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Abelian sandpiles: an overview and results on certain

transitive graphs

Antal A. Járai

July 27, 2011

Abstract

We review the Majumdar-Dhar bijection between recurrent states of the Abelian
sandpile model and spanning trees. We generalize earlier results of Athreya and
Járai on the infinite volume limit of the stationary distribution of the sandpile
model on Zd, d ≥ 2, to a large class of graphs. This includes: (i) graphs on which
the wired spanning forest is connected and has one end; (ii) transitive graphs with
volume growth at least cn

5 on which all bounded harmonic functions are constant.
We also extend a result of Maes, Redig and Saada on the stationary distribution of
sandpiles on infinite regular trees, to arbitrary exhaustions.

1 Introduction

This paper is based on a talk given at an IRS meeting in Paris1, and contains most of the
results discussed in the talk, with proofs. We give an overview of the Abelian sandpile
model, with particular emphasis on the Majumdar-Dhar bijection. Then we discuss recent
results on the infinite volume limit of the model on certain transitive graphs.

The Abelian sandpile model and close variants were discovered independently in var-
ious contexts. Our focus here will be the context of probability models on graphs; see
the references in [12] for surprising connections with other fields of mathematics. “Sand-
pile” models were introduced by Bak, Tang and Wiesenfeld [2] as simple toy examples, in
an attempt to explain the physical mechanisms underlying the widespread occurrence of
power-law distributions and fractals in nature. They introduced the idea of self-organized
criticality (SOC) as a possible mechanism, and studied “sandpile” models numerically to
support their claims. The importance of the model as a theoretical tool to study SOC
was recognized by Dhar [5], who generalized it and discovered some of its fundamental

1Inhomogeneous Random Systems, Stochastic Geometry and Statistical Mechanics, Institut Henri
Poincaré, Paris, 27 January 2010.
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properties, including the Abelian property. Dhar coined the name “Abelian sandpile”.
The definition of the model is recalled in Section 2, and the key results needed are sum-
marized in Section 3. For further background on the mathematical results, see the survey
by Redig [27]. See also the paper by Holroyd, Levine, Mészáros, Peres, Propp and Wilson
[12] for a rigorous and self-contained introduction as well as an account of the connec-
tion of sandpiles with the rotor-router model. The paper [12] also contains extensions to
directed graphs of some of the results discussed in Sections 2 and 3. See the survey by
Dhar [6] for the theoretical physics context.

Our main focus will be the following type of question. Let G = (V,E) be an infinite,
locally finite graph, for example Zd, or the Cayley graph of a finitely generated discrete
group. Let V1 ⊂ V2 ⊂ · · · ⊂ V be a sequence of finite subsets such that ∪∞

n=1Vn = V . Do
the Abelian sandpile models on the Vn’s converge to a limiting model on V ?

The above question was first addressed in the case of Z by Maes, Redig, Saada and Van
Moffaert [21]. Here the limiting model has a trivial stationary distribution, nevertheless
the question of convergence to this distribution is non-trivial [21].

Maes, Redig and Saada [22] considered sandpiles on infinite regular trees. A stationary
Markov process was constructed, obtained as the limit of sandpile Markov chains on finite
subgraphs. For the most part, the construction given in [22] is very general, and applies
to a general infinite graph. There were two key steps, however, that were specific to the
tree: (i) to show that the stationary measures of sandpiles on a suitable sequence of finite
subgraphs converge weakly to a unique (automorphism invariant) limit; (ii) to show that
avalanches are almost surely finite in the limit. These steps were carried out making use
of results of Dhar and Majumdar [7].

Maes, Redig and Saada [23] studied a so-called dissipative version of the Zd model,
where particles are removed on each toppling (not only at the boundary). The presence
of dissipation introduces fast decay of correlations. Making use of this, the steps (i)–(ii)
above could be carried out, and the infinite volume process was constructed. A nice
feature of the limiting process is that it is shown to live on a compact Abelian group,
extending the finite volume formalism.

For the usual (non-dissipative) model on Zd, the step (i) above for d ≥ 2 was solved
by Athreya and Járai [1], and step (ii) for d ≥ 3 was solved by Járai and Redig [16].
The main new ingredient in these papers was to exploit a result of Majumdar and Dhar
[25] that gives a bijection between the recurrent states of the sandpile model and wired
spanning trees of the underlying graph. This made it possible to use techniques from the
theory of uniform spanning trees, in particular Pemantle’s theorem [26] on the existence
of the wired uniform spanning forest. There is a difference between the cases 2 ≤ d ≤ 4
and d ≥ 5, that are a reflection of Pemantle’s result that in the former case the spanning
forest is a.s. connected, while in the latter case it is not. Another essential ingredient is
that the each tree in the spanning forest has one end. This was first proved by Pemantle
[26] and Benjamini, Lyons, Peres and Schramm [3]. (In what follows, we will abreviate
the latter authors to BLPS.)
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The surveys [24] and [13] discuss the above developments.
More recently, a continuous height dissipative model was studied on Zd by Járai, Redig

and Saada [17]. This extends the discrete dissipative model considered in [23] by allowing
the amount dissipated per toppling to be any non-negative real value, rather than an
integer. This has the advantage that the limit of zero dissipation can be formulated
precisely. In this limit, the discrete non-dissipative model is recovered. This work is also
based on an adaptation of the Majumdar-Dhar bijection.

In the present paper, we extend some of the Zd results to more general graphs. Part
of our motivation is the well-known fact that Pemantle’s argument [26] (made explicit by
Häggström [9]) shows that the wired spanning forest measure exists on any infinite locally
finite graph, as a limit from uniform spanning trees on finite graphs (see Theorem 2 below).
Also, the alternative distinguishing a connected spanning forest from the disconnected
case can be vastly generalized [3, Theorems 9.2, 9.4]. At first sight, the Majumdar-Dhar
bijection may suggest that a general convergence statement should also exist for sandpiles
and could be derived from the bijection. However, the situation is more subtle. Although
the wired spanning forest measure is always unique, the limits of sandpile measures may
be non-unique. Results of Járai and Lyons [15] (see Theorem 8 below) show that this
is the case for a class of graphs with two ends, on which the wired spanning forest has
two ends a.s. After making appropriate assumptions to exclude the above phenomenon, a
general convergence statement can be proved for certain “low-dimensional” graphs. One
can follow essentially the same argument as the one made in [1] for Zd, 2 ≤ d ≤ 4.
Nevertheless, we decided to include a new proof in the present paper, that follows a
somewhat different route. The argument we present is based on coupling, and hence gives
more than weak convergence; see Theorem 7 below.

Considerably more work is needed to extend the line of argument made in [1] for Zd,
d ≥ 5, to a more general class of transitive graphs. Here we need to make more restrictive
assumptions on the graph to make the proof work, see Assumption 1 and Theorem 10.
Nevertheless, parts of our argument for this case are still quite general, and are potentially
useful beyond the validity of Assumption 1; see Lemmas 8 and 9 and Proposition 1. As
discussed in Section 7, results of BLPS [3] and Lyons, Morris and Schramm [19] imply
that there are many graphs on which our assumptions are satisfied.

Our results make it possible to apply the general machinery developed by Maes, Redig
and Saada [22] to a large class of graphs. This is outlined in Section 9.

The bijection is also useful on infinite regular trees. We discuss some interesting
symmetry properties of the bijection on trees, and in Theorem 11 we use them to extend
the convergence result of [22] to a general exhaustion.

The outline of the paper is as follows. In Section 2 we review the definition and
basic properties of the Abelian sandpile on a finite undirected multigraph. Section 3 is
devoted to a discussion of the Majumdar-Dhar bijection that establishes a one-to-one
mapping between recurrent sandpile configurations and spanning trees. In Section 4 we
recall the wired spanning forest measure and Pemantle’s alternative distinguishing the
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cases 2 ≤ d ≤ 4 and d ≥ 5 for Zd. In Section 5 we recall Wilson’s method and its
extensions to infinite graphs. In Section 6, we state and prove the general convergence
theorem for “low-dimensional” graphs. In Section 7 we state and prove a convergence
theorem for certain “high-dimensional” transitive graphs. In Section 8, we discuss the
results for regular trees. Finally, in Section 9 we make the connection with the results of
Maes, Redig and Saada [22].

Acknowledgments. I thank François Dunlop, Thierry Gobron and Ellen Saada for
giving me the opportunity to present this talk. I am grateful for a question of David
B. Wilson that prompted me to consider the problems in Section 8.

2 The Abelian sandpile model

We first define the model on a finite, connected multigraph G = (V +, E) that has a
distinguished vertex s, called the sink. We write V = V + \ {s}. We allow G to have
loop-edges, as this has no major consequence. We write axy = ayx for the number of
edges between x and y in G, where x, y ∈ V +. Sometimes we will consider the directed
graph ~G = (V +, ~E) that is obtained from G by replacing each edge by two directed edges,

one in each direction. A directed edge e ∈ ~E, points from the tail of e, denoted e−, to the
head of e, denoted e+. When there is no ambiguity, we also write e = [e−, e+], to specify
an oriented edge by its tail and head. For a set of vertices A ⊂ V +, we denote by G \ A
the graph obtained by removing all vertices in A from G, as well as all edges incident
with vertices in A.

We define the set of stable configurations of particles:

ΩG :=
∏

x∈V

{0, . . . , degG(x) − 1},

and the set of all particle configurations:

XG :=
∏

x∈V

{0, 1, . . . }.

The dynamics of the model is defined in terms of the toppling matrix, that is the graph
Laplacian:

∆xy = (∆G)xy =











degG(x) − axx if x = y;

−axy if x 6= y.

0 otherwise.

x, y ∈ V.

We define the basic operation of toppling. If η ∈ XG and ηx ≥ degG(x), then x is allowed
to topple, which means that it sends one particle along each edge incident with x. This
can be written:

ηy −→ ηy − ∆xy, y ∈ V,
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that is, the row of ∆G corresponding to x is subtracted from the configuration η. Note
that if x was allowed to topple, the new configuration is also in XG. When x is a neighbour
of s, axs particles are lost as the result of toppling, otherwise the number of particles is
conserved.

We define the stabilization map S : XG → ΩG, by applying topplings as long as
possible. It can be shown that any configuration stabilizes in finitely many steps, and the
resulting stable configuration is independent of the sequence of topplings used. This is
summarized in the following lemma.

Lemma 1 (Dhar [5]; see also [12, Lemma 2.2, Lemma 2.4]). S is well-defined.

We define the addition operators ax : ΩG → ΩG by axη := S(η + δx,·), x ∈ V , where
δx,y = 1 if y = x and = 0 when y 6= x. The addition operators satisfy the Abelian property :
axay = ayax, x, y ∈ V [5]; see also [12, Lemma 2.5]. Let {p(x)}x∈V be a distribution on
V satisfying p(x) > 0, x ∈ V . We define a Markov chain with statespace ΩG, where a
single step consists of picking a vertex x ∈ V at random, according to the distribution p,
and applying ax to the configuration. The set of recurrent configurations RG is the set of
recurrent states of the Markov chain. The Sandpile Group of G is defined as

KG := ZV /ZV ∆G,

that is, ZV factored by the integer row span of ∆G.

Theorem 1 (Dhar [5]; see also [12, Corrolary 2.16]).
(i) The restriction of the map ax to RG is a one-to-one transformation of RG onto itself,
for each x ∈ V . These restricted maps generate an Abelian group isomorphic to KG.
(ii) |RG| = |KG| = det(∆G).
(iii) The Markov chain has a unique stationary distribution νG and this is the uniform
distribution on RG.

By the Matrix-Tree Theorem [4, Theorem II.12], det(∆G) also equals the number of
spanning trees of G. Let us write TG for the set of all spanning trees of G. It is natural
to ask for an explicit bijection between RG and TG, and such a bijection is discussed in
Section 3. See [12] for a different class of bijections, based on the rotor-router walk.

3 The Majumdar-Dhar bijection

In this section we describe our main tool for studying infinite volume limits of sandpiles.
Let G = (V +, E) be a finite, connected multigraph, and s the distinguished vertex (the
sink). Recall that νG is the stationary distribution, RG is the set of recurrent configura-
tions, and TG is the set of spanning trees of G. We describe a bijection between RG and
TG that was introduced by Majumdar and Dhar [25].
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3.1 Allowed configurations

For a subset F ⊂ V and x ∈ F , we write degF (x) =
∑

y∈F ayx, which is the degree of
x in the subgraph induced by F . We write ηF for the restriction of the configuration η
to the subset F . We say that ηF is a forbidden subconfiguration (FSC) if for all x ∈ F ,
ηx < degF (x). We say that η ∈ ΩG is allowed, if there is no F ⊂ V , F 6= ∅, such that ηF

is a FSC. Let us write AG for the set of allowed configurations. In Section 3.2 we review
Dhar’s Buring Algorithm that decides if a given configuration is allowed or not.

It was proved in [5] that RG ⊂ AG. It was proved in [25], with the introduction of the
bijection in Section 3.3, that |AG| = |TG|. Hence it follows that |RG| = det(∆G) = |TG| =
|AG|, and therefore RG = AG. See [12, Lemma 4.2] for a different proof of the latter fact,
that is still based on the Burning Algorithm, but does not require the bijection.

Lemma 2 (Dhar [5]; Majumdar, Dhar [25]; see also [12, Lemma 4.2]). Suppose that G is
a connected multigraph with a sink s specified. Then RG = AG.

3.2 The Burning Algorithm

The following algorithm, introduced by Dhar [5], checks if a configuration is allowed. Let
η ∈ ΩG. Set B(0) := {s}, and U(0) = V . For i ≥ 1, we inductively define

B(i) := {x ∈ U(i − 1) : ηx ≥ degU(i−1)(x)}
U(i) := U(i − 1) \ B(i) = V \

(

∪i
j=0B(j)

)

.

We call B(i) the set of vertices burning at time i, and U(i) the set of unburnt vertices at
time i. We say that the algorithm terminates, if for some i ≥ 1 we have U(i) = ∅. It is
easy to prove by induction on i that for all i ≥ 1, no vertex in B(i) can be part of any
FSC. It also follows from the definition of B(i) that if for some i ≥ 1 we have B(i) = ∅
and U(i − 1) 6= ∅ (i.e. the algorithm does not terminate), then ηU(i−1) is an FSC. Hence
the algorithm terminates if and only if η is allowed.

