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Optimal Predictive Design Augmentation for Spatial

Generalised Linear Mixed Models
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Abstract: A typical model for geostatistical data when the observations are counts is the
spatial generalised linear mixed model. We present a criterion for optimal sampling design
under this framework which aims to minimise the error in the prediction of the underly-
ing spatial random effects. The proposed criterion is derived by performing an asymptotic
expansion to the conditional prediction variance. We argue that the mean of the spatial
process needs to be taken into account in the construction of the predictive design, which we
demonstrate through a simulation study where we compare the proposed criterion against
the widely-used space-filling design. Furthermore, our results are applied to the Norway
precipitation data and the rhizoctonia disease data.

Keywords: Generalised linear mixed models; Geostatistics; Predictive inference; Sampling
design.

1 Introduction

One of the most frequently used models for the analysis of geostatistical count data is the spatial
generalised linear mixed model (SGLMM) (Diggle et al., 1998). Applications of SGLMM include
Diggle et al. (1998) who looked into residual contamination from nuclear weapons testing and
campylobacter infections in UK, Diggle et al. (2002) who studied the risk of malaria in Gambia,
Zhang (2002) who analysed a root disease in an agricultural study, and Eidsvik et al. (2009) who
examined precipitation data for the purpose of weather forecasting and for operating hydropower
plants. This class of models assumes the existence of an unobserved Gaussian random field over
the region of interest and that the observations, drawn at fixed locations, are conditionally
independent given the value of the random field. The distribution of the random field may
depend on unknown parameters and among the objectives is to use the sample to predict the
value of the random field at every location in the region. The “plug-in” approach is a common
method for prediction in these models from a frequentist point of view (Christensen, 2004;
Evangelou et al., 2011) where in the first stage an estimate of the model parameters is obtained
and in the second stage the predictive distribution of the random field is constructed conditional
on the data and the parameter estimates. (Alternatively see Diggle et al. (1998), Christensen
and Waagepetersen (2002) and Eidsvik et al. (2009) for a Bayesian solution.)

The objective of spatial predictive design (Zimmerman, 2006; Zhu and Stein, 2006) is to
select the sampled locations within the region of interest in order to optimise, in some sense, the
predictive capability of the sample. In summary, the strategy of optimal design comes down to
developing some optimality criterion, such as the average prediction variance, and then searching
over all possible sampling configurations for the optimal value of the criterion. We focus on the
case where the sampling has already taken place at some locations and the data are available
but either because there are more resources available or because the prediction error is too high
more data are to be sampled. That is, we seek to augment the current sampling scheme with
new locations after using the available data to infer about the parameters of the random field.
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This scenario was also studied by Diggle and Lophaven (2006) in which they referred to it as
retrospective design.

There is a large volume of the literature which is concerned with optimal predictive designs
for Gaussian models (e.g. Cressie et al., 1990; Martin, 2001; Müller, 2007; Heuvelink et al., 2010)
which tend to be uniformly spaced. Some development towards optimal SGLMM designs has
been made in Diggle and Lophaven (2006) where they discuss the minimisation of the Bayesian
prediction variance for a design criterion as a natural method for incorporating parameter es-
timation and prediction in the design, and in Zhang and Wang (2002) where they consider
minimisation of the mean square prediction error. A drawback in applying the ideas of optimal
experimental design in the context of SGLMM is that in this case the optimality criteria do
not exist in closed-form. One solution is to evaluate them using Monte-Carlo approximations,
but this approach is too computationally intensive due to the fact that in practice the design
criterion needs to be evaluated for a potentially large number of candidate designs in search for
the optimal one. Alternatively, Eidsvik et al. (2009) approximated the prediction variance by
combining ideas from Rue et al. (2009) and direct Monte-Carlo integration.

Motivated by the fact that optimal predictive designs for Gaussian models are uniformly
spaced, Nychka and Saltzman (1998) and Royle and Nychka (1998) suggested the so-called
space-filling design. The idea is to propose a model-free approach from a wholly geometric
point of view where the sampling sites are chosen in a way that the region of interest is covered
uniformly and therefore there is no need of numerically evaluating the estimation and prediction
error. Moreover, space-filling designs tend to be very similar to Gaussian optimal designs (Royle
and Nychka, 1998); however, they do not necessarily perform well in the context of SGLMM.
The reason is that, contrary to the Gaussian model, the prediction error not only depends on the
variance of the underlying process but also on its value. Hence if the random field varies highly
within the region, a space-filling design would not be appropriate. To support this hypothesis, let
us consider the following example. Suppose that the observations are binary with probability of
“success” varying from 0 to 1 across the region of interest. If a space-filling design is implemented
part of the sample will be associated with areas with very high or very low success probabilities;
however, the data from these areas exhibit almost no variability and, in essence, are not very
useful. We believe that, in choosing a good design, more weight should be given in areas where
the probability of success is closer to half, i.e. where the variability of the data is higher.

