (Xτ+

a
)],

(32)
(P̂I f )(x) = I(x ∈ I )Ex[e−qτ−

0 f (Xτ−
0
)].

These are bounded operators from L∞(R) into L∞(R). Note also that if X0 < 0,
then τ−

0 = 0 and, similarly, if X0 > a, then τ+
a = 0. For example, when x > a,

Ex[e−qτ+
a f (Xτ+

a
)] = f (x) and when x < 0, Ex[e−qτ−

0 f (Xτ−
0
)] = f (x).

Following similar reasoning to Rogozin [39] (see also [24]), an application of
the Markov property tells us that for all x ∈ [0, a] we have

Ex[e−qτ+
a f (Xτ+

a
)] = Ex[e−qτ+

a f (Xτ+
a
)I(τ+

a < τ−
0 )]

+ Ex

[
e−qτ−

0 I(τ−
0 < τ+

a )EX
τ
−
0

[e−qτ+
a f (Xτ+

a
)]].

Thus, we have the following operator identities:{
P[0,a] = G + Ĝ P(−∞,0],
P̂[0,a] = Ĝ + G P̂[a,∞).

(33)

Consider a space H of bounded linear operators on L∞(R) with the norm

‖G‖ = sup
‖f ‖∞≤1

‖Gf ‖∞.

In the next theorem, which holds for general Lévy processes, we give a series
representation for G in terms of P̂[0,a], P(−∞,0], P̂[a,∞), P(−∞,0] and a similar one
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for Ĝ . In the case of stable processes and general Lévy processes, respectively,
Rogozin [39] and Kadankov and Kadankova [24] have shown similar series repre-
sentations. The presentation we give above only differs in that it takes the form of
linear operators. This turns out to be more convenient for the particular application
to the M-class of processes.

THEOREM 4. Assume q > 0. A pair of operators (G, Ĝ) given by (31) is the
unique solution in H to the system of equations (33). Moreover, this solution can
also be represented in series form

G = P[0,a] − P̂[0,a]P(−∞,0] + P[0,a]P̂[a,∞)P(−∞,0]
(34)

− P̂[0,a]P(−∞,0]P̂[a,∞)P(−∞,0] + · · ·
and

Ĝ = P̂[0,a] − P[0,a]P̂[a,∞) + P̂[0,a]P(−∞,0]P̂[a,∞)

− P[0,a]P̂[a,∞)P(−∞,0]P̂[a,∞) + · · · ,
where, in both cases, convergence is exponential in the following sense. There exist
η ∈ (0,1) and a constant C > 0 such that if Sn is the sum of the first n terms in
the series describing G , then ‖G − Sn‖ ≤ Cηn+1, with a similar statement holding
for Ĝ .

PROOF. It suffices to prove the result for G , the proof for Ĝ follows by duality.
For uniqueness, we note first that the norm of operators P(−∞,0] is stricly less than
one:

‖P(−∞,0]‖ = sup
‖f ‖∞≤1

[
sup
x∈R

I(x ≤ 0)Ex[e−qτ+
a f (Xτ+

a
)]

]

≤ sup
x∈R

I(x ≤ 0)Ex[e−qτ+
a ] = E0[e−qτ+

a ] < 1

and, similarly, we find ‖P̂[a,∞)‖ < 1. Uniqueness also follows from the latter fact.
Indeed, if we assume that we have another pair of solutions (G, Ĝ), then using
the system of equations (33), we find that the difference G − G must satisfy the
equation

G − G = (G − G)P̂[a,∞)P(−∞,0].
Thus, we find

‖G − G‖ ≤ ‖G − G‖ × ‖P[a,∞)‖ × ‖P(−∞,0]‖
and since ‖P[a,∞)‖ ∨ ‖P(−∞,0]‖ < 1, we conclude that ‖G − G‖ = 0 and G = G .
To establish the series representation (34), we use (33) to find

G = P[0,a] − P̂[0,a]P(−∞,0] + G P̂[a,∞)P(−∞,0].
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By iterating this equation, we obtain series representation (34), which converges
at an exponential rate as described in the statement of the theorem with η =
‖P̂[a,∞)‖ ∨ ‖P(−∞,0]‖ ∈ (0,1). �

The next theorem converts the above general setting to the specific setting of
M-processes.

THEOREM 5 (First exit from a finite interval). Let a > 0 and define a matrix
B = B(ρ̂, ζ, a) = {bi,j }i,j≥0 with

bi,j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ζj e
−aζj , if i = 0, j ≥ 1,

0, if i ≥ 0, j = 0,

ρ̂iζj

ρ̂i + ζj

e−aζj , if i ≥ 1, j ≥ 1,

(35)

and, similarly, B̂ = B(ρ, ζ̂ , a).There exist matrices C1, C2 and Ĉ1, Ĉ2 such that
for x ∈ (0, a) we have

Ex[e−qτ+
a I(Xτ+

a
∈ dy; τ+

a < τ−
0 )]

= [v̄(ζ, a − x)T × C1 + v̄(ζ̂ , x)T × C2] × v̄(ρ, y − a)dy,
(36)

Ex[e−qτ−
0 I(Xτ−

0
∈ dy; τ−

0 < τ+
a )]

= [v̄(ζ̂ , x)T × Ĉ1 + v̄(ζ, a − x)T × Ĉ2] × v̄(ρ̂,−y)dy.

These matrices satisfy the following system of linear equations:{
C1 = A − Ĉ2BA,

Ĉ2 = −C1B̂Â,

{
Ĉ1 = Â − C2B̂Â,

C2 = −Ĉ1BA,
(37)

where A and Â are defined by (28). The system of linear equations (37) can be
solved iteratively with exponential convergence with respect to the matrix norm
‖ · ‖∞, where for any square matrix M,

‖M‖∞ = max
i≥0

∑
j≥0

|Mi,j |.(38)

Before proceeding to the proof of the above theorem, there is one technical
lemma we must first address.