This algorithm can be generalized to Eulerian digraphs with a sink; see [12, Lemma
4.1] The algorithm does not work on general directed graphs. An extension to that case,
called the script algorithm, was given by Speer [28].

3.3 The bijection

Based on the Burning Algorithm, we now give the bijection between AG and TG. The
bijection is not canonical, in the sense that some choices can be made how to set it up.
Suppose that for every x ∈ V , every non-empty P ⊂ {e ∈ ~E : e− = x} and every finite
K ⊂ {0, 1, 2, . . . , degG(x) − 1} of the form K = {j, j + 1, . . . , j + |P | − 1}, an arbitrary
bijection αP,K : P → K is fixed. Then the bijection between AG and TG will be uniquely
defined in terms of the αP,K ’s.
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We define the map σG : AG → TG. Let η ∈ AG, and consider the sets {B(i)}i≥0 defined
in Section 3.2. By the definition of the Burning Algorithm we have V = ∪i≥1B(i), and
this is a disjoint union. We build the tree t = σG(η) by connecting a vertex x ∈ B(i), i ≥ 1
to some vertex in B(i−1). This ensures that there are no loops, and since V = ∪i≥1B(i),
t will be a spanning tree of G. Suppose then that x ∈ B(i) for some i ≥ 1. Let

nx :=
∑

y∈∪i−1
j=0B(j)

ayx

Px := {e ∈ ~E : e+ ∈ B(i − 1), e− = x}
Kx = {degG(x) − nx, . . . , degG(x) − nx + |Px| − 1}.

(1)

We claim that ηx ∈ Kx. For this, note that due to x ∈ B(i) we have

ηx ≥ degU(i−1)(x) =
∑

y∈U(i−1)

ayx = degG(x) −
∑

y∈∪i−1
j=0B(j)

ayx = degG(x) − nx.

On the other hand, we have |Px| =
∑

y∈B(i−1) axy =
∑

y∈B(i−1) ayx, and since x 6∈ B(i−1),
for i ≥ 2 we have

ηx < degU(i−2)(x) = degG(x) −
∑

y∈∪i−2
j=0B(j)

ayx = degG(x) − nx + |Px|. (2)

When i = 1, we have nx = |Px|, so we still have ηx < degG(x) − nx + |Px|. This shows
that indeed ηx ∈ Kx. It follows that the edge ex := α−1

Px,Kx
(ηx) is an edge pointing from x

to a vertex in B(i − 1). If we define

σG(η) := t := {ex : x ∈ V },

then t is a spanning tree of G with each edge directed towards s, or equivalently, disre-
grading the orientedness, a spanning tree of G.

Lemma 3 (Majumdar, Dhar [25]). The map σG : AG → TG is a bijection between these
sets.

Proof. We first show that σG is injective. Let η1, η2 ∈ AG, η1 6= η2, and let t1 := σG(η1),
t2 := σG(η2). Let i ≥ 1 be the smallest index such that either B(i, η1) 6= B(i, η2) or there
exists x ∈ B(i, η1) = B(i, η2) with η1

x 6= η2
x. If such index did not exist, we would get by

induction on i that η1 = η2 on ∪i≥1B(i, η1) = ∪i≥1B(i, η2) = V , a contradiction. By the
choice of i, we have

B(j, η1) = B(j, η2) for 1 ≤ j ≤ i − 1. (3)

If B(i, η1) 6= B(i, η2), then pick a vertex x in the symmetric difference. Then by the
construction of σG, in one of t1 and t2 there is an edge from x to B(i−1, η1) = B(i−1, η2)
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and there is no such edge in the other, so t1 6= t2. Suppose therefore that B(i, η1) =
B(i, η2), but there exists x ∈ B(i, η1) = B(i, η2) such that η1

x 6= η2
x. By the equality (3),

we have nx(η
1) = nx(η

2), Px(η
1) = Px(η

2), and hence also Kx(η
1) = Kx(η

2). However,
since η1

x 6= η2
x we have α−1

Px,Kx
(η1

x) 6= α−1
Px,Kx

(η2
x), and therefore the edge between x and

B(i − 1) is different in t1 and t2. This completes the proof of injectivity.
We now show that σG is surjective. In the course of doing so, we find the inverse map

σ−1
G =: φG : TG → AG. First we note that for any η ∈ AG, the sets B(0), B(1), . . . and

the data in (1) can be easily expressed in terms of t = σG(η) as well. Namely, let dt(·, ·)
denote graph distance in the tree t. Then due to the construction of t, we have

B(0) = {s};
B(i) = {x ∈ V : dt(s, x) = i}, i ≥ 1.

(4)

Since this expresses B(0), B(1), . . . in terms of t, the formulas (1) show that nx, Px and
Kx are also expressed in terms of t. Also, by the definition of σG, the unique edge of t in
Px is ex, hence we have ηx = αPx,Kx

(ex).
The above makes it clear what the inverse φG = σ−1

G has to be. Suppose that t ∈ TG is
given. We use (4) to define the B(i)’s and for x ∈ Bi, i ≥ 1, we use (1) as the definition
of nx, Px and Kx. It is immediate from these definitions that Px is non-empty, and t has
a unique edge in Px. Therefore, for x ∈ B(i), i ≥ 1 we let ex be the unique edge of t in
Px, and we set ηx = αPx,Kx

(ex). We define φG(t) := η. It is clear that if η ∈ AG, then
σG(φG(t)) = t. What is left to show is that we always have η ∈ AG.

We prove that for every t ∈ TG we have η = φG(t) ∈ AG, by applying the Burning
Test to η. By definition, B(0) = {s}. We also set U(0) = V , and recursively, U(i) :=
U(i − 1) \ B(i) for i ≥ 1. We show by induction on i that at time i ≥ 0 precisely B(i)
burns.

We know that at time 0, B(0) and U(0) are the set of burning and unburnt sites.
Suppose inductively that i ≥ 1 and we already know that at time 0 ≤ j ≤ i − 1 exactly
B(j) burns, and hence U(i− 1) is the set of unburnt sites at time i− 1. We show that at
time i, precisely B(i) burns.

Let x ∈ B(i). Then due to the inductive hypothesis and the definition of nx, we have

degU(i−1)(x) =
∑

y∈U(i−1)

ayx =
∑

y∈V +\∪i−1
j=0B(j)

ayx = degG(x) − nx. (5)

Since ηx ∈ Kx (by the definition of η = φG(t)), we have ηx ≥ degG(x)− nx. Hence due to
(5), x burns at time i.

Let now x ∈ B(j) with j ≥ i+1. Then by the induction hypothesis, B(j−1), B(j), . . .
are unburnt at time i − 1, and hence

degU(i−1)(x) ≥
∑

y∈∪k≥j−1B(k)

ayx = degG(x) −
∑

y∈∪0≤k≤j−2B(k)

ayx = degG(x) − nx + |Px|.
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Since ηx ∈ Kx, we have ηx < degG(x) − nx + |Px|, and therefore x does not burn at time
i. This shows that at time i precisely the set B(i) burns, and completes the induction.
Therefore η is allowed, and we have shown that σG is a bijection between AG and TG.

We define the uniform spanning tree measure µG as the probability measure on TG

that assigns each t ∈ TG equal weight. Lemma 3 has the following important corollary.

Corollary 1. The stationary measure νG of the Abelian sandpile on G is the image under
φG of the uniform spanning tree measure µG.

The next lemma summarizes an observation about the nature of the inverse map φG

that will be important for infinite volume limits. For t ∈ TG, write dt(·, ·) for graph
distance in the tree t. For x ∈ V , write πx for the unique self-avoiding path from x to s
in t. Let us write x ∼ y if there exists an edge in G between x and y. Let

Nx = {y ∈ V + : y ∼ x or y = x}.

Let vx ∈ V + be the unique vertex such that vx ∈ πy for all y ∈ Nx, and dt(s, vx) is
maximal. (Informally, this is the “first meeting point” of the paths {πy}y∈Nx

.) Let us

write ~Fx for the following directed subtree of t:

~Fx := {e ∈ t : e− ∈ ∪y∈Nx
πy, dt(s, e+) ≥ dt(s, vx)} .

Each edge in ~Fx is directed towards vx, so specifying ~Fx is equivalent to specifying the
undirected, rooted tree (Fx, vx). Recall that ex is the unique edge of t satisfying (ex)− = x
and dt(s, (ex)+) = dt(s, x) − 1. Write η = φG(t).

Lemma 4.

(i) The value of ηx only depends on t through the rooted subtree (Fx, vx).
(ii) The value of ηx only depends on t through the differences {dt(s, x) − dt(s, y) : y ∼ x}
and the edge ex.
(iii) In fact, ηx only depends on the cardinality of the set {y ∼ x : dt(s, x)− dt(s, y) ≥ 1},
the set {y ∼ x : dt(s, x) − dt(s, y) = 1} and the edge ex.

Proof. (i) By the definition of φG, ηx only depends on nx, Px (which determine Kx) and
ex. Due to the characterization of the B(i)’s in terms of graph distance (4) we have

nx =
∑

y:y∼x
dt(s,y)<dt(s,x)

ayx =
∑

y:y∼x
dt(vx,y)<dt(vx,x)

ayx =
∑

y:y∼x
dFx (vx,y)<dFx (vx,x)

ayx,

and the last expression only depends on (Fx, vx). Similarly,

Px = {e ∈ ~E : e− = x, dt(s, e+) = dt(s, x) − 1}
= {e ∈ ~E : e− = x, dFx

(vx, e+) = dFx
(vx, x) − 1},
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and the last expression only depends on (Fx, vx). Finally, since ex is the unique edge of t
incident with x that is directed away from x, we have

ex is the unique edge e in ~Fx such that e− = x and dFx
(vx, e+) = dFx

(vx, x) − 1.

(ii) This is similar to part (i). We have

nx =
∑

y:y∼x
dt(s,x)−dt(s,y)>0

ayx

Px = {e ∈ ~E : e− = x, dt(s, x) − dt(s, e+) = 1}.

This proves the claim. (iii) also follows from the above expressions.

4 The Wired Spanning Forest

Let now G = (V,E) be an infinite locally finite graph. For simplicity, from now on we
restrict our attention to simple graphs (no multiple edges or loops), but note that it is
possible to extend all our results in Sections 6 and 7 to multigraphs, with essentially the
same arguments.

An exhaustion of V is a sequence V1 ⊂ V2 ⊂ · · · ⊂ V such that ∪∞
n=1Vn = V . Let

Gn = (V +
n , En) denote the graph obtained from G by identifying all vertices in V \ Vn to

a single vertex s, so that V +
n = Vn∪{s}, and removing loops at s. Sometimes Gn is called

the wired graph associated to Vn, where “wired” refers to the fact that all connections
outside Vn have been forced to occur. Recall that µGn

is the uniform probability measure
on the set of spanning trees TGn

. We will write ⇒ to denote weak convergence of measures.
The usefulness for infinite volume limits of the bijection in Section 3.3 lies in the well-

known theorem stated below. This theorem is implicit in the work of Pemantle [26], and
was made explicit by Häggström [9], in the case of Zd. The Zd proof immediately applies
in the generality stated.

Theorem 2 (Pemantle [26]; see also [9]). Let G = (V,E) be an infinite locally finite graph.
There exists a measure µ on {0, 1}E such that µGn

⇒ µ independently of the exhaustion.
The measure µ concentrates on spanning forests of G all of whose components are infinite.

The measure µ is also called the Wired Spanning Forest (WSF) measure. Theorem 2
naturally leads to the following question.

Open question 1. Assume the same conditions as in Theorem 2. Under what extra
conditions does νGn

have a unique weak limit ν on the space
∏

x∈V {0, . . . , degG(x) − 1},
independently of the exhaustion?
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It is not possible to deduce a general convergence statement only from Theorem 2.
On certain graphs with two ends the limit is not unique; see Theorem 8 in Section 6.
However, as we will see in Section 6, there is a general convergence theorem on certain
“low-dimensional” graphs. We will need to consider the number of components of the
WSF, and the ends of the components. We say that an infinite tree has one end, if any
two infinite self-avoiding paths in the tree have infinitely many vertices in common. In
the theorem below, statement (i) and the first part of statement (ii) are due to Pemantle
[26]. The statement on one end in part (ii) was first proved by BLPS [3] and in much
greater generality. Lyons, Morris and Schramm [19] gave a simpler and even more general
proof with quantitative estimates.

Theorem 3 (Pemantle [26]; BLPS [3]). Let G be the Zd lattice.
(i) Suppose 2 ≤ d ≤ 4. The Wired Spanning Forest is µ-a.s. connected, and has one end.
(ii) Suppose d ≥ 5. The Wired Spanning Forest µ-a.s. consists of infinitely many trees,
and each tree has one end.

5 Wilson’s method

In this section we recall some facts about Wilson’s method, that is an indispensable tool
in studying uniform spanning trees.

Let π = [π0, π1, . . . , πM ] be a finite path in some graph. The loop-erasure of π is
defined by chronologically removing loops from the path as they are created. That is, we
set σ = LE(π) := [σ0, . . . , σK ], where we inductively define

s0 := 0

σ(0) := π(0)

sj := max{k ≥ sj−1 : π(k) = σ(j − 1)}, j ≥ 1,

σ(j) := π(sj + 1), j ≥ 1.

Note that loop-erasure also makes sense for an infinite path that visits any vertex only
finitely often.

Suppose now that G = (V,E) is a finite graph, and w : E → (0,∞) is a function. We
call w(e) the weight of the edge e. The pair (G,w) is called a network. Most of the time
no weights will be specified, and then it is assumed that w(e) = 1 for all e ∈ E. The
weight of a spanning tree t ∈ TG is defined by w(t) :=

∏

e∈t w(e). We extend the definition
of µG to networks by requiring that each element of TG receives probability proportional
to its weight.

A network random walk on (G,w) is a Markov chain {S(n)}n≥0 with state space V
and transition probabilities:

P[S(k + 1) = v |S(k) = u] =
w(u, v)

∑

v′∼u w(u, v′)
.