In this article, we propose a model-based criterion for constructing optimal predictive de-
signs based on an approximation to the conditional predictive variance. We assume that prior
data are available and the objective is to augment the given sampling network. Our strategy
proceeds as follows. By fitting an SGLMM to the data we construct a prediction map for the
conditional mean and variance of the spatial random field using an asymptotic approximation to
the conditional predictive distribution (Evangelou et al., 2011). These estimates are used in the
evaluation of the proposed design criterion, and an exchange algorithm is implemented to search
for the best design. We point out that although the ideal would be to minimise the conditional
prediction variance, the proposed approximate criterion is able to capture the overall pattern of
the optimal design.

In the next section we describe the SGLMM and derive an approximation to the conditional
predictive variance which we use as our design criterion. In Section 3 we present our imple-
mentation of the exchange algorithm used for searching for the optimal design and in Section 4
we illustrate our method through a computational study and two examples. Finally, Section 5
presents a summary of the conclusions of this article.
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2 An approximate predictive design criterion

2.1 Model

We assume that observations y = {y1, . . . , yk} are taken from a spatial domain S which can be
modelled by a SGLMM, that is, there exists a Gaussian random field Z defined over S and the
observations are conditionally independent given the value of the random field with distribution
from the exponential family. Our objective is to predict Z for given observations y, drawn at
k fixed, distinct locations S = {s1, . . . , sk} ∈ S called the sampling design. Furthermore, each
yi corresponds to repeated sampling of size ni from location si. In the binomial case ni may
be interpreted as the number of trials in a Bernoulli experiment and in the Poisson case as the
length of time that the sampling is taking place.

Furthermore, it is common to express the mean of the random field at location s as a linear
combination of p explanatory variables fs, i.e.

λs := EZ(s) = fTsβ

where β is a p-dimensional vector of regressor coefficients.
The geostatistical approach to SGLMM assumes further that the covariance between two

components of the random field, Z(s) and Z(r), at locations s, r ∈ S is a function of the
distance ‖s− r‖. In particular we denote

σ2 := Var(Z(s)) = ν2 + τ2,

σs,r := Cov(Z(s),Z(r)) = τ2c(‖s− r‖;φ),

where (ν2, τ2, φ) are covariance parameters. ν2 and τ2 are termed nugget and partial sill respec-
tively, φ is the correlation parameter and c(·) is a positive definite function defined on (0,∞)
called the correlogram. Two particular versions of the correlogram that we make use in the
examples of Section 4 are the following.

• Exponential : c(h;φ) = exp(−h/φ),

• Spherical : c(h;φ) = 1− 1.5 h
φ + 0.5

(
h
φ

)3
if 0 < h < φ, and c(h;φ) = 0 if h ≥ φ.

In these cases φ is also referred to as the range parameter. Other correlograms such as Matérn
and power exponential are also popular choices for spatial modelling. Although we do not use
these in our paper, the methodology presented covers these cases as well.

Let z = Z(S) = (z1, . . . , zk) denote the components of the random field associated with the
locations in the sampling design S and let λS and ΣS denote its mean vector and the variance-
covariance matrix respectively. Also let f(·) denote the probability density/mass function of its
arguments so that

f(z;λS,ΣS) = (2π)−
k
2 |ΣS|−

1
2 exp

{
−1

2
(z − λS)TΣ−1

S (z − λS)

}
,

and

f(yi|zi) ∝ exp{yizi − niψ(zi)}, i = 1, . . . , k,

where ψ(·) is a known function; for example under the binomial model with canonical link
ψ(z) = log(1 + ez) and for the Poisson model with canonical link ψ(z) = ez (McCullagh and
Nelder, 1999). The mean, λS, is expressed as a linear combination of p regressors FS, i.e.
λS = FSβ where FS is the k × p design matrix.
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2.2 The conditional distribution of the random field

We assume increasing-domain asymptotics in the spirit of Mardia and Marshall (1984), i.e. that
k → ∞ and that the rows of the variance-covariance matrix ΣS are absolutely summable as
k → ∞. Furthermore we assume that k/ni → 0 as k → ∞. The latter assumption is made in
order to facilitate the application of Laplace approximation to the conditional distribution of
the random field given the observations (see Shun and McCullagh, 1995; Evangelou et al., 2011).