LEMMA 3. Let H = B × A. Then ‖H‖∞ < 1.

PROOF. Using definitions (28) and (35) of A and B, we find that for i, j ≥ 1,

h0,0 = b0(ζ, ρ)
∑
k≥1

ak(ρ, ζ )ζke
−aζk ,



1120 A. KUZNETSOV, A. E. KYPRIANOU AND J. C. PARDO

h0,j = bj (ζ, ρ)
∑
k≥1

ak(ρ, ζ )
ζke

−aζk

ρj − ζk

,

hi,0 = ρ̂ib0(ζ, ρ)
∑
k≥1

ak(ρ, ζ )
ζke

−aζk

ζk + ρ̂i

,

hi,j = ρ̂ibj (ζ, ρ)
∑
k≥1

ak(ρ, ζ )
ζke

−aζk

(ρj − ζk)(ζk + ρ̂i)
.

Our first goal is to prove that hi,j are positive for all i, j ≥ 0 (note that hi,0 > 0
for all i ≥ 0). Let us consider a random variable ξ = e(ρj )+Xe(q), where as usual
e(ρj ) is an exponentially distributed random variable with rate ρj , independent
of X and e(q). The Laplace transform of ξ is given by

E[e−zξ ] = E
[
e−ze(ρj )] × E[e−zXe(q)] = ρj

ρj + z

∏
n≥1

1 + z/ρn

1 + z/ζn

,

and using the partial fraction decomposition (12), after some algebraic manipula-
tions we find that ξ has a probability density function

d

dx
P(ξ ≤ x) = ρj

∑
k≥1

ak(ρ, ζ )
ζke

−xζk

ρj − ζk

.

This proves that h0,j are all positive. To prove that hi,j are positive, one can use
identity

E
[
e−ρ̂i (ξ−a)

I(ξ > a)
] = ρj

∑
k≥1

ak(ρ, ζ )
ζke

−aζk

(ρj − ζk)(ζk + ρ̂i)
.

Next we need to prove that ‖H‖∞ < 1. Define a row vector h̄i as the ith row of
the matrix H. Using Theorem 3, we check that

E[e−qτ+
a I(Xτ+

a
− a ∈ dy)|X0 = −ηi] = h̄i × v̄(ρ, y) dy,

where η0 ≡ 0 and ηi is independent and exponentially distributed with parame-
ter ρ̂i . Thus, we have∑

j≥0

hi,j = E[e−qτ+
a |X0 = −ηi] < E[e−qτ+

a |X0 = 0] < 1,

and using the already established fact that hi,j are positive, we conclude that
‖H‖∞ < 1. �

PROOF OF THEOREM 5. The operator PI is an integral operator, with kernel

I(x ∈ I )Ex[e−qτ+
a I(Xτ+

a
∈ dy)]

= I(x ∈ I, y ≥ a)v̄(ζ, a − x)T × A × v̄(ρ, y − a)dy,
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(see Theorem 3). We also have a similar formula for P̂I . Using the infinite series
representation (34), we find that there exist some matrices of coefficients C1, C2

and Ĉ1, Ĉ2 so that integral kernels of operators G and Ĝ can be represented in the
form (36). Matrix equations (37) follow from operator identities (33) and the fact
that ∫ ∞

0
v̄(ρ̂, z) × v̄(ζ, a + z)T dz = B.

Equations (37) can be solved iteratively as follows:

C(n+1)
1 = A + C(n)

1 B̂ÂBA, C(0)
1 = 0,

Ĉ(n+1)
1 = Â + Ĉ(n)

1 BAB̂Â, Ĉ(0)
1 = 0,

and the convergence C(n)
1 → C1 and Ĉ(n)

1 → Ĉ1 is exponential because of
Lemma 3. Once we find C1 and Ĉ1, we find C2 = −Ĉ1BA and Ĉ2 = −C1B̂Â.

�

REMARK 3. Assume that within the M-class the positive (negative) jumps
come from a mixture of N < ∞ (N̂ < ∞) exponential distributions. Then matrices
B and B̂ have size (N̂ + 1) × (N + 1) and (N + 1) × (N̂ + 1), while matrices C1
and Ĉ1 have sizes (N + 1) × (N + 1) and (N̂ + 1) × (N̂ + 1) and can be found by
the relations

C1 = A(I − B̂ÂBA)−1, Ĉ1 = Â(I − BAB̂Â)−1.

The idea of writing down a pair of simultaneous equations (31) also works when
considering the problem of first entrance into an interval. This problem has been
considered earlier by [39] for the setting of stable processes and [25] for two-sided
Lévy processes whose upward jumps are exponentially distributed.

THEOREM 6 (First entrance into a finite interval). Let a > 0 and define
τ = inf{t ≥ 0 :Xt ∈ (0, a)}. Define a matrix M = B(ζ̂ , ρ, a)T and, similarly,
M̂ = B(ζ, ρ̂, a)T [see (35)]. There exist matrices N1, N2 and N̂1, N̂2 such that
for y ∈ (0, a) we have

Ex[e−qτ
I(Xτ ∈ dy)] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

v̄(ζ,−x)T × [N1 × v̄(ρ, y)

+ N2 × v̄(ρ̂, a − y)] × dy, x ≤ 0,

v̄(ζ̂ , x − a)T × [N̂1 × v̄(ρ̂, a − y)

+ N̂2 × v̄(ρ, y)] × dy, x ≥ a.

(39)

These matrices satisfy the following system of linear equations:{
N1 = A + AMN̂2,

N̂2 = ÂM̂N1,

{
N̂1 = Â + ÂM̂N2,

N2 = AMN̂1,
(40)
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where A and Â are defined by (28). This system of linear equations (40) can be
solved iteratively with exponential convergence with respect to the matrix norm
‖ · ‖∞.