11



When the weights are constant, we call this simple random walk on G. The definition of
network random walk immediately extends to infinite networks as long as for each vertex
u ∈ V we have

∑

v′∼u w(u, v′) < ∞.
Let v1, . . . , vN be an enumeration of V , and let r be a fixed vertex of G. Let {Sj

k}k≥0,
1 ≤ j ≤ N be independent network random walks on G, with Sj(0) = vj. We define a
sequence of subtrees F0 ⊂ F1 ⊂ · · · ⊂ FN of G. Put F0 = {r}, and inductively define for
j ≥ 1:

Tj := inf{k ≥ 0 : Sj(k) ∈ Fj−1}
Fj := Fj−1 ∪ LE(Sj[0, T j]).

(6)

It is clear from the construction that FN is a spanning tree of G.

Theorem 4 (Wilson [30]). On any finite network, regardless of what enumeration was
chosen, FN is distributed according to µG.

Suppose now that G = (V,E) is a locally finite infinite recurrent graph. Essentially
the same method can be applied as in the finite case. Let v1, v2, . . . be an enumeration
of V , and let r ∈ V be fixed. Define Fj, j ≥ 0 as in the finite case, and set F := ∪j≥0Fj.
Then F is a.s. a spanning tree of G

Theorem 5 (BLPS [3, Theorem 5.6]). On any recurrent infinite graph, regardless of the
enumeration chosen, F is distributed according to µ.

Suppose now that G = (V,E) is a locally finite infinite transient graph. Wilson’s
method can be applied to this case as well, by letting the root r be “at infinity”. That is,
let v1, v2, . . . be an enumeration of V , set F0 := ∅, and define Tj and Fj as in (6). Now
some of the Tj’s will be infinite, but as noted earlier, loop-erasure still makes sense due
to transience. We set F := ∪j≥1Fj. Then F is a.s. a spanning forest of G.

Theorem 6 (BLPS [3, Theorem 5.1]). On any transient infinite graph, regardless of the
enumeration chosen, F is distributed according to µ.

6 Infinite volume limits — single tree

Let G = (V,E) be an infinite locally finite graph as in Section 4. Let V1 ⊂ V2 ⊂ · · · ⊂ V
be an exhaustion, and recall the wired graph Gn = (V +

n , En). In this section we assume
that the WSF of G is µ-a.s. connected and has one end. By Theorem 3(i), this includes
Zd with 2 ≤ d ≤ 4. The theorem below was proved in [1]. There it was stated in the case
of Zd, 2 ≤ d ≤ 4, however, the proof there directly applies to the more general setting.
Nevertheless, below we present a somewhat different proof, based on coupling. Let us
write

ΩG :=
∏

x∈V

{0, . . . , degG(x) − 1}.

12



Theorem 7 (Athreya, Járai [1]). Let G = (V,E) be an infinite locally finite graph.
Suppose that the WSF of G is µ-a.s. connected and has one end. There exists a measure
ν on ΩG such that νGn

⇒ ν, independently of the exhaustion.

Before proving Theorem 7, let us comment on when the assumptions are satisfied. If
G = (V,E) is any graph, an automorphism of G is a bijection ϕ : V → V , such that
{x, y} ∈ E if and only if {ϕ(x), ϕ(y)} ∈ E. We say that G is vertex-transitive, if for any
x, y ∈ V there exists an automorphism that takes x to y.

Suppose that G = (V,E) is a locally finite (vertex)-transitive graph. Let o ∈ V be a
fixed vertex of G, and let vn be the number of vertices of G with distance at most n from
o. It was shown by Lyons, Peres and Schramm [20, Corollary 5.3] and BLPS [3, Corollary
9.6] that if vn ≤ cn4, then the WSF is a.s. connected. Regarding the number of ends, it
was shown by BLPS [3, Theorem 10.3] that if G is transitive and transient and the WSF
has a single tree a.s., then that tree has one end a.s. This was further generalized by
Lyons, Morris and Schramm [19, Theorem 7.1] who gave a sufficient condition in terms
of the isoperimetric profile of the graph, without assuming transitivity. Regarding the
recurrent case, it was shown in [3, Theorem 10.6, Proposition 10.10] that in a recurrent
transitive graph G, the WSF has one end a.s. unless G is roughly isometric to Z.

Proof of Theorem 7. Fix x ∈ V . We will use a subscript n for objects associated with the
graph Gn. In particular, we write Fn,x, vn,x, etc. for the data associated to a tn ∈ TGn

appearing in Lemma 4.
Write TG for the set of spanning trees of G with one end, and let t ∈ TG. Due to

the one end property, we can think of each edge of t being directed towards infinity. For
u, v ∈ V let us write u ¹ v if there is a directed path (possibly of length 0) from u to v in
t, and write u ≺ v in the case when u 6= v. For y ∈ Nx let πy denote the unique infinite
directed path in t starting at y. Let vx ∈ V be the unique vertex such that vx ∈ πy for
all y ∈ Nx, and vx is minimal with respect to the relation ¹ (the “first meeting point”).

Let us write ~Fx for the following directed subtree of t:

~Fx := {e ∈ t : e− ∈ ∪y∈Nx
πy, e+ ¹ vx)} .

Each edge in ~Fx is directed towards vx, so specifying ~Fx is equivalent to specifying the
undirected, rooted tree (Fx, vx).

We now define a mapping φG : TG → ΩG. Let

nx = |{y : y ∼ x, dFx
(vx, y) < dFx

(vx, x)}|,
Px = {e ∈ ~E : e− = x, dFx

(vx, e+) = dFx
(vx, x) − 1},

Kx = {degG(x) − nx, . . . , degG(x) − nx + |Px| − 1}.

Let ex be the unique edge of t satisfying (ex)− = x. Set ηx := αPx,Kx
(ex), x ∈ V . Define

φG(t) := η, and let ν be the image of µ under the map φG.

13



We show that νn ⇒ ν. In fact, we consider a coupling between the measures µn and
µ, with the following property. With ηn = φGn

(tn) and η = φG(t), for all finite A ⊂ V we
have

lim
n→∞

P[ηn,x = ηx, x ∈ A] = 1. (7)

This clearly implies weak convergence.
We first consider the case when G is recurrent. For any x ∈ V let

Dx := {e ∈ E : ∃u ∈ V incident with e such that u ¹ vx}.

Due to the assumption on one end, Dx is µ-a.s. finite.

Lemma 5. Let K ⊂ E be a fixed finite set of edges. On the event Dx ⊂ K, the value of
(Fx, vx), and hence of ηx = (φG(t))x is determined by the status of the edges in K, that is
by the pair (K ∩ t,K \ t). Similarly, on the event Dn,x ⊂ K, the value of (Fn,x, vn,x), and
hence the value of ηn,x = (φGn

(tn))x is determined by the status of the edges in K.

Proof of Lemma 5. All edges of Fx belong to Dx ∩ t and hence to K ∩ t. Therefore, Fx is
determined as the smallest connected set of edges in K ∩ t containing all vertices of Nx.
It remains to show that vx is also determined.

We claim that vx is the unique vertex belonging to Fx such that there exists a path
in K ∩ t from vx to the vertex boundary of K that is edge-disjoint from Fx. First note
that vx satisfies the requirement, by virtue of the path in t from vx to infinity. Suppose
v 6= vx was another such vertex, and let f1, . . . , fL ∈ K ∩ t be a path from v to the vertex
boundary of K that is disjoint from Fx. By the definition of Dx and induction, we have
fj ∈ Dx ∩ t, j = 1, . . . , L. Let f 6∈ K be an edge that shares an endvertex with fL. The
common endvertex of fL and f , call it u, satisfies u ≺ vx. Hence we get f ∈ Dx ⊂ K, a
contradiction.

We continue the proof of (7) (in the case whan G is recurrent). Fix ε > 0. Choose
B ⊂ E a large enough finite set, so that

P[∪x∈ADx ⊂ B] > 1 − ε. (8)

Assume n is large enough so that En ⊃ B. The following coupling between µn and µ
is due to BLPS [3, Proposition 5.6]. Let u1, . . . , uK be an enumeration of all vertices
incident with the edges in B. We use Wilson’s method to generate samples tn (resp. t)
from µn (resp. µ), where the enumeration of vertices starts with u1, . . . , uK , and the root
is some fixed vertex r ∈ A. The same random walks are used in the case of Gn and G, up
to the first time τ j

n when the walk crosses an edge between Vn and the sink s. After time
τ j
n, the construction on Gn is continued using an independent simple random walk on Gn

started at s. Due to recurrence, for large enough n,

P[τ j
n > T j for j = 1, . . . , K] > 1 − ε. (9)
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If the event in (9) occurs, the status of all edges in B are the same for tn and t. When
the event in (8) also occurs, Lemma 5, Lemma 4(i), and the definitions of φG and φGn

imply that (φG(t))x = (φGn
(tn))x for all x ∈ A. Since ε was arbitrary, this proves (7) in

the recurrent case.
When G is transient, the proof is fairly similar, and somewhat simpler. This time,

we let u1, . . . , uK be an enumeration of ∪x∈ANx. On G we use Wilson’s method rooted
at infinity, and on Gn we use it with root equal to the sink s. The constructions use the
same random walks Sj, up to the first exit time τ j

n from Vn for j = 1, . . . , K. Given ε > 0,
let C ⊂ E be a large enough finite set so that

P[∪x∈AFx ⊂ C] > 1 − ε. (10)

Let τ̂ j
C be the time of the last visit to C by Sj. Due to transience, τ̂ j

C < ∞ a.s. It follows,
using transience again, that if n is large enough

P
[

Sj[τ j
n,∞) ∩ Sj[0, τ̂ j

C ] = ∅, j = 1, . . . , K
]

> 1 − ε. (11)

Note that on the event in (11), using the notation from Section 5, we have FK ∩ C =
Fn

K ∩ C. When the event in (10) also occurs, we have (Fx, vx) = (Fn,x, vn,x), x ∈ A.
This implies, due to Lemma 4(i) and the definitions of φG(t) and φGn

(tn), that ηx = ηn,x,
x ∈ A. Since ε was arbitrary, we obtain (7) in the transient case.

Uniqueness of the limit in Theorem 7 can fail, if the assumption on one end is dropped.
The following theorem was proved in [15]. Let G0 be a connected finite graph. Let G
be the product Z × G0, that is, (n1, u1) and (n2, u2) are connected by an edge, if either
n1 = n2 and u1 ∼ u2 in G0, or if u1 = u2 and |n1 − n2| = 1. Write Gn,m for the wired
graph associated to {n, n + 1, . . . ,m − 1,m} × G0.

Theorem 8 (Járai, Lyons [15]). If G0 has at least two vertices, then {νGn,m
: n < 0, m >

0} has precisely two ergodic weak limit points.

Remark 1. Here the WSF on G has two ends a.s., as can be seen by using Wilson’s
method, Theorem 5. Therefore, the conditions of Theorem 7 are not satisfied. It is a
natural question whether this is the only thing that can go wrong with the existence of a
unique limit. If the answer is yes, this would solve Open question 1.

7 Infinite volume limits — multiple trees

7.1 Statement of result

In this section we will be interested in graphs where the WSF is not a single tree. Theorem
3(ii) states that this is the case when G is the Zd lattice for d ≥ 5. The method of proof

15



of Theorem 7 breaks down in this case, because with probability bounded away from
0, vn,x equals the sink, and hence {(Fn,x, vn,x)}n≥1 is not tight. The following theorem
was proved in [1] in the case when the exhaustion satisfies a regularity property. The
restriction on the exhaustion was removed in [16, Appendix], using the result of [14].

Theorem 9 (Athreya, Járai [1]; Járai, Redig [16]). Consider the Zd lattice with d ≥ 5,
and let V1 ⊂ V2 ⊂ · · · ⊂ Zd be any exhaustion. There exists a measure ν on ΩZd such that
νn ⇒ ν, independently of the exhaustion.

The goal of this section is to generalize Theorem 9 to other graphs under certain
conditions.

Let G = (V,E) be an infinite locally finite graph. We denote by AUT(G) the group
of graph automorphisms of G. With the topology of pointwise convergence, AUT(G) is a
locally compact group [31, Lemma 1.27].

A function h : V → R is called harmonic, if for every x ∈ V we have

1

degG(x)

∑

y:y∼x

h(y) = h(x).

We make the following assumptions on G.

Assumption 1.

(i) G is vertex-transitive.
(ii) The probability that two independent simple random walks on G started at some
vertex intersect infinitely often is 0.
(iii) Each component of the WSF of G has one end a.s.
(iv) Every bounded harmonic function on G is constant.

We are going to prove the following theorem.

Theorem 10. Let G = (V,E) be an infinite, locally finite graph, satisfying Assumption
1(i)–(iv). There exists a measure ν on ΩG such that for any exhaustion V1 ⊂ V2 ⊂ · · · ⊂ V
we have νGn

⇒ ν.

Before setting out to prove Theorem 10, let us discuss examples where the conditions
are satisfied.

Condition (i). Suppose that Γ is a finitely generated group, and let S be a fixed finite
generating set with the property that if s ∈ S then also s−1 ∈ S. The (right-)Cayley
graph of (Γ, S) is the graph with vertex set V = Γ and edge set

E := {{x, xs} : x ∈ Γ, s ∈ S}.

Any Cayley graph is vertex-transitive, as shown by left-multiplication by elements of Γ.
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Condition (ii). Suppose that G is a vertex-transitive graph, and let o be a fixed vertex
of G. Write d(·, ·) for graph distance in G. Let

V (n) := |{x ∈ V : d(o, x) ≤ n}| .

Suppose that there exists a constant c > 0 such that V (n) ≥ cn5. Let {Sn}n≥0 be simple
random walk on G. Due to [31, Corollary 14.5], the return probability of S satisfies
P[S2n = o |S0 = o] ≤ Cn−5/2. As explained in [20, Section 5], this implies that the
expected number of intersections (with multiplicity) between two independent simple
random walks starting at o is finite. Hence (ii) is satisfied in this case. Note that by [3,
Theorem 9.4], the WSF has infinitely many trees a.s., whenever (i) and (ii) are satisfied.

Condition (iii). Suppose that G is a vertex-transitive graph satisfying V (n) ≥ cn3. It
follows from results of Lyons, Morris and Schramm [19, Theorem 7.1], [19, Corollary 7.3],
that every tree of the WSF has one end a.s. In the cases when the WSF is a single tree,
and when the WSF is disconnected with AUT(G) unimodular, this was earlier proved by
BLPS [3, Theorem 10.3], [3, Theorem 10.4]. Hence (iii) is satisfied for a large class of
graphs.