In the following, a collection of sampling locations will be denoted by the capital letters Q,
R, S, while lower case q, r, s will denote a single location. Data y are sampled at locations
S = {s1, . . . , sk}. A symbol with a subscript Q, R, S, q, r, s will be used to refer to the elements
of the symbol associated with these locations.

Consider the question of predicting the value of the random field, Z, from y at a finite set
of locations R ⊂ S. Let

ẑ = ẑ(y) := argmax
z

f(y, z;λS,ΣS), (1)

and

Ĥ = − ∂2

∂z∂zT
log f(y, ẑ;λS,ΣS)

= D̂S + Σ−1
S ,

where D̂S = Diag{niψ′′(ẑi)}. Here and subsequently a hat over a symbol will denote that the
corresponding symbol is a function of the data y through ẑ.

Then by an application of Laplace approximation in the spirit of Shun and McCullagh
(1995), the conditional distribution of z|y is approximately normal with mean µ̂S := ẑ and
variance-covariance matrix Υ̂S := Ĥ−1, written

z|y approx∼ Nk(ẑ, Ĥ
−1). (2)

For finite R ⊂ S, let λR = EZ(R), ΣR = VarZ(R), ΣS,R = Cov(Z(S),Z(R)), ΣR,S =
ΣT

S,R. Then by the joint normality of (Z(S),Z(R)), the conditional distribution of Z(R)|y is
approximately normal with mean

µ̂R|S := λR + ΣR,SΣ−1
S (µ̂S − λS), (3)

and variance (see Appendix A)

Υ̂R|S := ΣR − ΣR,S(D̂−1
S + ΣS)−1ΣS,R. (4)

The order of the approximations in (3) and (4) is O(kn−2) where n = min{n1, . . . , nk}. (For
details about the order of the approximation see Evangelou et al. (2011).) Also note that (4)
depends on the mean of the random field through the matrix D̂−1

S but as n→∞ the elements
of this matrix tend to 0 and (4) equals the prediction variance under the Gaussian model. Thus,
if we accept that a space-filling design is very similar to the optimal design under the Gaussian
model, then for large n, the optimal design for SGLMM prediction is a space-filling design.

Consider the expectation of µ̂R|S and Υ̂R|S with respect to the distribution of y. Since
both quantities depend on y only through ẑ, the expectation may be taken with respect to the
distribution of ẑ. This distribution is approximately equal, up to first order, to the unconditional
distribution of z, namely Nk(λS,ΣS). Therefore, E µ̂R|Q = λR, as one would expect. For the

conditional variance, let KS = E D̂−1
S , and note that by an application for the formula for matrix

inversion,
(I −A)−1 ≈ I +A+A2 + . . . ,

4



where I is the identity matrix, we have

E{(D̂−1
S + ΣS)−1} = Σ−1

S E{(I + D̂−1
S Σ−1

S )−1}
≈ Σ−1

S E{(I − D̂−1
S Σ−1

S )}
= Σ−1

S (I −KSΣ−1
S )

≈ (KS + ΣS)−1.

The remainder term in the second equality above is A2 + A3 + . . . with A = −D̂−1
S Σ−1

S has
elements of order O(n−1). Then Am has elements of order O(km−1n−m), and similar arguments
hold for the last equality, so the remainder term above has order O(kn−2). Therefore,

E Υ̂R|S ≈ ΣR − ΣR,S(KS + ΣS)−1ΣS,R. (5)

2.3 Prediction variance

A measure of the uncertainty in prediction of the random field at location s is the conditional
prediction variance, Var(Z(s)|y;S) where in the notation we make explicit the dependence of
the variance on the sampling design S. The integrated conditional prediction variance over S for
given data y is defined as

1

|S|

∫
S

Var(Z(s)|y;S) ds, (6)

where |S| denotes the volume of S. Harville and Jeske (1992), Zimmerman and Cressie (1992),
and Booth and Hobert (1998) are among those who advocate using (6) as a measure of the
prediction accuracy. To that end, a suitable criterion for choosing a good sampling design is to
make (6) small; however, in theory, S is a continuous region so prediction at all locations in it
is infeasible. In practice prediction is performed over a finite, fine grid, S̄, covering S, and the
optimality criterion reduces to

1

|S̄|
∑
s∈S̄

Var(Z(s)|y;S). (7)

The criterion in (7) has been extensively used for the derivation of sampling designs for Gaussian
models (e.g. Cressie et al., 1990). However, for SGLMM the prediction variance is not known in
closed-form so exact calculation of (7) is impossible (Booth and Hobert, 1998). Below we derive
an approximation in closed-form to the prediction variance which will be used for defining our
design criterion.