The proof of this theorem is very similar to the proof of Theorem 5, and we
leave the details to the reader.

6. Ladder processes. In this section we derive several results related to the
Laplace exponent κ(q, z) of the bivariate ladder process (L,H). We are interested
in numerical evaluation of this object since it is the key to many important fluctua-
tion identities, such as the quintuple law at the first passage which was introduced
in [15].

Everywhere in this section we will denote the characteristic exponent of the
Lévy process X by �(z) = − lnE[exp(izX1)]. Note that the Laplace exponent
ψ(z) can be expressed in terms of the characteristic exponent as ψ(z) = −�(−iz),
this fact easily follows from (1).

The following theorem, which holds for general Lévy processes, is a gener-
alization of the expression for the Wiener–Hopf factors which can be found in
Lemma 4.2 in [36].

THEOREM 7. Assume that for some ε1 > 0 and for all |z| ∈ R large enough
we have

|�(z)| > c|z|ε1,(41)

for some c > 0, and ∫ ε2

−ε2

∣∣∣∣�(z)

z

∣∣∣∣dz,(42)

exists for some (and then for all) ε2 > 0. Then for Re(q) > 0 and Re(z) > 0 we
have

κ(q, z) = exp
[

1

2πi

∫
R

(
ln(q + �(u))

u − iz
− ln(1 + �(u))

u

)
du

]
.(43)

PROOF. We start with the following integral representation for κ(q, z) (see
Theorem 6.16 in [31]):

κ(q, z) = exp
[∫

R+

∫
R+

(e−t − e−qt−zx)
1

t
P(Xt ∈ dx)dt

]
.

Assume that the process Xt has a nonzero Gaussian component (σ �= 0), then
P(Xt ∈ dx) has a density which can be obtained as the inverse Fourier transform
of the right-hand side of (1). Using this fact and assuming that γ > 0, we obtain∫

R+

∫
R+

(e−t−γ x − e−qt−zx)
1

t
P(Xt ∈ dx)dt

(44)

= 1

2π

∫
R+

∫
R+

(e−t−γ x − e−qt−zx)
1

t

∫
R

e−t�(u)−iux dudx dt.
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Applying the Fubini theorem and performing integration in x, we find that the
above integral is equal to

1

2π

∫
R+

dt

t

∫
R

du

(
e−t (1+�(u))

γ + iu
− e−t (q+�(u))

z + iu

)

= 1

2π

∫
R+

dt

t

∫
R

du

(
1

γ + iu

(
e−t (1+�(u)) − e−t )(45)

− 1

z + iu

(
e−t (q+�(u)) − e−t )),

where in the last step we have used the fact that for γ > 0 and Re(z) > 0,∫
R

[
1

γ + iu
− 1

z + iu

]
du = 0

(which can be easily verified by residue calculus). Next, we apply the Fubini the-
orem and Frullani integral to the last integral in (45) and combining this result
with (44), we obtain∫

R+

∫
R+

(e−t−γ x − e−qt−zx)
1

t
P(Xt ∈ dx)dt

(46)

= 1

2πi

∫
R

(
ln(q + �(u))

u − iz
− ln(1 + �(u))

u − iγ

)
du.

Next we need to take the limit of the above identity as γ → 0+. For u small the
integrand in the right-hand side of (46) is bounded by

C
ln(1 + |�(u)|)

|u| ,

uniformly in γ ∈ [0, γ̃ ] for each γ̃ > 0, and for u large it can be bounded by∣∣∣∣ ln(q + �(u))

u − iz
− ln(1 + �(u))

u − iγ

∣∣∣∣
=

∣∣∣∣i(z − γ )
ln(q + �(u))

(u − iγ )(u − iz)
− ln(1 + (1 − q)/(q + �(u)))

u − iγ

∣∣∣∣,
= O(ln(|�(u)|)u−2) + O((u�(u))−1),

again uniformly in γ ∈ [0, γ̃ ]. Using the above two estimates and assumption (41),
we conclude that the integrand in the right-hand side of (46) is bounded by

C̃
ln(1 + |�(u)|)

|u| (1 + |u|)−ε1,

for some C̃ > 0 uniformly in γ ∈ [0, γ̃ ], and the above function is integrable on R

due to assumption (42). Thus, we can apply the Dominated Convergence Theorem
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on the right-hand side of (46) together with the Monotone Convergence Theorem
on the left-hand side while taking limits as γ → 0+. To finish the proof, we only
need to take the limit σ → 0+, which can be justified in exactly the same way us-
ing the Dominated Convergence Theorem on the right-hand side of (46) and weak
convergence on the right-hand side of (46). Note, in particular, that the character-
istic exponent of X is continuous in the Gaussian coefficient and, hence, by the
Continuity Theorem for Fourier transforms, the law of X is weakly continuous in
the Gaussian coefficient. �

Assumption (42) is a very mild one. It is satisfied by all processes except those
which have unusually heavy tails of the Lévy measure. It is satisfied by all pro-
cesses in the M-class, and more generally, by all processes for which there exists
an ε > 0 such that �(R \ (−x, x)) = O(x−ε) as x → +∞ (e.g., all stable pro-
cesses have this property). While condition (41) is more restrictive, one can see
that it only excludes compound Poisson processes and some processes of bounded
variation which are equal to the sum of its jumps. One example of such a process
is a pure jump Variance Gamma process with no linear drift Xt = σW�t + μ�t ,
which satisfies |�(z)| ∼ c ln(|z|) as z → ∞. One can see that condition (41) is
satisfied for the processes of bounded variation with nonzero drift, processes with
nonzero Gaussian component and all processes with the Lévy measure satisfying
�(R \ (−x, x)) > x−ε as x → 0+ for some ε > 0. In particular, this condition is
satisfied for all processes in the β-, θ -, hypergeometric or hyperexponential family
excluding compound Poisson processes.