Condition (iv). Let G = (V,E) be a graph on which the group Γ ⊆ AUT(G) acts
transitively, i.e., for any x, y ∈ V there exists ϕ ∈ Γ such that ϕ(x) = y. Examples where
Assumption 1(iv) is satisfied are given by nilpotent groups Γ. Recall that for a, b ∈ Γ,
their commutator is defined as [a, b] := a−1b−1ab. Let Γ1 := Γ, and for k ≥ 2 let Γk be
the subgroup of Γ generated by all elements of the form [. . . [[a1, a2], a3], . . . , ak]. Then

Γ = Γ1 ⊇ Γ2 ⊇ Γ3 ⊇ . . .

is called the lower central series of Γ. If there exists an r such that Γr+1 is the trivial
group, Γ is called nilpotent [11, Chapter 10]. It was shown in [8] that if Γ is nilpotent
then any bounded harmonic function on G is constant.

Remark 2. We believe that the technical Assumption 1(iv) is not necessary. However, at
present the only example where we know the existence of ν without this assumption is
the case of a regular tree, discussed in Section 8.

7.2 Notation and coupling

We prepare for the proof of Theorem 10 by defining the appropriate analogue of (Fx, vx).
This is done in the same way as for the case of Zd, d ≥ 5 in [1]. In order to be self-
contained, we give the details. The idea behind the definitions is that there is probability
bounded away from zero, as n → ∞, that two given vertices y1, y2 ∈ Nx will be connected
through the sink s. This means that (Fn,x, vn,x)n≥1 is not tight. We want to replace it
with an object that is tight, by removing the connections through s.

17



We first give the finite volume definitions. We use notation similar to Section 6, that
is, lower indices n refer to the graph Gn. Fix x ∈ V , and assume that Nx ⊂ Vn. Let
tn ∈ TGn

, and define the forest tn := tn \ {s}. Let

Kn,x(tn) := number of connected components of tn intersecting Nx

t(1)n,x, . . . , t
(Kn,x) := the components of tn that intersect Nx

A(i)
n,x := t(i)n,x ∩Nx, 1 ≤ i ≤ Kn,x.

(12)

Here the indexing of the t(i)’s and the A(i)’s is determined as follows. We fix an ordering
of Nx, let us say Nx = {y0 = x, y1, . . . , ydegG(x)}. We let t

(1)
n,x be the component of tn

containing y0, let t
(2)
n,x be the component containing the earliest yi not in t

(1)
n,x, etc.

Let v
(i)
n,x be the unique vertex v of t

(i)
n,x such that v ∈ πn,y for all y ∈ A

(i)
n,x, and dt(s, v)

is maximal. We define

~F (i)
n,x :=











e ∈ t(i)n,x : e− ∈
⋃

y∈A
(i)
n,x

πn,y, dt(s, e+) ≥ dt(s, v
(i)
n,x)











. (13)

Specifying the ~F
(i)
n,x’s is equivalent to specifying the undirected rooted trees (F

(i)
n,x, v

(i)
n,x)

Kn,x

i=1 .
We introduce the set of relative distances:

d(i,j)
n,x = di,j

n,x(tn) = dn(v(i)
n,x, s) − dn(v(j)

n,x, s), 1 ≤ i < j ≤ Kn,x.

Due to Lemma 4(ii), ηn,x = (φn(tn))x only depends on the data:

Kn,x(tn), (F (i)
n,x(tn), v(i)

n,x(tn))
Kn,x

i=1 , {d(i,j)
n,x (tn)}1≤i<j≤Kn,x

.

When each tree in the WSF on G has one end, we can expect that the joint law of

Kn,x, (F (i)
n,x, v

(i)
n,x)

Kn,x

i=1

converges as n → ∞. The candidate for the limit is given by the natural analogues in the
graph G, that we now define.

Let TG ⊂ {0, 1}E denote the set of all spanning forests of G such that each component
is infinite and has one end. Let t ∈ TG. Due to the one end property, we can direct each
edge of t towards the end of the component containing it. Again, we write u ¹ v, if there
is a directed path from u to v. As in Section 6, for y ∈ V we denote by πy the unique
infinite directed path in t starting at y. Fix x ∈ V , and let

Kx(t) := number of connected components of t intersecting Nx

t(1)x , . . . , t(Kx)
x := the components of t that intersect Nx

A(i)
x := t(i)x ∩Nx, 1 ≤ i ≤ Kx.

(14)
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Here the indexing of the t(i)’s and A(i)’s follows the same rule as in the case of Gn. Let
v

(i)
x be a vertex of t

(i)
x minimal with respect to the relation ¹ among all vertices v with the

property that y ¹ v for all y ∈ A
(i)
x . Such a vertex exists, due to the one end property,

and there is a unique minimal one. Let

~F (i)
x :=







e ∈ t(i)x : e− ∈
⋃

y∈A
(i)
x

πy, e+ ¹ v(i)
x )







, 1 ≤ i ≤ Kx.

Specifying the ~F
(i)
x ’s is equivalent to specifying the undirected, rooted trees (F

(i)
x , v

(i)
x ).

Lemma 6. Suppose that G = (V,E) is a transient graph that satisfies Assumption 1(ii)–
(iii). For any finite A ⊂ V there is a coupling of µn, n ≥ 1, and µ such that in this
coupling

lim
n→∞

P
[

Kn,x = Kx, (F (i)
n,x, v

(i)
n,x) = (F (i)

x , v(i)
x ), 1 ≤ i ≤ Kn,x

]

= 1. (15)

Proof. Let u1, . . . , uL be an enumeration of ∪x∈ANx. On G we use Wilson’s method rooted
at infinity with random walks Sj, started at uj for j = 1, . . . , L. On Gn, we use Wilson’s
method with root equal to the sink, and with the same random walks Sj, up to their first
exit time τ j

n from Vn. Recall the notation from Section 5: (Fi)i≥0 and (Fn,i)i≥0 are the
growing forests constructed by Wilson’s method, and T j is the hitting time of Fj−1 by
Sj. For any C ⊂ E, let

τ̂ j
C := sup{k ≥ 0 : Sj(k) ∈ C}.

Let J ⊂ {1, . . . , L} be the (random) set of indices such that T j = ∞.
Given ε > 0, let C ⊂ E be a large enough finite set such that

P
[

∪j 6∈JSj[0, T j] ⊂ C
]

> 1 − ε. (16)

By transience, we can find n1, such that for all n ≥ n1 we have

P
[

for all j ∈ J we have Sj[τ j
n,∞) ∩ Sj[0, τ̂ j

C) = ∅
]

> 1 − ε. (17)

The significance of the event in (17) is that on this event, the loop-erasing procedure on
Sj[0,∞) after time τ j

n has no effect on the configuration in C, so the configurations in C
will be the same when the algorithm is run in Gn and G.

Observe that if i, j ∈ J , i < j, then LE(Si[0,∞)) ∩ Sj[0,∞) = ∅. Assumption 1(ii)
and transitivity implies that almost surely |Sj[0,∞)∩Si[0,∞)| < ∞. Since the points in
this intersection are not present in LE(Si[0,∞)), we can find n2 large enough such that
for all n ≥ n2 we have

P
[

for all i, j ∈ J , i < j we have LE(Si[0, τ i
n)) ∩ Sj[0, τ j

n) = ∅
]

> 1 − ε. (18)

Assume now the intersection of the events in (16), (17) and (18). Let n ≥ max{n1, n2}.
We prove that the event in (15) then must occur, implying the Lemma. We show that
for all 1 ≤ i ≤ L the following holds:
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(i) if T i = ∞ then T i
n = τ i

n and LE(Si[0,∞)) and LE(Si[0, τ i
n] agree up to their last

visit to C;

(ii) if T i < ∞ then T i = T i
n < τ i

n and LE(Si[0, T i]) = LE(Si[0, T i
n]) ⊂ C;

(iii) Fn,i ∩ C = Fi ∩ C.

The proof is by induction on i. For i = 1 we have T 1 = ∞ and T 1
n = τ i

n always, so
we are in case (i). Let γ be the initial segment of LE(S1[0, τ 1

n]) up to the last visit to C.
Due to the event in (17), S1 makes no further visit to γ after time τ 1

n, and therefore the
initial segment of LE(S1[0,∞)) up to the last exit from C coincides with γ, as required.

Consider now 2 ≤ i ≤ L. We prove (i). The event in (18) implies that Si[0, τ i
n) does

not intersect any of the paths LE(Sj[0, τ j
n)) with j < i, j ∈ J . It also does not intersect

LE(Sj[0, T j
n]) for j < i, j 6∈ J , since by the induction hypothesis for j, case (ii), we have

LE(Sj[0, T j
n]) = LE(Sj[0, T j]) and T i = ∞.

We now prove (ii). By virtue of the event in (16), Si[0, T i] does not leave C. By the
induction hypothesis (iii) we have Fn,i−1 ∩ C = Fi−1 ∩ C, and the claim in (ii) follows
immediately.

Statement (iii) follows from (i) and (ii).
It follows immediately from (i) and (ii) that that Kn,x = Kx. It also follows from (i)

and (ii) that for each x ∈ A and 1 ≤ i ≤ Kx we have (F
(i)
n,x, v

(i)
n,x) = (F

(i)
x , v

(i)
x ) ⊂ C. This

completes the proof.

7.3 Permutation of components

As in [1], the key difficulty to overcome is to analyze the behaviour of the d
(i,j)
n,x ’s. Lemma

4(ii) implies that when
∣

∣

∣
d

(i,j)
n,x

∣

∣

∣
is large for all 1 ≤ i < j ≤ Kn,x then their exact value is

irrelevant. More precisely, if

min
{∣

∣d(i,j)
n,x

∣

∣ : 1 ≤ i < j ≤ Kn,x

}

> max{diam(F (i)
n,x) : 1 ≤ i ≤ Kn,x}, (19)

then all that matter for the value of ηn,x = ϕGn
(tn)x are the signs of d

(i,j)
n,x . Therefore, we

introduce the permutation σn,x of {1, . . . , Kn,x} by requiring

dtn(v(σ(1))
n,x , s) ≤ dtn(v(σ(2))

n,x , s) ≤ · · · ≤ dtn(v(σ(Kn,x))
n,x , s).

In case of ties, we break them according to an arbitrary fixed rule. We write Σk for the
set of permutations of {1, . . . , k}, so that on the event {Kn,x = k}, we have σn,x ∈ Σk.
We summarize the above observations on the dependence on σn,x in the following lemma.

Lemma 7. Let G = (V,E) be an infinite graph. For every x ∈ V , 1 ≤ k ≤ degG(x) and
Vn ⊃ Nx there exist functions fk,x(F

(1), v(1), . . . , F (k), v(k), s) (where s ∈ Σk) with values
in {0, . . . , degG(x) − 1} such that whenever (19) holds, we have

ηn,x = fKn,x,x(F
(1)
n,x, v

(1)
n,x, . . . , F

(Kn,x)
n,x , v(Kn,x)

n,x , σn,x).
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We will show that if all bounded harmonic functions are constant, then σn,x is asymp-

totically uniform. More precisely, conditioned on Kn,x = k and (F
(i)
n,x, v

(i)
n,x)

Kn,x

i=1 , σn,x

converges in distribution, as n → ∞, to a uniform random element of Σk. Assuming this
(and a certain consistency property between the permutations corresponding to different
x1, x2 ∈ V ), we can define the measure ν that is the candidate for the limit.

Let t be a sample from the WSF on G. Consider a random linear ordering of the
components of t that has the property that it induces the uniform permutation on any
finite subset of components. This can be realized for example by assigning i.i.d. Unif(0, 1)
variables to the components, and considering the ranking induced by these. Given com-
ponents t1 6= t2 of t, we write t1 < t2, if t1 preceeds t2 in the ordering. For any x ∈ V ,
define σx ∈ ΣKx

by requiring:

σx(i) < σx(j) if and only if t(i)x < t(j)x for all 1 ≤ i < j ≤ Kx.

Define the configuration η ∈ ΩG by setting

ηx := fKx,x(F
(1)
x , v(1)

x , . . . , F (Kx)
x , v(Kx)

x , σx), (20)

that is defined µ-a.s., under Assumption 1(iii). Let ν be the image of the measure µ under
the map t 7→ η.

In order to prove Theorem 10, we need to show that for any A ⊂ V finite, the joint
distribution of {ηn,x}x∈A converges to the joint distribution of {ηx}x∈A. We extend to this
situation some of the definitions made for single points. Namely, let

Kn,A(tn) := number of connected components of tn intersecting ∪x∈ANx

t
(1)
n,A, . . . , t

(Kn,A)
n,A := the components of tn that intersect ∪x∈ANx.

(21)

We define (F
(i)
n,A, v

(i)
n,A), d

(i,j)
n,A and σn,A completely analogously to the single point case. We

also introduce KA, t
(1)
A , . . . , t

(KA)
A , (F

(i)
A , v

(i)
A ) in the infinite graph G.

The following two propositions make precise the intuition about fluctuations of d
(i,j)
n,A

and the uniformity of σn,A.

Proposition 1. Suppose G = (V,E) satisfies Assumption 1(i)–(iii). For any finite A ⊂ V
we have

lim
M→∞

lim sup
n→∞

P

[

min
1≤i<j≤Kn,A

∣

∣

∣
d

(i,j)
n,A

∣

∣

∣
≤ M

]

= 0. (22)

Proposition 2. Suppose G = (V,E) satisfies Assumption 1(i)–(iv). For any finite A ⊂
V , any k ≥ 1, s ∈ Σk and any sequence of finite rooted trees (F (i), v(i))k

i=1 we have

lim
n→∞

P
[

Kn,A = k, σn,A = s, (F
(i)
n,A, v

(i)
n,A) = (F (i), v(i)), 1 ≤ i ≤ k

]

=
1

k!
P

[

KA = k, (F
(i)
A , v

(i)
A ) = (F (i), v(i)), 1 ≤ i ≤ k

]

.
(23)

We prove Proposition 1 in the next section, and Proposition 2 in Section 7.5. The
short proof of Theorem 10, using the two Propositions, is at the end of Section 7.5.
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7.4 Lower bound on fluctuations

We start with some preparations for the proof of Proposition 1. Let k ≥ 1 and let
v(1), . . . , v(k) ∈ V be fixed vertices. We analyze the event

{Kx = k, v(1)
x = v(1), . . . , v(k)

x = v(k)} (24)

using Wilson’s method. Let u1, . . . , uL be an enumeration of {v(1), . . . , v(k)} ∪ (∪x∈ANx)
such that ui = v(i) for i = 1, . . . , k. Similarly to the proof of Lemma 6, we couple the
algorithms in G and in Gn by using the same random walks in Wilson’s method, with
the walk Sj starting at uj. (But note that this time the enumeration is different.) On

the event (24), for fixed 1 ≤ i < j ≤ k, the occurrence of |d(i,j)
n,A | ≤ M implies that the

lengths of the two (independent) paths γi = LE(Si[0, τ i
n]) and γj = LE(Sj[0, τ j

n]) differ by
at most M . This will be unlikely, if there is any fluctuation in the length of the paths,
and we show that this is the case whenever G is not a tree. The proof will be based on
some lemmas that follow. The first lemma makes a deterministic statement about the
existence of a cycle with two infinite paths satisfying some requirements. The significance
of the statement is that it will allow us to construct two finite random walk paths of
equal number of steps between two vertices such that the loop-erasures of the paths have
different lengths. This will be sufficient to establish non-trivial fluctuations in the length
of the loop-erased walk.