For a single location s ∈ S, we know from (4) that the conditional prediction variance is
approximately equal to

Var(Z(s)|y;S) ≈ σ2 − cTS(D̂−1
S + ΣS)−1cS, (8)

where σ2 = Var(Z(s)) = Σs,s is the unconditional variance of the random field at location s,
and cS = Cov(z,Z(s)) = ΣS,s.

Now suppose that we are looking to augment our sampling scheme with an additional set of
l new locations Q = {q1, . . . , ql} ⊂ S̄ \ S from where we will collect new data x. Consider the
expected prediction variance

Ex Var(Z(s)|y,x;S,Q) ≈ σ2 − cTSQ Ex(D̃−1
SQ + ΣSQ)−1cSQ, (9)

from (8), where D̃SQ = BlockDiagonal{D̃S, D̃Q}, cSQ and ΣSQ denote the augmented covariance
vector and variance-covariance matrix respectively, and the expectation is with respect to the
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conditional distribution of x|y. Here and below a tilde over a symbol indicates that it is a
function of

z̃ = z̃(y,x) := argmax
z

f(y,x, z;λSQ,ΣSQ).

Since D̃SQ depends on x only through z̃, the expectation in (9) may be replaced by the
expectation with respect to the distribution of z̃, i.e.

Ex Var(Z(s)|y,x;S,Q) ≈ σ2 − cTSQ Ez̃(D̃−1
SQ + ΣSQ)−1cSQ. (10)

By (2) the conditional distribution of z̃ for given data y is approximately normal with
mean and variance µ̃SQ|S and Υ̃SQ|S respectively. On the other hand, exact evaluation of the
expectation in (10) is still cumbersome unless some numerical method is used, such as Monte-
Carlo (MC) integration. Apart from the fact that this method is time consuming, there is the
question of how large should the size of the MC sample be in order to make the error in the MC
integration sufficiently small. For example, under the setting of the example in Section 4.1, an
MC sample size of 1000 was highly inefficient — the correct answer was obtained only 51% of
the time — while an MC sample size of 2500 always gives the correct answer. Therefore, we are
not suggesting evaluating (10) using MC integration as the design criterion, and only use it as
a benchmark in our simulation study.

Alternatively, an approximation may be used by the same arguments that lead to (5). We
therefore propose as a measure of prediction uncertainty the quantity

V̂ar(Z(s)|y;S,Q) = σ2 − cTSQ(K̂SQ|S + ΣSQ)−1cSQ, (11)

where K̂SQ|S = BlockDiagonal{D̂−1
S , K̂Q}, K̂Q = Diag{n−1

i E(1/ψ′′(Wi)), i = 1, . . . , l} and Wi ∼
N(µ̂qi|S, υ̂

2
qi|S) with µ̂qi|S being the ith element, and υ̂2

qi|S being the ith diagonal element of µ̂Q|S

and Υ̂Q|S respectively, i.e. the prediction and its variance at qi given the data y as defined in (3)
and (4).

The expression in (11) equals the prediction variance (9) to order O(kn−2) and the fact that
it is positive is a nice property. A computational advantage of (11) in comparison to (10) is
that it maintains a block structure in components associated with S and Q which makes the
inversion of the matrix in the parentheses less cumbersome during the search for the optimal
design. Moreover, in certain cases the expectation in K̂Q may be computed in closed-form. For
example for the binomial model with canonical link

E(1/ψ′′(Wi)) = 2 + exp

(
−µ̂qi|S +

1

2
υ̂2
qi|S

)
+ exp

(
µ̂qi|S +

1

2
υ̂2
qi|S

)
,

and for the Poisson model with canonical link

E(1/ψ′′(W )) = exp

(
−µ̂qi|S +

1

2
υ̂2
qi|S

)
.

For models for which K̂Q cannot be computed in closed-form a one-dimensional Gaussian quadra-
ture method may be used, which is still better than the multidimensional integration required
in (9) or (10).