Theorem 7 allows us to derive an expression for the Laplace exponent of the
bivariate ladder process (L,H).

THEOREM 8. Assume that X belongs to β-, θ -, hyperexponential or hyperge-
ometric family of Levy processes and that X is not a compound Poisson process.
Then

κ(q, z) = [φ+
q (iz)]−1

∏
n≥1

ζn(q)

ζn(1)
.(47)

PROOF. If X belongs to β-, θ - or hypergeometric family of Levy processes,
we can use asymptotics for ζn as n → +∞ (see [28], [29] and [30]) to find that
ζn(q)/ζn(1) = 1 + O(n−1−ε) and ζ̂n(q)/ζ̂n(1) = 1 + O(n−1−ε), which implies
that both infinite products

∏
n≥1

ζn(q)

ζn(1)
,

∏
n≥1

ζ̂n(q)

ζ̂n(1)
,

converge. Next, using the same technique as in the proof of Lemma 6 in [28], one
can prove that

∏
n≥1

1 − iz/ζn(q)

1 − iz/ζn(1)

∏
n≥1

1 + iz/ζ̂n(q)

1 + iz/ζ̂n(1)
→ ∏

n≥1

ζn(1)

ζn(q)

∏
n≥1

ζ̂n(1)

ζ̂n(q)
,
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as z → ∞, z ∈ R. Using the Wiener–Hopf factorization q/(q + �(z)) = φ+
q (z) ×

φ−
q (z) and (18), we obtain

q + �(z)

1 + �(z)
= q

∏
n≥1

1 − iz/ζn(q)

1 − iz/ζn(1)

∏
n≥1

1 + iz/ζ̂n(q)

1 + iz/ζ̂n(1)
.

Since X is not a compound Poisson process, we have |�(z)| → ∞ as z → ∞,
z ∈ R, thus, we finally conclude that

∏
n≥1

ζn(q)

ζn(1)

∏
n≥1

ζ̂n(q)

ζ̂n(1)
= q.

The next step is to use the Wiener–Hopf factorization q/(q+�(z)) = φ+
q (z)φ−

q (z),
(18) and the above identity to rewrite q + �(z) as

q + �(z) = ∏
n≥1

(ζn(q) − iz)/ζn(1)

1 − iz/ρn

∏
n≥1

(ζ̂n(q) + iz)/ζ̂n(1)

1 + iz/ρ̂n

.

Now we can use the above factorization and the following integral identity (which
can be proved by shifting the contour of integration in the complex plane):

1

2πi

∫
R

(
ln((1/b)(a − u))

u − iz
− ln((1/b)(b − u))

u

)
du

=
⎧⎨
⎩ ln

(
1

b
(a − iz)

)
, if Im(a) < 0, Im(b) < 0,

0, if Im(a) > 0, Im(b) > 0,

to deduce that for Re(z) > 0,

1

2πi

∫
R

(
ln(q + �(u))

u − iz
− ln(1 + �(u))

u

)
du

= ∑
n≥1

[
ln

(
ζn(q) + z

ζn(1)

)
− ln

(
1 + z

ρn

)]
,

which is equivalent to (47). �

COROLLARY 4. Let ν(ds, dx) be the Lévy measure of the ascending ladder
process (L−1

t ,Ht ). Then for x > 0 we have∫
R+

e−qsν(ds, dx) =
[∏
n≥1

ζn(q)

ζn(1)

]
b̄(ζ, ρ)T × v̄(ρ, x) dx.(48)

PROOF. Formula (48) is a corollary of (47), (17) and the fact that ν(ds, dx) is
related to κ(q, z) through the formula

κ(q, z) = κ(q,0) + az +
∫ ∞

0
(1 − e−zx)

∫ ∞
0

e−qsν(ds, dx). �
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7. More fluctuation identities. We offer some more fluctuation identities.
Although they are slightly more complex, they are still equally straightforward
for the purpose of numerical work.

We assume throughout this section that X is regular for both (0,∞) and
(−∞,0). Equivalently, we assume that a0(ρ, ζ ) = a0(ρ̂, ζ̂ ) = 0. This is the case if,
for example, X has paths of unbounded variation. It will be clear from the proofs
of the results given below how this assumption may be removed.

For a > 0 and for y ≤ a we define resolvent for X killed on leaving (−∞, a] as

R(q)(a, dy) :=
∫ ∞

0
e−qt

P(Xt ∈ dy; t < τ+
a ) dt.

THEOREM 9. Define a matrix D = {di,j }i,j≥0 as follows:

di,j =
⎧⎪⎨
⎪⎩

0, if i = 0 or j = 0,

ai(ρ, ζ )
1

ζi + ζ̂j

aj (ρ̂, ζ̂ ), if i ≥ 1, j ≥ 1.

Then if y ≤ a we have

qR(q)(a, dy)

= [
v̄(ζ,0 ∨ y)T × D × v̄

(
ζ̂ ,0 ∨ (−y)

) − v̄(ζ, a)T × D × v̄(ζ̂ , a − y)
]
dy.

PROOF. From the proof of Theorem 20 on page 176 of [5], it can be seen that

q

∫
(−∞,a]

f (y)R(q)(a, dy)

=
∫
[0,a]

P
(
Xe(q) ∈ dz

) ∫
[0,∞)

P
(−Xe(q) ∈ du

)
f (−u + z)

=
∫
[0,a]

P
(
Xe(q) ∈ dz

) ∫
−(∞,z]

f (y)P
(
Xe(q) ∈ −z + dy

)

=
∫
(−∞,a]

f (y)

∫
[0∨y,a]

P
(
Xe(q) ∈ dz

)
P

(
Xe(q) ∈ −z + dy

)
.

Thus, we obtain an alternative representation of the Spitzer–Bertoin identity

qR(q)(a, dy) =
∫
[0∨y,a]

P
(
Xe(q) ∈ dz

)
P

(
Xe(q) ∈ −z + dy

)
.