In what follows, o will denote a fixed vertex of G.

Lemma 8. Let G = (V,E) be an infinite vertex-transitive graph that is not a tree. There
exists a cycle C = {t1, . . . , tL} in G, vertices tI , tJ in C and infinite paths π = {π0, π1, . . . }
and ρ = {ρ0, ρ1, . . . } in G such that:
(i) tI and tJ are not antipodal in C, i.e. I 6= J + L/2 mod L;
(ii) π(0) = tI and ρ(0) = tJ ;
(iii) C, π[1,∞) and ρ[1,∞) are disjoint.

Proof. The conditions imply that the vertex degree is ≥ 3. Let C be a cycle of length ≥ 3
in G that passes through o. We assume that C has minimal length. Using transitivity,
we see that there exists a bi-infinite path . . . , s−2, s−1, s0 = o, s1, s2, . . . in G. Let

v := s−k, where k = max{r ≥ 1 : s−r ∈ C};
w := sl, where l = max{r ≥ 1 : sr ∈ C}.

If C has odd length, we can set ti = v, tj = w, π = {s−k, s−(k+1), . . . }, ρ = {sl, sl+1, . . . }.
Henceforth assume that |C| ≥ 4 and |C| even. If v and w are not antipodal, there
is nothing further to prove. Assume that v and w are antipodal, and let u ∈ C be a
neighbour of v.

Case (a): |C| = 4. Let u′ be the other neighbour of v in C. Since u has at least three
distinct neighbours, u has a neighbour u1 6= v, w.

22



If u1 = u′, then {v, u, u1} is a cycle of length 3, contradicting the minimality of C.
If u1 = s−k1 for some k1 > k, then the triple C ′ := {u1 = s−k1 , s−k1+1, . . . , s−k = v, u},

π := s[−k1,−(k1 + 1), . . . ), ρ := {u,w = sl, sl+1, . . . } satisfies the requirements of the
Lemma. Similarly, if u1 = sl1 for some l1 > l, we are done.

If none of the above holds, select an infinite self-avoiding path

u, u1, u2, u3 . . . ;

such a path is easily seen to exist, using transitivity. If this path is disjoint from

B := C ∪ {s−k, s−(k+1), . . . } ∪ {sl, sl+1, . . . }, (25)

then the triple C, π = {s−k, s−(k+1), . . . } and ρ = {u, u1, u2, . . . } satisfies the requirements
of the Lemma. Therefore, suppose that for some m ≥ 1 we have um ∈ B, and let m be
the smallest index with this property.

If um = u′, then the triple C ′ = {v, u, u1, . . . , um = u′}, π = {v = s−k, s−(k+1), . . . },
ρ = {u,w = sl, sl+1, . . . } satisfies the requirements. If um = v, then necessarily m ≥ 2
and the triple C ′ = {v, u, u1, . . . , um−1}, π = {s−k, s−(k+1), . . . }, ρ = {u,w = sl, sl+1, . . . }
works. If um = s−k1 for some k1 > k, then consider the cycle C ′ = {v, u, u1, . . . , um =
s−k1 , s−k1+1, . . . , s−k−1}. If um and u are not antipodal in C ′, then we can set π =
{s−k1 , s−(k1+1), . . . } and ρ = {u,w = sl, sl+1, . . . }. If they are antipodal, then um and v
are not antipodal in C ′, so we can replace ρ by ρ′ = {v, u′, w = sl, sl+1, . . . }. Similarly,
we are done if um = sl1 for some l1 ≥ l. This complete Case (a).

Case (b): |C| ≥ 6, |C| even. Again we start by letting u be a neighbour of v in C,
and let ū be the neighbour of u in C different from v. Let u1 be a neighbour of u different
from v, ū. Let b denote the path in C from u to w passing through ū, and let a denote
the path in C from v to w not passing through u.

Select a self-avoiding path u, u1, u2, . . . . If this path does not intersect B (as defined
in (25)), we are done similarly to Case (a). If there is an intersection, let the first one be
um (m ≥ 1).

If um = s−k1 for some k1 > k, we consider C ′ = {s−k1 , s−k1+1, s−k = v, u, u1, . . . , um−1}.
If um and u are not antipodal in C ′, we set π = {s−k1 , s−(k1+1), . . . } and ρ = b ∪
{sl+1, sl+2, . . . }. If they are antipodal, then um and v are not antipodal, and we can
replace ρ by ρ′ = a ∪ {sl+1, sl+2, . . . }. If um = v (and necessarily m ≥ 2), then we set
C ′ = {v, u, u1, . . . , um−1}, π = {s−k, s−(k+1), . . . } and ρ = b ∪ {sl+1, sl+2, . . . }.

If um = sl1 for some l1 > l, then the triple C, π = {v = s−k, s−(k+1), . . . }, ρ =
{u, u1, . . . , um = sl1 , sl1+1, . . . } works. If um = w, we note that the path {u, u1, . . . , um =
w} has to be longer than b, otherwise their union gives a cylce shorter than C. In
particular in the cycle C ′ = {u, u1, . . . , um} ∪ b the vertices u and w are not antipodal.
Hence the choice π = {u, v = s−k, s−(k+1), . . . } and ρ = {w = sl, sl+1, . . . } works.

If um ∈ a\{v, w}, we can find a cycle containing u, v, and part of a, and use π = {v =
s−k, s−(k+1), . . . } and ρ = b∪{sl+1, sl+2, . . . }. Finally, assume that um ∈ b\{u,w}, and let
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c = {u, u1, . . . , um}. Let b′ be the subpath of b from u to um. If |c| = |b′|, then c∪ b′ yields
a cycle shorter than C, a contradiction (note that the case m = 1 is excluded here, since
u1 6= ū). Therefore, |c| 6= |b′|, and hence u and um are not antipodal in the cycle c ∪ b′.
Therefore, we can set π = {u, v = s−k, s−(k+1), . . . } and ρ = (b \ b′) ∪ {sl, sl+1, . . . }.

Consider the configuration constructed in Lemma 8. We assume the labeling is such
that I = 1. Shifting by an automorphism we may assume that π(1) = o. Let G0 denote
the finite graph consisting of the cycle {t1, t2, . . . , tL} together with the edges {π(1), t1}
and {ρ(1), tJ}. We define two nearest neighbour paths in G0 such that:
(i) they both start at π(1) and end at ρ(1);
(ii) they both visit each edge of G0;
(iii) they have the same number of steps 2L + J + 1;
(iv) their loop-erasures have different lengths.
Let

β1 := [π(1), t1, t2, . . . , tL, t1, tL, tL−1, . . . , tJ , tJ−1, . . . , t2, t1, t2, . . . , tJ , ρ(1)]

β2 := [π(1), t1, t2, . . . , tL, t1, tL, tL−1, . . . , tJ , ρ(1), tJ , . . . , ρ(1), tJ , ρ(1)].

Here ρ(1), tJ is repeated as many times as necessary so that the length of β2 is 2L+J +1.
The loop-erasure of β1 has length L − J + 3, while the loop-erasure of β2 has length
J + 1 6= L − J + 3.

We want to show that a long loop-erased random walk in G will contain copies of
LE(β1) and LE(β2) with positive densities. We can do this by an adaptation of an
argument of Lawler [18, Theorem 7.7.2]. For this it will be convenient to define a bi-infinite
simple random walk by letting {S(m)}m≥0 and {S(−m)}m≥0 be independent realizations
of simple random walk on G starting at o.

We set M = 2L + J + 1, and we consider the blocks

Bk = [S(Mk), S(Mk + 1), . . . , S(M(k + 1))].

Let AUTo denote the stabilizer of o in AUT(G). By [31, Lemma (1.27)], AUTo is compact,
and hence it carries a right-invariant Haar measure λ of total mass 1. For each x ∈ V we
fix an automorphism φx that takes o to x.

Definition 1. We say that an index j ≥ 0 is good, if the following conditions are satisfied:

(a) For some ψ ∈ AUTo we have ψφ−1
S(Mj)Bj = β1 or ψφ−1

S(Mj)Bj = β2;

(b) S(−∞,Mj) ∩ Bj = ∅ and S(M(j + 1),∞) ∩ Bj = ∅;

(c) S(−∞,Mj] ∩ S[M(j + 1),∞) = ∅.
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Let b := P[0 is good]. In what follows, we write

B(x, k) := {y ∈ V : dist(x, y) ≤ k}.

We also introduce the notation ξB = inf{n ≥ 0 : S(n) ∈ B} for the hitting time of B by
S. The following lemma shows that good indices occur with positive frequency.

Lemma 9. Suppose the graph G = (V,E) satisfies Assumption 1(i)–(ii).
(1) We have b > 0.
(2) For any ε > 0, we have

P

[

∃K0 ∀K ≥ K0 there are at least (b − ε)K
good indices among 0, . . . , K − 1

]

= 1.

Proof of (1). Assumption 1(ii) implies that G is transient, in particular. Transience and
reversibility of the simple random walk imply that for any finite B ⊂ V we have

lim
K→∞

sup
z 6∈B(o,K)

P[ξB < ∞|S(0) = z] = 0. (26)

Let {S(1)(n)}n≥0 and {S(2)(n)}n≥0 be independent simple random walks on G, with possi-
bly different initial states. It is easy to see that Assumption 1(ii) and transitivity implies

P
[

S(1)(0,∞) ∩ S(2)(0,∞) = ∅ |S(1)(0) = o = S(2)(0)
]

=: δ0 > 0.

We show that we also have

inf
x 6=y

P
[

S(1)[0,∞) ∩ S(2)[0,∞) = ∅ |S(1)(0) = x, S(2)(0) = y
]

=: δ > 0. (27)

By transitivity, we may assume x = o. By (26), we can find K0 such that dist(o, y) ≥ K0

implies P[ξ
(2)
o < ∞|S(2)(0) = y] < δ0/2, where ξ

(2)
o denotes the hitting time of o by S(2).

Let {S(3)(n)}n≥0 and {S(n)}n≥0 be a third and a fourth independent simple random walk,
both starting at o. Assume the event

A1,3 = {S(1)(0,∞) ∩ S(3)(0,∞) = ∅}.

By Lévy’s 0–1 law, a.s. on the event A1,3 we have

lim
n→∞

P[S(3)[0,∞) ∩ S(1)[0,∞) = ∅ |S(3)[0, n], S(1)] = 1.

In particular, a.s. on A1,3 the random variables

X1,3 = inf
z∈S(3)(0,∞)

P[S[0,∞) ∩ S(1)[0,∞) = ∅ |S(0) = z, S(3)]

X3,1 = inf
z∈S(1)(0,∞)

P[S[0,∞) ∩ S(3)[0,∞) = ∅ |S(0) = x, S(1)]
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are positive. Hence we can find c > 0 and 0 < δ′ < δ0/4 such that

P[A1,3, X1,3 ≥ c, X3,1 ≥ c, ξ(2)
o = ∞] ≥ δ′. (28)

On the event in (28), either S(2) never hits S(1)[0,∞) ∪ S(3)[0,∞), or if it hits one of the
paths, then with conditional probability at least c, its continuation from the first hitting
point does not hit the other path. By symmetry of the roles of S(1) and S(3), we get
P[S(1)[0,∞) ∩ S(2)[0,∞) = ∅] ≥ cδ′. The statement involving all y 6= o now follows.

We continue with the proof of statement (1). The probability that S[0,M ] traces out
exactly β1 or β2 is positive. Assume that this occurs. Consider some large K, and let AK

be the event that {S(M + k)}k≥0 and {S(−k)}k≥0 follow the paths ρ and π, respectively,
constructed in Lemma 8 until they both leave B(o,K), at vertices x and y. By (26), we
can choose K large enough so that

sup
z 6∈B(o,K)

P[ξG0 < ∞|S(0) = z] ≤ δ/4. (29)

Due to (29) and (27), the conditional probability given AK , that the walks satisfy the
requirements (b) and (c) is at least δ/2. This proves part (1).

Proof of (2). We want to apply the ergodic theorem. A technical difficulty is that
there may be no canonical way to “translate” a vertex x ∈ V back to o. Hence after
shifting the path by φ−1

x , we average over AUTo, which is possible, since AUTo is compact.
This way we can define a certain path-valued stationary process. Let Ψ0, Ψ1, . . . be an
i.i.d. sequence, independent of the random walk, with each element distributed according
to λ. Put

Xk(m) := Ψkφ
−1
S(Mk)S(Mk + m), −∞ < m < ∞, k ≥ 0.

We claim that the path-valued sequence {Xk(·)}k≥0 is stationary and mixing (on the space
of paths we consider the topology of pointwise convergence and the induced Borel σ-field).
The somewhat tedious proof of this intuitive claim is deferred to the Appendix.

The proof of (2) is now straightforward from part (1) and the ergodic theorem, noting
that j is good if and only if 0 is good relative to the path Xj.

A time −∞ < j < ∞ is called loop-free for S if S(−∞, j] ∩ S(j,∞) = ∅. The
significance of loop-free points is that loop-erasure on the two sides of a loop-free point do
not influence each other. Note that if k ≥ 0 is good, then kM and (k +1)M are loop-free.
This observation and Lemma 9 immediately implies the following lemma.