From (11) the optimal SGLMM design criterion is: Choose Q ⊂ S \ S to minimise∑
s∈S̄

V̂ar(Z(s)|y;S,Q). (12)

We note that the criterion (12) is not exact for the expected predictive variance and the
approximation is valid when n is large. However the case where n is large is the one where a
space-filling design is more appropriate while the small-n case is the one where an alternative

6



criterion is mostly needed. We expect that the proposed criterion (12) will maintain the general
structure of the optimal predictive design for SGLMM as it accounts for the effect of the mean
in a similar way as in (8) and proceed by using it as the optimal design criterion even when n
is small.

A criticism against the proposed criterion (12), as well as the one derived from (10), is
that it does not account for parameter uncertainty in the prediction. In the typical Gaussian
kriging model, the kriging prediction formula and its variance adjust for the uncertainty in
the estimation of the regression coefficients. It is relatively straightforward to do the same for
SGLMM if we use for the unconditional density of the random field the density

f(z; ΣS) = (2π)
k−p
2 |ΣS|−

1
2 |F T

S Σ−1
S FS|−

1
2 exp

{
−1

2
zTVSz

}
,

with
VS = (I − FSGS)TΣ−1

S , GS = (F T
S Σ−1

S FS)−1F T
S Σ−1

S ,

and follow the procedure described in Sections 2.2 and 2.3. However we choose not to elaborate
further on this aspect as this falls outside the scope of the present paper, which is to demonstrate
that optimal designs for SGLMM are not space-filling designs and present the computational
issues arising from implementing such design. On the other hand, the inclusion of uncertainty
about the variance parameters is less straightforward and we will not address it in this paper.

3 The exchange algorithm

Searching for the augmented set Q that minimises (12) can be computationally challenging. If l
sites are to be selected out of N possible candidates then in theory the design criterion has to be
computed N -choose-l times. Even for moderate sizes this number is too large so an alternative
exchange algorithm is proposed. Royle (2002) reviews the basic exchange algorithm and some
of its extensions.

The basic exchange algorithm is described as follows. For a given configuration S ∪Q ⊂ S̄,
where S̄ is a finite set denoting all feasible sampling locations in S, and a set of candidate points
(S ∪ Q)c := S̄ \ (S ∪ Q), i.e. the elements of S̄ which are not included in the given design, fix
q ∈ Q and compute the design criterion by exchanging q with each of the elements of (S ∪Q)c.
If no better design is found then q remains in the design otherwise q is replaced by the element
of (S ∪Q)c with the best value of the design criterion. This process is repeated for every q ∈ Q
and iterated until no better design is found. The exchange algorithm is guaranteed to converge
but it is worth pointing out that its limit is not necessarily the optimal design. Nevertheless
we find that it is a good compromise between computational speed and quality of the result.
Below we describe how an update of the design criterion is computed in our implementation of
the exchange algorithm.

Let ASQ = KSQ|S +ΣSQ and suppose without loss of generality that we are looking to update
the element q of Q associated with the last row and column of ASQ.

Note first that, since σ2 is a constant, we only need to consider cTSQA
−1
SQcSQ in (11).

Write cSQ and A as a partitioned vector and a partitioned matrix respectively in the form

cSQ =

(
u
v

)
, ASQ =

(
B u
uT b

)
,

with u and B being (k + l − 1) and (k + l − 1) × (k + l − 1)-dimensional respectively and v, b
being scalars. Also let a = b− uTB−1u. Then

A−1
SQ =

(
B u
uT b

)−1

=

(
B−1 0
0T 0

)
+

1

a

(
B−1u
−1

)(
uTB−1, −1

)
,
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Figure 1: Simulation from the binomial SGLMM. The random field is shown by a greyscale and
the binomial observations are indicated at the respective locations.

so

cTSQA
−1
SQcSQ = uTB−1u+

1

a
(v − uTB−1u)2,

therefore, in the exchange of a single element we may only consider maximising the quantity∑
s∈S̄

(v − uTB−1u)2

b− uTB−1u
,

where the component uTB−1u is computed only once for each element of Q. In fact, by consid-
ering the block structure of B in terms of components associated with S or Q, its inverse can
be computed by employing the well-known formula for the inverse of a block matrix (see Seber,
2008, section 14.2). Therefore the inverse of the block associated with S is computed once for
the whole execution of the algorithm and for each update the inverse of a matrix of dimension
(l − 1)× (l − 1) is needed each time.