To finish the proof, we have to use the formulas in (19) and perform the integration
in the above expression [noting that some terms are lost on account of the fact that
we have assumed a0(ρ, ζ ) = a0(ρ̂, ζ̂ ) = 0]. �

Next define

�(q)(a, x, dy) =
∫ ∞

0
e−qt

Px(Xt ∈ dy, t < τ+
a ∧ τ−

0 ) dt.
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THEOREM 10. Assume q > 0 and y ∈ [0, a], then

q�(q)(a, x, dy)

= [
v̄(ζ,0 ∨ y − x)T × D × v̄

(
ζ̂ ,0 ∨ (x − y)

)
− v̄(ζ, a − x)T × D × v̄(ζ̂ , a − y)

]
dy

− [v̄(ζ̂ , x)T × Ĉ1 + v̄(ζ, a − x)T × Ĉ2]
× [B(y) × D × v̄(ζ̂ ,0) − B(a) × D × v̄(ζ̂ , a − y)]dy,

where matrix B(y) = B(ρ̂, ζ, y) is defined in (35), D is defined in Theorem 9,
while matrices Ĉ1 and Ĉ2 come from Theorem 5. Also, v̄(ζ̂ ,0) is intepreted as
[0, ζ̂1, ζ̂2, . . .]T .

PROOF. Define

ĝ(q)(a, x, dy) = Ex[e−qτ−
0 I(−Xτ−

0
∈ dy; τ−

0 < τ+
a )].(49)

Note, moreover, that for f supported in [0, a],∫
[0,a]

f (y)�(q)(a, x, dy)

= 1

q
Ex

[
f

(
Xe(q)

)
I
(
e(q) < τ−

0 ∧ τ+
a

)]

= 1

q
Ex

[
f

(
Xe(q)

)
I
(
e(q) < τ+

a

)] − 1

q
Ex

[
f

(
Xe(q)

)
I
(
τ−

0 < e(q) < τ+
a

)]

=
∫ a

0
f (y)R(q)(a − x, dy − x) − 1

q
Ex

[
f

(
Xe(q)

)
I
(
τ−

0 < e(q) < τ+
a

)]
.

The second expectation in the above expression can be rewritten as∫ ∞
0

e−qt
Ex[f (Xt)I(τ

−
0 < t < τ+

a )]dt

= Ex

[∫ ∞
τ−

0

e−qtf (Xt)I(t < τ+
a ) dt

]

= Ex

[
e−qτ−

0 I(τ−
0 < τ+

a )EX
τ
−
0

[∫ ∞
0

e−qtf (Xt)I(t < τ+
a ) dt

]]

=
∫

R+
ĝ(q)(a, x, dz)

∫
R+

R(q)(a + z, z + dy)f (y).

So, in conclusion, we have for y ∈ [0, a],
�(q)(a, x, dy) = R(q)(a − x, dy − x) −

∫
R+

ĝ(q)(a, x, dz)R(q)(a + z, z + dy),

and to end the proof, one should use results of Theorems 5 and 9 and compute the
above integral. The details are left to the reader. �
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REMARK 4. The previous result also allows us to write down the discounted
joint overshoot, undershoot distribution for the two-sided exit problem:

g(q)(a, x, dy, dz) = Ex[e−qτ+
a I(τ+

a < τ−
0 ;Xτ+

a
∈ dy;Xτ+

a − ∈ dz)].
(Again this relates to the so-called Gerber–Shiu measure for classical risk theory).
Indeed, for y > a and z ∈ [0, a], using the compensation formula, we have

g(q)(a, x, dy, dz) = Ex

[∑
t≥0

e−qt
I(Xt− ≤ a,X t− ≥ 0,Xt− ∈ dz)I(Xt ∈ dy)

]

= Ex

[∫
R+

e−qt
I(Xt− ≤ a,X t− ≥ 0,Xt− ∈ dz) dt

]
�(dy − z)

= �(q)(a, x, dz)�(dy − z).

REMARK 5. Define the reflected process Y := X − X and its resolvent when
killed on exiting [0, a],

�(q)(a, x, dy) =
∫ ∞

0
e−qt

Px(Yt ∈ dy, t < σa) dt,

where σa = inf{s > 0 :Ys > a}. According to [3], one may write for all q ≥ 0,

�(q)(a, x, dy) = �(q)(a, x, dy) + ĝ(q)(a, x) · lim
z↓0

�(q)(a, z, dy)

1 − ĝ(q)(a, z)
,

where ĝ(q)(a, x) = Ex[e−qτ−
0 I(τ+

a > τ−
0 )]. Moreover, note that we may continue

the computations in a similar way to before with the help of the compensation
formula,

E0[e−qσa I(Yσa ∈ dy;Yσa− ∈ dz)] = �(q)(a,0, dz)�(dy − z),

and, hence,

Ex[e−qσa I(Yσa ∈ dy;Yσa− ∈ dz)]
= g(q)(a, x, dy, dz) + ĝ(q)(a, x)�(q)(a,0, dz)�(dy − z).

8. Numerical results. For all our numerical examples we will use a process X

from the β-family (see the Introduction or [28]) having parameters

(σ,μ,α1, β1, λ1, c1, α2, β2, λ2, c2) = (σ,μ,1,1.5,1.5,1,1,1.5,1.5,1).