Lemma 10. Suppose the graph G = (V,E) satisfies Assumption 1(i)–(ii). There exists
b′ > 0 such that

P

[

∃K0 ∀K ≥ K0 there are at least b′K loop-
free points among 0, . . . , K − 1

]

= 1.
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The lower bound on the fluctuations can now be achieved by conditioning on “all
information outside the good blocks”. In order to make this precise, for each good index
k ≥ 0, we choose ψk ∈ AUTo such that ψkφ

−1
S(kM)Bk ∈ {β1, β2}. Note that since β1 and β2

both traverse G0, if ψ′
k is another such automorphism, then ψ′

kψ
−1
k fixes G0 pointwise. In

particular, ψ−1
k |G0 ≡ ψ′−1

k |G0 , where |G0 denotes restriction to G0. We define the σ-algebra
G generated by the following random objects:

S(kM), k ≥ 0;

Yk := I[k is good], k ≥ 0;

ψ−1
k |G0 for k ≥ 0 such that Yk = 1;

the paths Bk′ = [S(k′M), S(k′M + 1), . . . , S((k′ + 1)M)],

for k′ ≥ 0 such that Yk′ = 0;

S(−∞, 0].

(30)

Lemma 11. Given G, the good blocks are conditionally independent, and conditional on
G, such a block Bk takes the values Φkβ1 and Φkβ2 with probabilities 1/2 each, for some
G-measurable automorphisms {Φk} that take o to S(kM), respectively.

Proof. We know that almost surely there are infinitely many good indices. Fix N ≥ 2.
Consider the class PN of events of the form:

E = {S(−j) = yj, j = 1, . . . , J ;

S(kM) = zk, k = 0, . . . , K;

k ∈ I are good;

k′ ∈ {0, . . . , K − 1} \ I are not good

ψkφ
−1
S(kM)Bk ∈ {β1, β2} for k ∈ I;

ψ−1
k |G0 = α;

Bk′ = bk′ for k′ ∈ {0, . . . , K − 1} \ I},

where J , K ≥ N , zk, I ⊂ {0, . . . , K − 1}, |I| = N , α, and bk′ are fixed. Let Aεk

k be the
event {ψkφ

−1
zk

Bk = βεk
}, where εk ∈ {1, 2} for k = 0, . . . , K−1. By decomposing the path

of S into {S(−n)}n≥0, the blocks Bk, k = 0, . . . , K − 1, and {S(n)}n≥KM , we see that

P [(∩k∈IA
εk

k ) ∩ E] =

(

∏

k∈I

1

2

)

P[E].

Since PN is closed under intersection, and generates G, this implies conditional indepen-
dence of the first N good blocks. The Lemma follows.
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Proof of Proposition 1. Let ε > 0 be given. Due to Lemma 6, there exists a finite B ⊂ V
such that for all large enough n, with probability at least 1 − ε, we have v

(i)
n,x ∈ B for

i = 1, . . . , Kn,x. Hence the Proposition will follow, once we show that for any v, w ∈ B
we have

lim
M→∞

lim sup
n→∞

P [πn,v ∩ πn,w = ∅, |dtn(v, s) − dtn(w, s)| ≤ M ] = 0. (31)

Let S1 and S2 be independent simple random walks starting at v and w, respectively. Let
γi := LE(Si[0, τ i

n]). We apply Lemma 11 to the random walk S = S1. Let

Tn := sup{j ≥ 0 : Bj ⊂ Vn and j is good}

be the index of the last good block completed before τ 1
n. Let the set of good indices be:

{g1, g2, . . . } We define the stretches between good blocks: we let

ρ0 := [S1(0), S1(1), . . . , S1(g1M)],

and for k ≥ 1 we let

ρk := [S1((gk + 1)M), S1((gk + 1)M + 1), . . . , S1(gk+1M)].

Observe that loop-erasure of the ρk’s do not interfere with each other, due to item (c) of
Definition 1. Hence γ1 = LE(S1[0, τ 1

n]) is the concatenation of:

LE(ρ0), LE(Bg1), LE(ρ1), LE(Bg2), . . . ,

LE(ρTn−1), LE(BTn
), LE(S1[(Tn + 1)M, τ 1

n)).

Due to Lemma 9 (ii), for any K we have

lim
n→∞

P[Tn ≥ K] = 1.

Now condition on the random walk S2, condition on the set of good indices and the bad
blocks of S1 up to exit from Vn, and condition on the event {Tn ≥ K}. Then

length(γ1) − length(γ2) = (Y0 − length(γ2)) +
K

∑

j=1

Yj,

where the value of the first term is fixed by the conditioning, and the Yj are conditionally
i.i.d. with positive variance. By the local central limit theorem [29], we get

P
[∣

∣length(γ1) − length(γ2)
∣

∣ ≤ M
]

≤ cM√
K

.

Letting K → ∞ implies the claim in (31), and hence the Proposition follows.
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7.5 Asymptotic uniformity of the permutation

In this section we prove Proposition 2, and complete the proof of Theorem 10.
Let k ≥ 1 be fixed and let (F (i), v(i)), 1 ≤ i ≤ k be a fixed sequence of finite rooted

trees in G. We will use Wilson’s method to generate samples t and tn from the measures
µ and µn. The set-up is the same as in Section 7.4, that is, we use the same random walks
Sj started at the vertices

u1 = v(1), . . . , uk = v(k), uk+1, . . . , uL,

where uk+1, . . . , uL is an enumeration of ∪x∈ANx. Recall that T i and T i
n denote the hitting

times of Fi−1 and Fn,i−1, respectively, by Si.
Let B1 denote the set of vertices in ∪k

i=1F
(i). Let

C :=
(

∩k
i=1{T i = ∞}

)

∩ {Fk ∩ B1 = {v(1), . . . , v(k)}}.

Let
C ′ :=

{

∪L
j=k+1LE(Sj[0, T j]) = ∪k

i=1F
(i)

}

.

Observe that as long as (F (i), v(i))k
i=1 is a possible sequence for (F

(i)
A , v

(i)
A )k

i=1, we have

C ∩ C ′ =
{

KA = k, (F
(i)
A , v

(i)
A ) = (F (i), v(i)), 1 ≤ i ≤ k

}

. (32)

We also introduce

Cn :=
(

∩k
i=1{T i

n = τ i
n}

)

∩ {Fn,k ∩ B1 = {v(1), . . . , v(k)}}
C ′

n :=
{

∪L
j=k+1LE(Sj[0, T j

n]) = ∪k
i=1F

(i)
}

,

and observe that

Cn ∩ C ′
n =

{

Kn,A = k, (F
(i)
n,A, v

(i)
n,A) = (F (i), v(i)), 1 ≤ i ≤ k

}

. (33)

Here is the outline of the proof. The restriction involving B1 has little effect on
the walks Si, i = 1, . . . , k, once they are far away from B1, and likewise, the condition
{T i = ∞}, i = 1, . . . , k. Therefore, for some large n′, once these walks leave Vn′ , they
can be treated as independent. The point where Assumption 1(iv) (bounded harmonic
functions are constant) becomes crucial, is to show that the walks can also be treated
as having the same distribution. Namely, we show that Assumption 1(iv) implies that
for some n′′ > n′, the exit measures of the walks on ∂Vn′′ are nearly identical in total
variation distance. Therefore, their continuations are nearly i.i.d. This will imply the
near uniformity of σn,A for n ≫ n′′.

Let ε > 0 be given. As in the proof of Lemma 6, we deduce that

lim
n→∞

P
[(

∩k
i=1{T i = ∞}

)

△
(

∩k
i=1{T i

n = τ i
n}

)]

= 0, (34)
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where △ denotes symmetric difference. Letting τ̂ i
B1

denote the last visit by Si to the set
B1, transience implies that for each i = 1, . . . , k we have

lim
n→∞

P
[

Si[τ i
n,∞) ∩ Si[0, τ̂ i

B1
] 6= ∅

]

= 0. (35)

It follows from (34) and (35) that there exists n1 such that for all n ≥ n1 we have

P [C △ Cn] < ε. (36)

Since on the event C∩C ′ we have T j < ∞ for j = k+1, . . . , L, we can find a large enough
finite set B2 ⊂ V (B2 ⊃ B1) such that with G1 := ∩L

j=k+1{Sj[0, T j] ⊂ B2} we have

P [C ∩ C ′ ∩ Gc
1] < ε. (37)

Let
Gn,2 := ∩k

i=1

{

Si[τ i
n,∞) ∩ Si[0, τ̂ i

B2
] = ∅

}

.

Applying (35) for B2 in place of B1, we get that there exists n2 such that for all n ≥ n2

we have
P [Gn,2] > 1 − ε. (38)

It follows from (36), (37) and (38) that there exists n3 such that for all n ≥ n3 we have

P[(C ∩ C ′) △ (Cn ∩ C ′
n)] < 3ε. (39)

Let S denote a simple random walk independent of the Sj’s. Lévy’s 0–1 law implies that
for each i = 2, . . . , k, almost surely we have

lim
n→∞

P

[

S[0,∞) ∩
(

⋃

1≤j≤k
j 6=i

Sj[0,∞)

)

= ∅
∣

∣

∣

∣

∣

S(0) = Si(τ i
n), Sj, j = 1, . . . , k, j 6= i

]

= 1.

Hence we can find n4 such that with

Gn,3 :=
k

⋂

i=1

{

Si[τ i
n,∞) ∩

(

⋃

1≤j≤k
j 6=i

Sj[0,∞)

)

= ∅
}

for all n ≥ n4 we have
P [Gn,3] > 1 − ε. (40)

Let n′ := max{n1, n2, n3, n4}. Given D ⊂ V , B ⊂ ∂D and z ∈ D̄ := D ∪ ∂D, let

hD(z, B) := P[S(τD) ∈ B |S(0) = z]
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denote the exit measure of simple random walk on the boundary of D. Note that hD(·, B)
is harmonic in D for any B ⊂ ∂D, and 0 ≤ hD(z, B) ≤ 1. Here we write ∂D = {y ∈
V \ D : y ∼ x for some x ∈ D}. We show that we can find an index n′′ > n′ such that

sup
z1,z2∈∂Vn′

‖hVn′′ (z1, ·) − hVn′′ (z2, ·)‖ ≤ ε, (41)

where ‖ · ‖ denotes total variation distance. Indeed, if this was not the case we could find
z1, z2 ∈ ∂Vn′ , and a sequence r1 < r2 < . . . and subsets Ai ⊂ ∂Vri

such that

∣

∣hV (ri)(z1, Ai) − hV (ri)(z2, Ai)
∣

∣ ≥ ε, i = 1, 2, . . . . (42)

By passing to a subsequence, we may assume that the limit

h(z) := lim
i→∞

hV (ri)(z, Ai)

exists for all z ∈ V . From (42) we have |h(z1) − h(z2)| ≥ ε. However, h is a bounded
harmonic function, so it must be constant by Assumption 1(iv). This contradiction proves
(41).

Consider now n > n′′, and let

f(y) := P[S(τn′′) = y |S(0) = o], y ∈ ∂Vn′′ .

It follows from (41) that

‖f(·) − hVn′′ (xi, ·)‖ ≤ ε, i = 1, . . . , k. (43)

Hence, for any x1, . . . , xk ∈ ∂Vn′ there exists a coupling gx1,...,xk
(z1, . . . , zk, y1, . . . , yk) with

marginals

∑

y1,...,yk

gx1,...,xk
(z1, . . . , zk, y1, . . . , yk) =

k
∏

i=1

hVn′′ (xi, zi)

∑

z1,...,zk

gx1,...,xk
(z1, . . . , zk, y1, . . . , yk) =

k
∏

i=1

f(yi),

where
∑

z1=y1,...,zk=yk

gx1,...,xk
(z1, . . . , zk, y1, . . . , yk) ≥ 1 − O(ε).

Let {S̃i(n)}n≥0, i = 1, . . . , k be independent simple random walks with initial distribution
f . We couple the initial distribution of the S̃i’s to the distribution of Si(τ i

n′′)’s using g,
where xi = Si(τ i

n′). In this coupling, we have Si(τ i
n′′+m) = S̃i(m), m ≥ 0 with probability

at least 1 − O(ε).
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We define the random permutation σ̃ ∈ Σk by the condition

length(LE(S̃σ̃(1)[0, τ̃ σ̃(1)
n ])) < · · · < length(LE(S̃σ̃(k)[0, τ̃ σ̃(k)

n ])). (44)

Here, if there are ties, we break them in a uniformly random way. That is, if {i1, . . . , ir} ⊂
{1, . . . , k} is a maximal set of indices such that the loop-erasures of the paths S̃ij [0, τ̃

ij
n ],

j = 1, . . . , r have equal lengths, we pick an ordering on them uniformly at random, and
use that ordering in (44). This way of breaking ties ensures that σ̃ is exactly uniformly
distributed on Σk.

It follows from Lemma 10, and the almost sure finiteness of τ i
n′′ , that there exist

n5 > n′′ and an M1 < ∞ such that with

Gn,4 := ∩k
i=1{there exists a loop-free point for Si in [τ i

n′′ , τ i
n′′ + M1]}

for all n ≥ n5 we have
P[Gn,4] > 1 − ε. (45)

Occurrence of the event Gn,4 ensures that when n ≫ n′′, most of the length of LE(Si[0, τ i
n])

comes from the length of LE(S̃i[0, τ̃ i
n]), for i = 1, . . . , k. In particular, there exists a

deterministic M2 = M2(M1, n
′′), such that whenever Cn ∩ Gn,4 ∩ {|d(i,j)

n,A | > M2} occurs,
we have σn,A = σ̃.

We are ready to start analyzing the event on the left hand side of (23). A straight-
forward computation shows that for any events A ∈ σ(Si[0, τ i

n′ ], i = 1, . . . , k) and B ∈
σ(S̃i[0,∞), i = 1, . . . , k) we have

|P[A ∩ B] − P[A]P[B]|

≤ sup
x1,...,xk

∑

z1,...,zk
y1,...,yk

∣

∣

∣

∣

∣

gx1,...,xk
(z1, . . . , zk, y1, . . . , yk) −

k
∏

i=1

δ(zi, yi)f(yi)

∣

∣

∣

∣

∣

≤ O(ε).