4 Examples

4.1 A simulated example

We consider a regularly-spaced, 11× 11 square grid within [0, 1]× [0, 1] and a Gaussian random
field having exponential covariance function with parameters ν2 = 0.1, τ2 = 0.3, and φ = 0.2
corresponding to nugget, partial sill and range. We also set the mean of the random field at
coordinate (x, y) to −2.5 + 5.0 × x, i.e. the mean increases linearly as we move from left to
right from −2.5 to 2.5. The current sampling design consists of k = 20 locations, indicated by
a “◦” in Figure 2, and the observations follow the binomial SGLMM with canonical link and
the number of trials is n = 30 at each location.

We simulate once from the Gaussian random field and, conditionally, from the binomial
model at the sampled locations. The sample is shown in Figure 1. Note that the conditional
variance of the observations given the value of the random field is n ez(1 + ez)−2 and, due to the
non-constant mean, the observations which are closer to the left or the right sides of the grid
have very low variability while the observations that are equally far from the left and the right
sides have the highest variability.

We are interested in augmenting the current sampling scheme by sampling at l = 6 more
locations where the sample size at each location is n = 30. We implement an approximate

8
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Figure 2: Predictive design for the simulated example. Showing current design (◦), space-filling
augmented locations (×), and approximate SGLMM augmented locations (+). The greyscale
shows the Bernoulli variance.

SGLMM design by minimising (12) and compare it with the space-filling design. The space-
filling design suggests sampling from locations at the far left and the far right of the grid, the
ones indicated by a “×” in Figure 2 while the SGLMM design suggests locations from the
centre of the grid, indicated by a “+”. As we would expect, the locations suggested by the
approximate SGLMM design correspond to areas with higher variability while in this case the
space-filling design recommends sampling from locations with very little variability. In fact a
random sample from the locations suggested by the space-filling method were 1, 1, 5, 29, 29, 27
(ordered from bottom to top and then left to right) while a random sample from the locations
suggested by the approximate SGLMM design gave respectively 16, 1, 10, 19, 6, 17. Evidently,
the second set of observations is far more valuable in predicting the random field than the first.
In particular, the average prediction variance with the original data is 0.2986. If we augment the
data with the observations from the space-filling design the average prediction variance reduces
to 0.2872, a 3.8% improvement over the original design. If, instead, we use the data from the
approximate SGLMM design the average prediction variance becomes 0.2826, corresponding to
a 5.3% improvement which is substantially more efficient than the space-filling design. Our
approximate design criterion (12) for the two designs are 0.2876 and 0.2811 respectively which
is close enough to the actual prediction variance and is good enough for the purpose of the
design.

4.2 Assessing the approximation error

The design criterion (12) is derived from two asymptotic approximations. The first approxima-
tion is the use of the conditional distribution of the random field, namely equations (2), (3),
and (4). These approximations have been used elsewhere in the literature, e.g. Eidsvik et al.
(2009) and Evangelou et al. (2011), and found to be very accurate. The second approximation
is to the expectation in (10). An interesting question is to assess how different the design would
have been had we used that equation instead as our design criterion.

Criterion (10) requires the numerical evaluation of the expectation with respect to an l-
dimensional normally distributed random variable with mean µ̂Q|S and variance Υ̂Q|S. To that
end, we followed a Monte-Carlo integration approach with simulation size of 5000. The large
simulation size was to ensure consistency among different runs.

In the first scenario we assume that the same data displayed in Figure 1 are observed but
the augmented data will be binomial counts with number of trials n. The approximate and
simulated designs are computed for n = 1, 2, 5, 10, 30, and 50 and are shown in Figure 3. In
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Figure 3: Approximate (+) and simulated (�) designs for the binomial model as the sample size
of the augmented data (n) varies.

n 1 2 5 10 30 50

Space-filling 0.00327 0.00589 0.01134 0.01585 0.01705 0.01517
Approximate 0.00001 0.00001 0.00009 0.00000 0.00028 0.00000

Table 1: Relative increase in prediction variance for space-filling and approximate augmented
designs over simulated design as the sample size of the augmented data (n) varies. The entries
are computed by dividing the increase in the average prediction variance from the simulated
design by the average prediction variance of the simulated design.

two cases (n = 10 and n = 50) the two designs are identical and in the other cases there are
only few differences among them. The relative increase in prediction variance for space-filling
and approximate augmented designs over the simulated design is shown in Table 1. In the worst
case, when n = 40, the increase in the average prediction variance for the approximate design,
compared to the simulated design, is in the magnitude of 10−4. In comparison, the relative
increase for the space-filling design is in the magnitude of 10−2.