Here μ = E[X1] and σ is the Gaussian coefficient; the other parameters define the
density of a Lévy measure, which has exponentially decaying tails and O(|x|−3/2)

singularity at x = 0, thus, this process has jumps of infinite activity but finite vara-
tion. We define the following four parameter sets:

Set 1: σ = 0.5,μ = 1, Set 2: σ = 0.5,μ = −1,

Set 3: σ = 0,μ = 1, Set 4: σ = 0,μ = −1.
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As a first illustration of the efficiency of our algorithm we will compute the
following three quantities related to the two sided exit problem:

(i) density of the overshoot on the event that the process exists at the upper
boundary

f1(x, y) = d

dy
Ex[e−qτ+

1 I(Xτ+
1

≤ y; τ+
1 < τ−

0 )],
(ii) probability of exiting from the interval [0,1] at the upper boundary

f2(x) = Ex[e−qτ+
1 I(τ+

1 < τ−
0 )],

(iii) probability of exiting the interval [0,1] by creeping across the upper
boundary

f3(x) = Ex[e−qτ+
1 I(Xτ+

1
= 1; τ+

1 < τ−
0 )].

In order to compute these expressions, we use methods described in Theorem 5.
We truncate all the matrices Ci , Ĉi so that they have size 200 × 100 [this cor-
responds to truncating coefficients ai(ρ, ζ ) and ai(ρ̂, ζ̂ ) at i = 200 and coeffi-
cients bj (ζ, ρ) and bj (ζ̂ , ρ̂) at j = 100]. In order to compute coefficients ai(ρ, ζ ),
ai(ρ̂, ζ̂ ), bj (ζ, ρ) and bj (ζ̂ , ρ̂), we truncate infinite products in (14) and (15)
at k = 400, thus, all the computations depend on precomputing {ζn, ζ̂n} for n =
1,2, . . . ,400. All the code was written in Fortran and the computations were per-
formed on a standard laptop (Intel Core 2 Duo 2.5 GHz processor and 3 GB of
RAM).

We present the results for q = 1 in Figures 1 and 2. Computations required to
produce graphs for each parameter set took around 0.15 seconds. The numerical
results clearly show the effects that we would expect to see. In Figures 1(b), 1(d)
and 2(b) we see a positive probability of creeping, which is expected since the
process X has a Gaussian component in the first two cases and a bounded variation
and positive drift in the third case. Parameter Set 4 corresponds to a process with
bounded variation and negative drift, thus, we do not have any upward creeping,
and this is exactly what we obtain in Figure 2(d). Also, Figures 1(a), 1(c) and 2(a)
show that f1(x, y) → 0 as x → 1−, which confirms our expectation, as in this case
the upper half line is regular and as x → 1− the process will cross the barrier at 1 by
creeping, not by jumping over it. This is different from figure 2(c), where, because
of bounded variation and negative drift, the upper half line is irregular and the only
way to cross the barrier at 1 is by jumping over it. Next, Figure 1(b) and 1(d) shows
that fi(x) → 0 as x → 0+ and fi(x) → 1 as x → 1−, which again agrees with the
theory, as for parameter Sets 1 and 2 the process X has a Gaussian component,
therefore, 0 is regular for (−∞,0) and (0,∞). This is not so for parameter Sets 3
and 4, since now the process X has bounded variation and drift, and depending on
the sign of the drift, 0 is regular for either (0,∞) or (−∞,0), and this is what we
observe on Figure 2(b) and 2(d).
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FIG. 1. Unbounded variation case (σ = 0.5): computing the density of the overshoot f1(x, y)

(x ∈ (0,1), y ∈ (0,0.5)), probability of first exit f2(x) and probability of creeping f3(x) for pa-
rameter Set 1 (positive drift μ = 1) and Set 2 (negative drift μ = −1).

For the next example, we compute the density u(s, x) of the bivariate renewal
measure U (ds, dx) defined by

U (ds, dx) =
∫

R+
P(L−1

t ∈ ds,Ht ∈ dx)dt,

where (L,H) is the ascending ladder process; see [15, 31] and [32]. This measure
is a very important object, as it gives us full knowledge of the quintuple law at the
first passage; see [15]. Using formulas 6.18 and 7.10 in [31], we see that U (ds, dx)

satisfies

∫
R+

e−qs U (ds, dx) = P(Xe(q) ∈ dx)

κ(q,0)
,
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FIG. 2. Bounded variation case (σ = 0): computing the density of the overshoot f1(x, y)

(x ∈ (0,1), y ∈ (0,0.5)), probability of first exit f2(x) and probability of creeping f3(x) for pa-
rameter Set 3 (positive drift μ = 1) and Set 4 (negative drift μ = −1).

therefore, using Theorem 8 and (19), we find that the density of U (ds, dx) can be
computed as

u(s, x) = 1

2πi

∫
q0+iR

∏
n≥1

ζn(1)

ζn(q)
[ā(ρ, ζ(q))T × v̄(ζ(q), x)]eqs dq,

for any q0 > 0. It turns out that it is quite easy to compute the above integral nu-
merically using the technique discussed in [28] coupled with a Filon-type method
(see [22]). Producing each graph on Figure 3 takes around 1.2 seconds. In order
to compute u(s, x), we truncated ai(ρ, ζ ) at i = 100 and used 200 roots ζk to
compute these coefficients using formulas (14). We chose q0 = 0.25, truncated in-
tegal in q at | Im(q)| < 104. The numerical results are presented in Figure 3. Note
that both the ascending ladder height and time processes behind Figure 3(c) have
a linear drift, where, as in Figure 3(d), they are both driftless compound Poisson
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FIG. 3. Computing the density of the renewal measure U (ds, dx), s ∈ (0,0.25) and x ∈ (0,0.5).

processes. In the former case this explains the strong concentration of mass around
a linear trend, and in the latter case there exists an atom at x = s = 0, which is not
visible on the graph since we are only plotting the absolutely continuous part.