(46)

We apply this with A = Cn′ and B = {σ̃ = s}, where s ∈ Σk is fixed. To be precise, due
to the breaking of ties for σ̃, this B is defined on a slightly larger σ-field than in (46).
But this has no consequence. Using (46) and (36), for n > n′′ we obtain

P[Cn′ ∩ {σ̃ = s}] =
1

k!
P[Cn′ ] + O(ε) =

1

k!
P[C] + O(ε). (47)

Our goal now is to show that on a slightly different event σ̃ can be replaced by σn,A.
Due to Proposition 1, we can find n6 > n′′ such that for all n ≥ n6 we have

P

[

min
1≤i<j≤k

d
(i,j)
n,A > M2

]

≥ 1 − ε. (48)
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Consider for n ≥ max{n5, n6} the event

C̃n := Cn′ ∩ Gn′,2 ∩ Gn′,3 ∩ Gn,4 ∩
{

min
1≤i<j≤k

d
(i,j)
n,A > M2

}

. (49)

Observe that C̃n ⊂ Cn and that on C̃n, we have σn,A = σ̃. Due to the estimates (36),
(38), (40) and (48), for n ≥ max{n5, n6} we have

P[C̃n ∩ {σn,A = s}] = P[Cn′ ∩ {σ̃ = s}] + O(ε). (50)

The presence of the event Gn,2 in (49) ensures that on the event C̃n ∩{σn,A = s}, we have
Fk ∩ B2 = Fn,k ∩ B2. Therefore,

P
[

C ′
n ∩ G1

∣

∣ C̃n ∩ {σn,A = s}
]

= P[C ′ ∩ G1 |C] = P[C ′ |C] + O(ε). (51)

It follows from (47), (50) and (51) that

P
[

C̃n ∩ {σn,A = s} ∩ C ′
n ∩ G1

]

=
1

k!
P[C ∩ C ′] + O(ε). (52)

Since P[C̃n △ Cn] = O(ε) and P[Gc
1 ∩ C ∩ C ′] < ε, (52) implies that

P [Cn ∩ C ′
n ∩ {σn,A = s}] =

1

k!
P[C ∩ C ′] + O(ε).

Comparing with (32) and (33), this completes the proof of the Proposition.

Proof of Theorem 10. Due to Lemma 6, for any ε > 0 there exists a finite B ⊂ V such
that

lim inf
n→∞

P
[

∪Kn,A

i=1 (F (i)
x , v(i)

x ) ⊂ B
]

≥ 1 − ε.

Hence we can restrict our attention to the finite collection of rooted trees (F, v) that lie

inside B. Let (F (1), v(1)), . . . , (F (k), v(k)) be a possible value of (F
(1)
A , v

(1)
A ), . . . (F

(k)
A , v

(k)
A ),

with KA = k, such that all these trees lie inside B.
Lemma 6 shows that in a suitable coupling, the events (F

(i)
n,A, v

(i)
n,A)k

i=1 = (F (i), v(i))k
i=1

and (F
(i)
A , v

(i)
A )k

i=1 = (F (i), v(i))k
i=1 are asymptotically equal, when this occurs, we have

(F
(i)
n,x, v

(i)
n,x)

Kn,x

i=1 = (F
(i)
x , v

(i)
x )Kx

i=1 for all x ∈ A. Proposition 1 implies that for all x ∈ A and
for large enough n the condition (19) of Lemma 7 holds with high probability. This implies
that with high probability, the permutations {σn,x}x∈A are determined by σn,A. Moreover,
the dependence of the collection {σn,x}x∈A on σn,A is given by the same (deterministic)
function as the dependence of {σx}x∈A on σA. Proposition 2 implies that conditioned

on (F
(i)
A , v

(i)
A ) = (F (i), v(i)), i = 1, . . . , k, the distribution of σn,A is close to uniform.

This implies that for each x ∈ A, the joint distribution of {σn,x}x∈A is close to the joint
distribution of {σx}x∈A.

The above considerations, Lemma 7, and the definition of η in (20) imply that the
joint distribution of {ηn,x}x∈A converges to the joint distribution of {ηx}x∈A as n → ∞.
Hence the Theorem follows.
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8 Infinite volume limits on regular trees

In this section we consider infinite d-regular trees. The paper [22] proved the existence of
the limit νn ⇒ ν along sufficiently regular exhaustions (see condition (24) there). It was
also claimed that the limit exists along any exhaustion, however this does not follow from
the arguments in [22] (note that statement (25) of [22] does not imply the Cauchy net
property claimed there). In this section we prove the general convergence result. Note
that the proof of Theorem 10 does not apply to the infinite d-regular tree, for more than
one reason: Assumption 1(iv) is not satisfied, and there is no fluctuation in the lengths
of paths, so Proposition 1 fails. Nevertheless, the Majumdar-Dhar bijection can still be
used to show that νn ⇒ ν along any exhaustion.

Let G = (T d, E) be the infinite d-regular tree, with d ≥ 3. We will denote by o an
arbitrary fixed vertex of G.

Theorem 11. For any d ≥ 3 and any exhasution V1 ⊂ V2 ⊂ · · · ⊂ T d, we have νn ⇒ ν
for a unique measure ν, independent of the exhaustion.

We begin with some preparations for the proof. Fix a finite A ⊂ T d. We need to
consider the convergence of νGn

[ηn,x = hx, x ∈ A], as n → ∞, where h ∈ {0, 1, . . . , d−1}A

is fixed.
Let {S(n)}n≥0 denote a simple random walk in T d. Let τn := inf{k ≥ 0 : S(k) 6∈ Vn},

and for B ⊂ T d, let ξB := inf{k ≥ 0 : S(k) ∈ B}. The following notation will be useful:
given x ∈ ∂A and Vn ⊃ A, let

qn,x := P[τn < ξA |S(0) = x].

Given a self-avoiding path σ from x to V c
n that does not visit A, we also define:

qn,x(σ) := P[τn < ξA and LE(S[0, τn]) = σ |S(0) = x]. (53)

Recall that TGn
is the set of spanning trees of Gn. We will orient edges towards the

sink, and view trees as arrow configurations. For tn ∈ TGn
let

C(tn) := {y ∈ ∂A : ∃ e ∈ tn such that e− = y and e+ ∈ A}.

Note that we always have C(tn) $ ∂A. We classify trees according to the value of C.
Fix C $ ∂A, and consider trees tn with C(tn) = C. In any such tree, the path from a
vertex y ∈ (∂A) \ C to s, that is the path πn,y(tn), does not visit A. Due to Lemma
4, the occurrence or not of the event {ηn,x = hx, x ∈ A} depends on: the lengths of
{πn,y(tn)}y∈(∂A)\C and the position of arrows with tails in A. We will refer to the latter
simply as “the arrows in A”. We denote by mn,y the length of πn,y. The key to convergence
is a remarkable symmetry property of the bijection stated in the next two lemmas.
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Lemma 12. For any C ⊂ ∂A and {hx}x∈A, the following alternative holds. Either
(A) for any collection mn,y ≥ 1, y ∈ (∂A) \ C, the event {ηn,x = hx, x ∈ A} does not
occur for any choice of arrows in A; or
(B) for any collection mn,y ≥ 1, y ∈ (∂A) \ C, the event {ηn,x = hx, x ∈ A} occurs for
exactly one choice of arrows in A.

Lemma 13. Suppose that C ⊂ ∂A and that Case (B) holds in Lemma 12. Let σy,
y ∈ (∂A) \ C be fixed self-avoiding paths from each y to s that avoid A. Then

µn [C(tn) = C; πn,y(tn) = σy, y ∈ (∂A) \ C; ηn,x(tn) = hx, x ∈ A]

= fA,C(qn,y′ , y′ ∈ ∂A)
∏

y∈(∂A)\C

qn,y(σy) (54)

for some function fA,C : [0, 1]∂A → [0, 1], whose form only depends on the pair (A,C), and
not on the σy’s. The statement extends to Case (A), by taking fA,C to be the 0 function.

Proof of Lemma 12. Consider the following auxiliary graph. We start with the subgraph
of G induced by A ∪ ∂A. For each y ∈ (∂A) \ C we glue a path of length mn,y at y. All
glued on paths end at the common endpoint s, that serves as the sink. No new edges are
added for vertices in C. We denote this graph by GA,C (the dependence on the mn,y’s is
suppressed in the notation). Consider the following sandpile configuration η(h) on GA,C .
On the set A, η(h) equals h, on C it equals 0, and on the rest of the vertices it equals
1. It is easy to see using the Burning Algorithm, that whether η(h) ∈ RGA,C

or not is
independent of the values of mn,y. We claim that if η(h) 6∈ RGA,C

then the statements in
Case (A) hold, and if η(h) ∈ RGA,C

then the statements in Case (B) hold.
Consider any ηn ∈ RGn

, for which ηn,x = hx, x ∈ A, and for which the Burning
Algorithm produces a tree tn with C(tn) = C, and paths πn,y with lengths mn,y. We
consider the burning of ηn in Gn in parallel to the burning of η(h) in GA,C . We show that
inside ∂A ∪ A, each site will burn at the same time in the two processes.

Since the time of burning equals graph distance from the sink in the tree produced
by the algorithm, in both configurations the first time when a vertex of ∂A burns is
m1 := min{mn,y : y ∈ (∂A) \ C}. Let y1,1, . . . , y1,r1 be the list of y’s for which the
minimum is achieved. After time m1, the status of vetices in the subtree of Vn emanating
from each y1,i away from A has no influence on the burning of vertices in A∪∂A (they have
been disconnected by the burning of the vertex y1,i). Hence we may discard these subtrees
from Vn for the rest of the process. Let m2 := min{mn,y : mn,y > m1, (y ∈ ∂A) \C}, and
let y2,1, . . . , y2,r2 be the list of y’s for which the minimum is achieved.

We claim that at all times m1 ≤ m ≤ m2, the two burning processes agree in A∪ ∂A.
We show this by induction on m. The claim holds for m = m1, as in both processes
precisely y1,1, . . . , y1,r1 are burnt at time m1. Assume the claim holds for some m with
m1 ≤ m < m2. Let z ∈ A be a vertex that is unburnt at time m (in both configurations,
necessarily). The equality η(h)z = hz = ηn,z and the induction hypothesis ensures that z
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burns at time m + 1 in η(h) if and only if it burns in ηn. Let now z ∈ C, and let z′ ∈ A
be the unique neighbour of z in A. Since [z, z′] ∈ tn, z will burn in ηn at time m + 1 if
and only if z′ burnt at time m. By the induction hypothesis, the latter occurs if and only
if z′ burnt in η(h) at time m. Then by the definition η(h)z = 0 we get that this happens
if and only if z burns in η(h) at time m + 1. Finally, consider a vertex z ∈ (∂A) \ C
that is unburnt at time m (in both configurations, necessarily). Let z′ ∈ A be its unique
neighbour in A. Since [z′, z] ∈ tn, z′ burns after z in ηn, and hence by the induction
hypothesis z′ is unburnt at time m in both ηn and η(h). In ηn, z will burn at time m + 1
if and only if m + 1 = m2 = mn,z, and z = y2,i for some 1 ≤ i ≤ r2. Due to the definition
η(h)z = 1 and the fact that z′ is unburnt in η(h) at time m, this is equivalent to z burning
in η(h) at time m + 1. This completes the induction.

We can now iterate the above argument until there are no more burnable vertices in
A ∪ ∂A, showing that the two burning processes are identical in A ∪ ∂A.

The equality of the burning processes gives that if η(h) 6∈ RGA,C
, then there can be no

tree with the given h, C and mn,y’s. If η(h) ∈ RGA,C
, then there is exactly one possible

arrow configuration in A, namely the one given by the burning of η(h) in GA,C (here we
use the same αP,K ’s in the graphs GA,C and Gn). This completes the proof.

Proof of Lemma 13. Consider the following auxiliary weighted graph G′ = G′
A,C . We add

to the graph induced by A ∪ ∂A the vertex s, and the following edges: for any y ∈ C
there is an edge ey between y and s with weight w(ey) = qn,y(1 − qn,y)

−1; and for any
y ∈ (∂A) \ C there are edges fy,1 and fy,2 between y and s, with respective weights
w(fy,1) = qn,y(σy)(1 − qn,y)

−1 and w(fy,2) = (qn,y − qn,y(σy))(1 − qn,y)
−1. All other edges

have weight 1.
Observe that the weights have been chosen in such a way that the probability for the

network random walk started at y ∈ ∂A to reach s before reaching A is qn,y, the same
as it was in Gn. Let S be a network random on Gn stopped at time τn (the hitting time
of s), and let S ′ be a network random walk on G′

A,C , stopped at the hitting time τ ′ of s.
Let ξk be the time of the k-th visit by S to the set A ∪ ∂A ∪ {s}. The choice of weights
implies that if S(0) = S ′(0) ∈ A ∪ ∂A, then {S(ξk)}k≥0 has the same distribution as
{S ′(k)}k≥0. We can couple the two walks in such a way that we have S(ξk) = S ′(k) for
all k ≥ 0. Moreover, by the choice of the weights, the coupling can be arranged in such a
way that for each y ∈ (∂A) \ C, the edge fy,1 is the last edge traversed by S ′ if and only
if LE(S[τ̂y, τn]) = σy, where τ̂y is the time of the last visit to y by S.

Let a = |A|, b = |∂A| and c = |C|. Let u1, . . . , ua+b be an enumeration of the
vertices in A ∪ ∂A, where {u1, . . . , ub−c} = (∂A) \ C, {ub−c+1, . . . , ub+a−c} = A and
{ub+a−c+1, . . . , ub+a} = C. Let Si and S ′i be network random walks on Gn and G′

A,C ,
respectively, with Si(0) = ui = S ′i(0), coupled as above, and assume that these pairs
are independent for 1 ≤ i ≤ a + b. We use Wilson’s method on Gn and G′

A,C with the
above enumeration of vertices and the coupled random walks to generate tn distributed
according to µn and t′ distributed according to µG′

A,C
.
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Our assumptions and Lemma 12 imply that there is a unique arrow configuration in
A that realizes the event {ηn,x = hx, x ∈ A}, given the restrictions C(tn) = C, πn,y = σy.