The effect of the sample size at the augmented locations on the sampling design is also
apparent in Figure 3. The design tends to depart from the region with the highest variability as
n increases. For small n, both, the approximated and simulated designs, are highly concentrated
in the middle, where the variability is higher, but gradually spread out as n increases, although
the approximate design is slower to respond to this increase. This pattern is not surprising since,
as we discussed in Section 2.2, the optimal SGLMM design comes closer to the space-filling design
when n is large.

In the second scenario we assume the same model as before but with the difference that the
observations at the initial sampled locations consist of binomial counts with number of trials
n = 1, 2, 5, 10, 30, and 50, while the augmented data are binomial counts with number of
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Figure 4: Approximate (+) and simulated (�) designs as the sample size of the observed data
(n) varies.

n 1 2 5 10 30 50

Space-filling 0.05457 0.04777 0.03499 0.02578 0.01684 0.01575
Approximate 0.00000 0.00012 0.00034 0.00013 0.00048 0.00000

Table 2: Relative increase in prediction variance for space-filling and approximate augmented
designs over simulated design as the sample size of the observed data (n) varies. The entries are
computed by dividing the increase in the average prediction variance from the simulated design
by the average prediction variance of the simulated design.

trials n = 30. For each value of n, we simulate the vector of observations y conditioned on the
observed random field, and compute the approximate and simulated design. The two designs
are shown in Figure 4. As before, we observe only a few discrepancies between the two designs.
The relative increase in the prediction variance using the approximate design is, by Table 2, in
the magnitude of 10−4, while for the space-filling design, it is about 10−2.

The sample size n has the opposite effect on the sampling designs compared to our earlier
setting. Here, both designs start further from the centre, where the variability is higher, but
converge to the same limit for large n, with the approximate design being faster to respond to
the increase in n.

The two simulation studies described in this section show that, even when n is very small, the
approximate design is very close to the simulated design with only a fraction of the computation
time.

4.3 Rhizoctonia disease

The rhizoctonia root rot is a disease affecting the roots of plants and hinders the absorption of
water and nutrients by them. In this study 15 plants were pulled out of each of 100 randomly
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Figure 5: Prediction of the random field in the rhizoctonia example. Showing the prediction
(left) and the predictive standard deviation (right).

chosen locations in a farm and the number of crown roots and infected crown roots were counted
for each plant. The number of total roots at each location varies from 80 to 197 with an average
of 138 suggesting that each plant has on average nine crown roots.

Zhang (2002) treated the data as binomial with the random field having constant mean and
spherical covariance structure. This example was also analysed by Evangelou et al. (2011) using
approximate Laplace approximation. Figure 5 shows the prediction and prediction standard
deviation using their method with the sampled locations indicated by the points. Note that,
due to the assumption that the mean being constant and the fact that the variance of the spatial
random effects is not very high, the variation in the predicted random field is relatively small.
As a result, the regions with the highest variability tend to be the ones which are the least
represented in the sampling design.

We consider the question of augmenting the current network by sampling 15 plants from each
of l = 8 new locations (n = 135 at each location) chosen from a regularly-spaced, square grid of
242 points. The locations suggested by the space-filling design and the approximate SGLMM
design using the criterion in (12) are shown by a “×” and a “+” respectively in Figure 6. The
two designs appear very close except for two points where they are very different. This is not
surprising in this case since, as we explain below, due to the large sample size at each location,
the variation due to uncertainty at each sampled location (KSQ|S) has very little effect in the
design criterion. Therefore the variability is higher at the most isolated locations which is also
what the space-filling design tends to select. However consider two alternative scenarios where
the available resources allow us to sample only 5 plants (n = 45) from each new location and
in the other case only one plant (n = 9). The two designs are shown in Figure 6 with a “V”
and a “I” respectively. In the case of 5 plants there is more departure from the space-filling
design and in the case of 1 plant there is a big difference. The explanation for this is because
the sample size at each location enters into our design criterion as n−1e−ẑ(1 + eẑ)2; therefore,
when n is large the effect of the mean of the random field in the design criterion is very small
so the approximate design tends to be close to the space-filling design. When n is small, the
mean of the random field has a more significant effect. This is also verified by comparing the
total prediction variance under the space-filling design with the approximate SGLMM design
for the different sample sizes as shown in Table 3. We observe that as the sample size increases
the difference in the design criterion is reduced.
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Figure 6: Predictive design for the rhizoctonia example. Showing current design (·), space-
filling augmented locations (×), and approximate SGLMM augmented locations when sampling
15 plants (+), 5 plants (V), and 1 plant (I).