As we have mentioned in the introduction, all expressions related to fluctua-
tion identities presented in this paper have the following properties: (i) they are
computed explicitly in terms of roots/poles of q + �(iz) and possibly some lin-
ear algebra operations, (ii) all of them have the law of the space variables (e.g.,
overshoot or location of the last maximum) in closed form and (iii) they involve
Laplace transform of the first passage time τ+

a or τ−
0 . The third condition implies

that if we want to compute joint distribution of both space and time functionals
of the process (e.g., joint density of the first passage time and the overshoot), we
would have to perform a Fourier transform in the q-variable, and it has to be done
numerically. See [28] and [30] for examples of application of this technique. It
turns out that, using exactly the same method, we can also obtain similar results for
Lévy processes with stochastic volatility, which are very popular models in Math-
ematical Finance; see, for example, [11]. We will briefly present this technique for
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the case of the two-sided exit problem considered above. Let Ts be an increasing
continuous process satisfying T0 = 0. We require that E[exp(qTs)] is known in
closed form. A classical example is the integral of the Cox–Ingersoll–Ross dif-
fusion process, however, one can also choose several other processes; see [21].
Define a time-changed process Zs = XTs , s ≥ 0, where we assume that Ts is inde-
pendent of Xt . As before, define s−

0 {s+
a } to be the first passage time of process Zs

below 0 {above a}. Since Ts is continuous, we have Ts+
a

= τ+
a , thus, we obtain for

any positive q0

Ez[I(Zs+
a

∈ dy; s+
a ≤ u; s+

a < s−
0 )]

= Ez[I(Xτ+
a

∈ dy; τ+
a ≤ Tu; τ+

a < τ−
0 )]

=
∫

R+
Ez[I(Xτ+

a
∈ dy; τ+

a ≤ t; τ+
a < τ−

0 )]P(Tu ∈ dt)

= 1

2πi

∫
q0+iR

g(q)(a, z, dy)E[eqTu]q−2 dq,

where we have used the fact that

Ez[I(Xτ+
a

∈ dy; τ+
a ≤ t; τ+

a < τ−
0 )] = 1

2πi

∫
q0+iR

g(q)(a, z, dy)eqtq−2dq,

which follows from (49) by inverting the Laplace transform in q . Thus, we see
that if we choose the time change process {Ts : t ≥ 0} for which the Laplace trans-
form E[exp(qTs)] is known in closed form, then computing quantities for the time-
changed process Z is essentially identical to computing the same quantities for the
process X itself.

REFERENCES

[1] ALILI, L. and KYPRIANOU, A. E. (2005). Some remarks on first passage of Lévy processes,
the American put and pasting principles. Ann. Appl. Probab. 15 2062–2080. MR2152253

[2] AVRAM, F., KYPRIANOU, A. E. and PISTORIUS, M. R. (2004). Exit problems for spectrally
negative Lévy processes and applications to (Canadized) Russian options. Ann. Appl.
Probab. 14 215–238. MR2023021

[3] BAURDOUX, E. J. (2009). Some excursion calculations for reflected Lévy processes. ALEA
Lat. Am. J. Probab. Math. Stat. 6 149–162. MR2506862

[4] BAURDOUX, E. J. and KYPRIANOU, A. E. (2009). The Shepp–Shiryaev stochastic game
driven by a spectrally negative Lévy process. Theory Probab. Appl. 53 481–499.

[5] BERTOIN, J. (1996). Lévy Processes. Cambridge Tracts in Mathematics 121. Cambridge Univ.
Press, Cambridge. MR1406564

[6] BERTOIN, J. (1997). Exponential decay and ergodicity of completely asymmetric Lévy pro-
cesses in a finite interval. Ann. Appl. Probab. 7 156–169. MR1428754

[7] BIFFIS, E. and KYPRIANOU, A. E. (2010). A note on scale functions and the time value of
ruin for Lévy insurance risk processes. Insurance Math. Econom. 46 85–91. MR2586158

[8] BOROVKOV, A. A. (1976). Stochastic Processes in Queueing Theory. Applications of Mathe-
matics 4. Springer, New York. MR0391297

http://www.ams.org/mathscinet-getitem?mr=2152253
http://www.ams.org/mathscinet-getitem?mr=2023021
http://www.ams.org/mathscinet-getitem?mr=2506862
http://www.ams.org/mathscinet-getitem?mr=1406564
http://www.ams.org/mathscinet-getitem?mr=1428754
http://www.ams.org/mathscinet-getitem?mr=2586158
http://www.ams.org/mathscinet-getitem?mr=0391297


1134 A. KUZNETSOV, A. E. KYPRIANOU AND J. C. PARDO

[9] CABALLERO, M. E. and CHAUMONT, L. (2006). Conditioned stable Lévy processes and the
Lamperti representation. J. Appl. Probab. 43 967–983. MR2274630

[10] CABALLERO, M. E., PARDO, J. C. and PEREZ, J. L. (2010). On the Lamperti stable processes.
Probab. Math. Statist. 30 1–28.

[11] CARR, P., GEMAN, H., MADAN, D. B. and YOR, M. (2003). Stochastic volatility for Lévy
processes. Math. Finance 13 345–382. MR1995283

[12] ČEBOTAREV, N. G. and ME˘IMAN, N. N. (1949). The Routh–Hurwitz problem for polynomi-
als and entire functions. Real quasipolynomials with r = 3, s = 1. Tr. Mat. Inst. Steklova
26 331. MR0033890

[13] CHAUMONT, L., KYPRIANOU, A. E. and PARDO, J. C. (2009). Some explicit identities as-
sociated with positive self-similar Markov processes. Stochastic Process. Appl. 119 980–
1000. MR2499867

[14] DONEY, R. A. (2007). Fluctuation Theory for Lévy Processes. Lecture Notes in Math. 1897.
Springer, Berlin. MR2320889

[15] DONEY, R. A. and KYPRIANOU, A. E. (2006). Overshoots and undershoots of Lévy processes.
Ann. Appl. Probab. 16 91–106. MR2209337

[16] ES-SAGHOUANI, A. and MANDJES, M. (2008). On the correlation structure of a Lévy-driven
queue. J. Appl. Probab. 45 940–952. MR2484153

[17] GERBER, H. U. and SHIU, E. S. W. (1997). The joint distribution of the time of ruin, the
surplus immediately before ruin, and the deficit at ruin. Insurance Math. Econom. 21
129–137. MR1604928

[18] GETOOR, R. K. (1961). First passage times for symmetric stable processes in space. Trans.
Amer. Math. Soc. 101 75–90. MR0137148

[19] HILBERINK, B. and ROGERS, L. C. G. (2002). Optimal capital structure and endogenous
default. Finance Stoch. 6 237–263. MR1897961

[20] HUBALEK, F. and KYPRIANOU, A. E. (2011). Old and new examples of scale functions for
spectrally negative Lévy processes. In Sixth Seminar on Stochastic Analysis, Random
Fields and Applications (R. Dalang, M. Dozzi and F. Russo, eds.) 119–146. Birkhäuser,
Boston.