Let ~FA := {[v1, v
′
1], . . . , [va, v

′
a]} be this arrow configuration, where vj = ub−c+j. Observe

that the edges leading from A to (∂A) \ C are always in ~FA, and hence we may assume
without loss of generality that the indexing is such that v′

1 = u1, . . . , v
′
b−c = ub−c. We

define ~F0 = {fy,1 : y ∈ (∂A) \ C}, where these edges are oriented away from ∂A, let
~FA,1 = {[v1, u1], . . . , [vb−c, ub−c]}, let ~FA,2 = ~FA \ ~FA,1, and let ~FC := {ey : y ∈ C}, where
these edges are oriented towards C. The coupling ensures that the event in (54) occurs if
and only if t′ consists of the edges:

~F := ~F0 ∪ ~FA ∪ ~FC . (55)

In order to complete the proof, we need to show that the probability that Wilson’s method
on G′

A,C produces ~F is of the claimed form.
For i = 1, . . . , b − c, the conditional probability of the event {F ′

i = F ′
i−1 ∪ {fui,1}}

given the event {F ′
i−1 = {fuj ,1 : 1 ≤ j < i}} is of the form

fi,A,C(qn,y : y ∈ ∂A)qn,ui
(σui

),

where the form of fi,A,C : [0, 1]∂A → [0, 1] only depends on the pair (A,C). In particular,

p0 := P[Fb−c = ~F0] = f ′
A,C(qn,y : y ∈ ∂A)

∏

y∈(∂A)\C

qn,y(σy),

where the form of the function f ′
A,C only depends on the pair (A,C). Let

pA,1 := P[F2(b−c) = ~F0 ∪ ~FA,1 | Fb−c = ~F0]

pA,2 := P[Fb+a−c = ~F0 ∪ ~FA,1 ∪ ~FA,2 | F2(b−c) = ~F0 ∪ ~FA,1]

pC := P[t′ = ~F | Fb+a−c = ~F0 ∪ ~FA].

Here pA,1 = f ′′
A,C , where again the form of the function f ′′

A,C only depends on the pair
(A,C), and pC =

∏

y∈C(1 − qn,y). We show that pA,2 is a constant depending on (A,C),
and this will complete the proof. The operation of contracting an edge in a graph means
identifying its endpoints to a single vertex. Let G′′

A,C denote the graph obtained from G′
A,C

by contracting all edges in ~F0∪ ~FA,1∪ ~FC . Conditional on the event {~F0∪ ~FA,1∪ ~FC ⊂ t′},
the distribution of t′ is equal to the distribution of t′′∪ ~F0∪ ~FA,1∪ ~FC , where t′′ is a sample
from µG′′

A,C
. Since all non-loop edges in G′′

A,C have weight 1, µG′′
A,C

is uniform on TG′′
A,C

.

It follows that pA,2 = |TG′′
A,C

|−1, that is a constant depending only on the pair (A,C).

Since P[t′ = ~F ] = p0 pA,1 pA,2 pC , the proof of the Lemma is complete.
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Proof of Theorem 11. Let C $ ∂A and suppose that the event {ηn,x = hx, x ∈ A} is
realized by some tree tn with C(tn) = C. For each y ∈ (∂A) \ C, let σy be any self-
avoiding path from y to s that avoids A. Lemma 12 shows that there is a unique arrow
configuration ~FA in A (possibly depending on C and the σy’s), such that any tree t′n with

C(t′n) = C such that t′n contains the σy’s and ~FA also realizes the event {ηn,x = hx, x ∈ A}.
Lemma 13 shows that the probability mass of all such trees is given by the expression on
the right hand side of (54). It follows that we have

νGn
[ηn,x = hx, x ∈ A] =

∑

C$∂A

∑

{σy :y∈(∂A)\C}

fA,C(qn,y : y ∈ ∂A)
∏

y∈(∂A)\C

qn,y(σy). (56)

It is crucial here that the second sum is over all collections self-avoiding paths from the
y’s to s, avoiding A, and that fA,C is independent of the paths.

Observe that
∑

σy
qn,y(σy) = qn,y, and therefore, performing the sum over the σy’s in

(56) gives

νGn
[ηn,x = hx, x ∈ A] =

∑

C$∂A

fA,C(qn,y : y ∈ ∂A)
∏

y∈(∂A)\C

qn,y.

Regardless of what the exhaustion is, we have

lim
n→∞

qn,y = P[S[0,∞) ∩ A = ∅ |S(0) = y] =
d − 2

d − 1
.

Hence we have

ν[ηn,x = hx, x ∈ A] =
∑

C$∂A

fA,C

(

d − 2

d − 1
, . . . ,

d − 2

d − 1

)(

d − 2

d − 1

)|(∂A)\C|

.

Remark 3. As an example, taking A = {o}, one can recover the computation of height
probabilities by Dhar and Majumdar [7] from the above.

9 Concluding remarks

9.1 Finiteness of avalanches

Following the program introduced by Maes, Redig and Saada [22], once the existence of
the limit ν has been established, it is natural to ask if one can define sandpile dynamics
on the infinite graph G. The first question is whether adding a particle at a vertex o in a
sample configuration from the measure ν produces an avalanche that is finite ν-a.s. (that
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is, only finitely many topplings are necessary to stablilize it). In [16] a sufficient condition
was given, in the case of Zd, d ≥ 3, in terms of a certain modification µ̃ of the measure µ.
Let G̃n be the graph obtained from Gn by wiring o to the sink, and let µ̃ = limn→∞ µG̃n

be the limiting wired spanning forest measure. Let to denote the component of o under
the measure µ̃. It was shown in [16] that if µ̃[|to| < ∞] = 1, then avalanches on G are
finite ν-a.s.

The arguments in [16] apply without change to show that on any transient graph,
avalanches are ν-a.s. finite, if µ̃[|to| < ∞] = 1. Lyons, Morris and Schramm [19] analyzed
to under general conditions, in particular have shown that to is finite in any transitive
graph with at least cubic volume growth. They have also shown that finiteness of to is
equivalent to the one-end property. Since we assumed the one-end property in Theorems 7
and 10, it follows that the limiting measures constructed in these theorems have a.s. finite
avalanches, if the graph is transient.

Let us also discuss the case of the d-regular tree. Let o ∈ T d be a fixed vertex.
Take a sample configuration from the measure ν, and add a particle at o. Let N denote
the number distinct vertices that topple in the stabilization of this configuration. The
computations in [7] show that ν[N = n] ∼ cn−3/2 as n → ∞, and also that

∑∞
n=0 ν[N =

n] = 1. Hence avalanches are ν-a.s. finite. As above, finiteness can also be derived from
the well-known fact that each tree in the WSF has one end [10] (see also [3, Section 11]).

Open question 2. Are avalanches ν-a.s. finite on Z2? More generally, are avalanches
ν-a.s. finite on a recurrent graph G such that the WSF has one end a.s.? See [15] for a
related open question regarding a weaker property.

9.2 Stationary Markov process

Having established finiteness of avalanches, one can apply the general machinery developed
in [22] to show the existence of a natural stationary Markov process with invariant measure
ν. Suppose that G = (V,E) is transient. Let ϕ : V → (0,∞) be a function such that
∑

x∈V ϕ(x)G(x, o) < ∞, where G = ∆−1. Given an exhaustion V1 ⊂ V2 ⊂ · · · ⊂ V ,
consider the continuous time sandpile Markov chain on Gn, where particles are added at
x ∈ Vn at Poisson rate ϕ(x). This Markov chain has invariant measure νGn

, and it follows
from the results of [22] that its semigroup strongly converges in L2(ν) to the semigroup
of a Markov process with invariant measure ν.

A Appendix

In this appendix we give the proof that the path-valued process {Xk}k≥0 introduced in
the proof of Lemma 9 is stationary and mixing. We will write p(x, y) for the transition
probability of S.
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Let [xk(−m), . . . , xk(−1), xk(0), xk(1), . . . , xk(m)] be fixed finite paths in G, for k =
0, . . . , K−1, such that xk(0) = o. Without loss of generality, we assume that m > M . Call
two finite paths y1 = [y1(−ℓ1), . . . , y1(0) = o, . . . , y1(ℓ2)] and y2 = [y2(−ℓ1), . . . , y2(0) =
o, . . . , y2(ℓ2)] equivalent, y1 ≡ y2, if there exists ψ̄ ∈ AUTo such that ψ̄y1(j) = y2(j) for
each j. This is clearly an equivalence relation.

We will use the following simple lemma, whose proof is obvious.

Lemma 14. Suppose that T is a transformation from a finite set of paths P1 into a finite
set of paths P0, where P0 and P1 have the same number of elements. Suppose that T has
the propoerty that y1 ≡ y2 if and only if Ty1 ≡ Ty2. Let λi : Pi → R, i = 0, 1 be functions
that are constant on equivalence classes, such that λ1(y) = λ0(Ty). Then

∑

y∈P1

λ1(y) =
∑

y′∈P0

λ0(y).

Consider the probability

P [Xk(j) = xk(j), −m ≤ j ≤ m, 0 ≤ k ≤ K − 1]

= P
[

Ψkφ
−1
S(kM)S(kM + j) = xk(j), −m ≤ j ≤ m, 0 ≤ k ≤ K − 1

]

=
∑

y′

P [S(j) = y′(j), −m ≤ j ≤ (K − 1)M + m]

×
K−1
∏

k=0

P
[

Ψkφ
−1
y′(kM)y

′(kM + j) = xk(j), −m ≤ j ≤ m
]

,

(57)

where the summation is over all paths y′ with parameter set {−m, . . . , (K − 1)M + m}
that are at o at time 0. The first factor in the right hand side of (57) equals

(K−1)M+m−1
∏

j=−m

p(y′(j), y′(j + 1)).

In order to abreviate the second factor, introduce the notation Uky
′(j) = φ−1

y′(kM)y
′(kM +

j), −m ≤ j ≤ m. Then the right hand side of (57) is

λ0(y
′) :=

(K−1)M+m−1
∏

j=−m

p(y′(j), y′(j + 1))

×
K−1
∏

k=0

P [ΨkUky
′(j) = xk(j), −m ≤ j ≤ m] .
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Now consider

P [Xk(j) = xk−1(j), −m ≤ j ≤ m, 1 ≤ k ≤ K]

= P
[

ψkφ
−1
S(kM)S(kM + j) = xk−1(j), −m ≤ j ≤ m, 1 ≤ k ≤ K

]

=
∑

y

P [S(j) = y(j), −m + M ≤ j ≤ KM + m]

×
K
∏

k=1

P
[

Ψkφ
−1
y(kM)y(kM + j) = xk−1(j), −m ≤ j ≤ m

]

=:
∑

y

λ1(y),

(58)

where the summation is over paths y with parameter set {−m + M, . . . ,KM + m} that
are at o at time 0. Introduce the map T , Ty(j) = φ−1

y(M)y(M + j). The first factor in the

right hand side of (58) equals

KM+m−1
∏

j=−m+M

p(y(j), y(j + 1)) =

(K−1)M+m−1
∏

j=−m

p(Ty(j), T y(j + 1)). (59)

The second factor equals

K−1
∏

k=0

P
[

Ψk+1φ
−1
y((k+1)M)y((k + 1)M + j) = xk(j), −m ≤ j ≤ m

]

. (60)

We claim that the path {φ−1
y((k+1)M)y((k + 1)M + j)}m

j=−m is equivalent to the path UkTy.

Indeed, it is easy to check that the automorphism ψ̃ = φ−1
Ty(kM)φ

−1
y(M)φy((k+1)M) does the

job. Hence, using right invariance of λ, the k-th factor in (60) equals

P
[

Ψk+1ψ̃
−1UkTy = xk

]

= λ
({

Ψ : Ψψ̃−1UkTy = xk

})

= λ
(

{Ψ : ΨUkTy = xk} ψ̃
)

= λ ({Ψ : ΨUkTy = xk})
= P [ΨkUkTy = xk] .

This and (59) shows that λ1(y) = λ0(Ty). A similar computation shows that λ0 is constant
on equivalence classes.

It is left to show that y1 ≡ y2 if and only if Ty1 ≡ Ty2. Indeed, y2 = ψ̄y1 if and only
if Ty2 = φ−1

y2(M)ψ̄φy1(M)Ty1. An application of Lemma 14 now shows that the expressions

in (57) and (58) equal, and this is sufficent to conclude stationarity.
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The proof of mixing can be carried out using a similar computation. Suppose that
(K − 1)M + m < tM − m, and consider the probability:

P [Xk(j) = xk(j), −m ≤ j ≤ m, k ∈ {0, . . . , K − 1} ∪ {t . . . , t + K − 1}]
=

∑

y0

∑

y

∑

yt

p(y0)p(y)p(yt)ν(y0)

×
K−1
∏

k=0

P
[

Ψt+kφ
−1
yt((t+k)M)yt((t + k)M + j) = xt+k(j), −m ≤ j ≤ m

]

.

(61)

Here the y0-sum is over paths with parameter set {−m, . . . , (K − 1)M + m} that are at
o at time 0, the y-sum is over paths with parameter set {(K − 1)M + m, . . . , tM − m}
starting at y0((K − 1)M + m), and the yt-sum is over paths with parameter set {tM −
m, . . . , (t+(K−1))M +m} that start at y(tM−m). The expressions p(y0), p(y) and p(yt)
stand for the products of random walk transition probabilities for these paths, and ν(y0)
is the expression containing Ψ0, . . . , ΨK−1. Keeping y0 and y fixed, we introduce the map
T , Tyt(i) = φ−1

yt(tM)yt(tM + i), −m ≤ i ≤ (K − 1)M + m. Then T maps paths starting at

y(tM − m) to paths with parameter set {−m, . . . , (K − 1)M + m} that are at o at time
0. A straightforward computation then shows that φ−1

yt((t+k)M)yt((t+k)M + ·) ≡ UkTyt(·).
An application of Lemma 14 yields that (keeping y0 and y fixed)

∑

yt

p(yt)
K−1
∏

k=0

P
[

Ψt+kφ
−1
yt((t+k)M)yt((t + k)M + j) = xt+k(j), −m ≤ j ≤ m

]

=
∑

y′

λ̃0(y
′),

where λ̃0 has the same form as λ0, with xk replaced by xt+k. We can now carry out the
summation over y to yield a factor 1, and conclude that the expression in (61) equals

P [Xk(j) = xk(j), −m ≤ j ≤ m, 0 ≤ k ≤ K − 1]

× P [Xt+k(j) = xt+k(j), −m ≤ j ≤ m, 0 ≤ k ≤ K − 1] .
(62)

The equality in (62) is sufficient to conclude mixing.
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