Number of plants 15 5 1

Space-filling 136.95 137.75 139.57
Approximate 136.92 137.68 139.45

Table 3: Total prediction variance under the approximate SGLMM and space-filling designs for
different samples for the rhizoctonia example. The total prediction variance under the original
design is 141.20.

4.4 Precipitation in central Norway

The number of rainy days for a region in central Norway were recorded for a period of n = 61
days at 92 monitoring stations. The current monitoring network is shown in Figure 7. The
data were analysed by Eidsvik et al. (2009) who used a binomial SGLMM with the random
effect assumed to be a Gaussian random field having constant mean and exponential covariance
function with no nugget effect. In their analysis the authors derived that the observations from 4
stations were outliers (not shown in Figure 7) and only used data from k = 88 stations. Within
the network there were also 6 stations not in operation (marked by a “�”) and the authors
considered the improvement in prediction had data being obtained from these stations as well.

Using the available data we estimate, using the approximate likelihood method, the constant
mean of the random field to be λ̂ = 0.75, and σ2 = 0.09 and φ = 0.75 for the partial sill and
range respectively. We then consider prediction at a fine grid of 587 points. Using the data
from the 88 locations the total prediction variance is 27.33 while assuming that data from the
additional 6 stations were provided the total prediction variance from (12) reduces to 26.73.

Assuming that we have the power to place the 6 monitoring stations not in operation at
different sites, the space-filling and the approximate SGLMM augmented designs were derived.
These are marked by a “×” and a “+” respectively in Figure 7. All three designs agree at one
location at coordinate (8.0, 63.5) but apart from that there are significant differences. The total
prediction variance under the space-filling design is 26.68 and for the approximate SGLMM it
is 26.66. Both suggestions are an improvement compared to the current network.
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Figure 7: Norway precipitation network. Samples are obtained from locations marked by a “·”
and the ones in circle are considered outliers. All locations that did not register data are marked
by a “�”. Also showing the space-filling augmented locations (×) and the approximate SGLMM
augmented locations (+).

5 Discussion

In this article we propose a criterion for augmenting a spatial design under the SGLMM frame-
work when data is available. Our design criterion is derived as an approximation to the expected
predictive variance of the random field and it can be evaluated with little computational cost
as it avoids making use of the typical MC methods used for these models. Our approxima-
tion is based on Laplace approximation and is valid under the increasing-domain asymptotic
framework.

We demonstrate theoretically and through our examples that, contrary to the more popular
Gaussian model, optimal designs for SGLMM may not be regularly spaced. The level of non-
uniformity depends on the structure of the conditional mean of the random field and on the
sample size.

A number of issues still remain. From a computational point of view, searching for the
optimal design can be very hard if the number of candidate locations is large. The exchange
algorithm we presented works well for moderate sample sizes but more sophisticated techniques
are needed for large data.

Moreover, the ideas presented here can be used to derive alternative criteria, such as max-
imising the gain in information about the random field, as in Caselton and Zidek (1984) and
Shewry and Wynn (1987) (see Evangelou and Zhu (2012) for a more elaborate discussion on
this area).

We discussed how uncertainty in the regressor coefficients can be incorporated in the design
criterion. Questions related to the construction of predictive designs by accounting for uncer-
tainty in the covariance parameters in the spirit of Smith and Zhu (2004); Zhu and Stein (2006);
Zimmerman (2006) as well as viewing the problem from a Bayesian context as in Diggle and
Lophaven (2006) still remain.
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A Derivation of the approximate predictive variance

Here we derive the approximation to the predictive variance given in (8).
First note that by an application of the formula for matrix inversion

(A+B)−1 = A−1 −A−1(A−1 +B−1)−1A−1,

we have

Υ̂S = Ĥ−1 = ΣS − ΣS(D̂−1
S + ΣS)−1ΣS. (13)

Using the rule of iterated expectations and the fact that Z(R)|Z(S),y = Z(R)|Z(S) in distri-
bution,

Var(Z(R)|y;S) = E Var(Z(R)|Z(S),y) + Var E(Z(R)|Z(S),y)

= ΣR − ΣR,SΣ−1
S ΣS,R + ΣR,SΣ−1

S Υ̂SΣ−1
S ΣS,R

= ΣR − ΣR,S(D̂−1
S + ΣS)−1ΣS,R

by (13), as given in (4).
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