[21] HURD, T. R. and KUZNETSOV, A. (2008). Explicit formulas for Laplace transforms of stochas-
tic integrals. Markov Process. Related Fields 14 277–290. MR2437532

[22] ISERLES, A. (2004). On the numerical quadrature of highly-oscillating integrals. I. Fourier
transforms. IMA J. Numer. Anal. 24 365–391. MR2068828

[23] JEANNIN, M. and PISTORIUS, M. (2010). A transform approach to compute prices and Greeks
of barrier options driven by a class of Lévy processes. Quant. Finance 10 629–644.
MR2676789

[24] KADANKOV, V. F. and KADANKOVA, T. V. (2005). On the distribution of the first exit time
from an interval and the value of the overjump across a boundary for processes with
independent increments and random walks. Ukraïn. Mat. Zh. 57 1359–1384. MR2219768

[25] KADANKOVA, T. and VERAVERBEKE, N. (2007). On several two-boundary problems for a
particular class of Lévy processes. J. Theoret. Probab. 20 1073–1085. MR2359069

[26] KONSTANTOPOULOS, T., KYPRIANOU, A. E., SALMINEN, P. and SIRVIÖ, M. (2008). Anal-
ysis of stochastic fluid queues driven by local-time processes. Adv. in Appl. Probab. 40
1072–1103. MR2488533

[27] KOU, S. (2002). A jump diffusion model for option pricing. Management Science 48 1086–
1101.

[28] KUZNETSOV, A. (2010). Wiener–Hopf factorization and distribution of extrema for a family
of Lévy processes. Ann. Appl. Probab. 20 1801–1830. MR2724421

[29] KUZNETSOV, A. (2010). Wiener–Hopf factorization for a family of Lévy processes related to
theta functions. J. Appl. Probab. 47 1023–1033. MR2752893

http://www.ams.org/mathscinet-getitem?mr=2274630
http://www.ams.org/mathscinet-getitem?mr=1995283
http://www.ams.org/mathscinet-getitem?mr=0033890
http://www.ams.org/mathscinet-getitem?mr=2499867
http://www.ams.org/mathscinet-getitem?mr=2320889
http://www.ams.org/mathscinet-getitem?mr=2209337
http://www.ams.org/mathscinet-getitem?mr=2484153
http://www.ams.org/mathscinet-getitem?mr=1604928
http://www.ams.org/mathscinet-getitem?mr=0137148
http://www.ams.org/mathscinet-getitem?mr=1897961
http://www.ams.org/mathscinet-getitem?mr=2437532
http://www.ams.org/mathscinet-getitem?mr=2068828
http://www.ams.org/mathscinet-getitem?mr=2676789
http://www.ams.org/mathscinet-getitem?mr=2219768
http://www.ams.org/mathscinet-getitem?mr=2359069
http://www.ams.org/mathscinet-getitem?mr=2488533
http://www.ams.org/mathscinet-getitem?mr=2724421
http://www.ams.org/mathscinet-getitem?mr=2752893


MEROMORPHIC LÉVY PROCESSES AND THEIR FLUCTUATION IDENTITIES 1135

[30] KUZNETSOV, A., KYPRIANOU, A. E., PARDO, J. C. and VAN SCHAIK, K. (2011). A Wiener–
Hopf Monte Carlo simulation technique for Lévy processes. Ann. Appl. Probab. 21 2171–
2190. MR2895413

[31] KYPRIANOU, A. E. (2006). Introductory Lectures on Fluctuations of Lévy Processes with Ap-
plications. Springer, Berlin. MR2250061

[32] KYPRIANOU, A. E., PARDO, J. C. and RIVERO, V. (2010). Exact and asymptotic n-tuple laws
at first and last passage. Ann. Appl. Probab. 20 522–564. MR2650041

[33] KYPRIANOU, A. E. and RIVERO, V. (2008). Special, conjugate and complete scale functions
for spectrally negative Lévy processes. Electron. J. Probab. 13 1672–1701. MR2448127

[34] KYPRIANOU, A. E. and SURYA, B. A. (2007). Principles of smooth and continuous fit in the
determination of endogenous bankruptcy levels. Finance Stoch. 11 131–152. MR2284015

[35] LEVIN, B. Y. (1996). Lectures on Entire Functions. Translations of Mathematical Monographs
150. Amer. Math. Soc., Providence, RI. MR1400006

[36] LEWIS, A. L. and MORDECKI, E. (2008). Wiener–Hopf factorization for Lévy processes hav-
ing positive jumps with rational transforms. J. Appl. Probab. 45 118–134. MR2409315

[37] MCKEAN, H. (1965). Appendix: A free boundary problem for the heat equation arising from
a problem of mathematical economics. Ind. Manag. Rev. 6 32–39.

[38] ROGERS, L. C. G. (1983). Wiener–Hopf factorization of diffusions and Lévy processes. Proc.
Lond. Math. Soc. (3) 47 177–191. MR0698932

[39] ROGOZIN, B. A. (1972). The distribution of the first hit for stable and asymptotically stable
walks on an interval. Theor. Probab. Appl. 17 332–338.
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