
        

Citation for published version:
Blagbrough, IS, Metwally, AA & Ghonaim, HM 2012, 'Asymmetrical N

4
,N

9
-Diacyl Spermines: SAR Studies of

Nonviral Lipopolyamine Vectors for Efficient siRNA Delivery with Silencing of EGFP Reporter Gene', Molecular
Pharmaceutics, vol. 9, no. 7, pp. 1853-1861. https://doi.org/10.1021/mp200428d

DOI:
10.1021/mp200428d

Publication date:
2012

Document Version
Peer reviewed version

Link to publication

This document is the Accepted Manuscript version of a Published Work that appeared in final form in Molecular
Pharmaceutics, copyright © American Chemical Society after peer review and technical editing by the publisher.
To access the final edited and published work see http://dx.doi.org/10.1021/mp200428d

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 23. Jan. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Bath Research Portal

https://core.ac.uk/display/161908037?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1021/mp200428d
https://doi.org/10.1021/mp200428d
https://researchportal.bath.ac.uk/en/publications/asymmetrical-n4n9diacyl-spermines-sar-studies-of-nonviral-lipopolyamine-vectors-for-efficient-sirna-delivery-with-silencing-of-egfp-reporter-gene(2c8edf5a-b2d0-40dc-be1e-d08eb6f25914).html


Molecular Pharmaceutics, 2012, 9, 1853-1861 

Asymmetrical N4,N9-Diacyl Spermines: SAR Studies of Non-Viral Lipopolyamine 

Vectors for Efficient siRNA Delivery with Silencing of EGFP Reporter Gene 

Ian S. Blagbrough,* Abdelkader A. Metwally, and Hassan M. Ghonaim† 

Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, U.K. 

* Corresponding author: prsisb@bath.ac.uk ResearcherID D-9148-2011 tel: 44-1225-386795 

† Current address: Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt. 

Running head: Asymmetrical Lipopolyamines Deliver siRNA 

ABSTRACT: Our aim is to study the effects of varying the two acyl moieties in synthesized 

N4,N9-diacyl spermines on siRNA formulations and their delivery efficiency in cell lines. Six novel 

asymmetrical lipopolyamines: [N4-cholesteryloxy-3-carbonyl-N9-oleoyl-, N4-decanoyl-N9-oleoyl-, 

N4-decanoyl-N9-stearoyl-, N4-lithocholoyl-N9-oleoyl-, N4-myristoleoyl-N9-myristoyl-, and N4­

oleoyl-N9-stearoyl]-1,12-diamino-4,9-diazadodecane were assessed for their abilities to bind to 

siRNA, studied using a RiboGreen intercalation assay, and to form nanoparticles. Their siRNA 

delivery efficiencies were quantified in FEK4 primary skin cells and in an immortalized cancer 

cell line (HtTA) using a fluorescein-tagged siRNA, and compared with formulations of N4,N9­

dioleoyl-1,12-diamino-4,9-diazadodecane and of a leading transfecting agent, TransIT-TKO. 

Transfection was measured in terms of siRNA delivery and silencing of EGFP reporter gene in 

HeLa cells. By incorporating two different acyl moieties, changing their length and oxidation level 

in a controlled manner, we show efficient fluorescein-tagged siRNA formulation, delivery, and 

knock-down of EGFP reporter gene. N4-Oleoyl-N9-stearoyl spermine and N4-myristoleoyl-N9­

myristoyl spermine are effective siRNA delivery vectors typically resulting in 89% cell delivery 

and gene silencing to 34% in the presence of serum, comparable with the results obtained with 

TransIT-TKO; adding a second lipid chain is better than incorporating a steroid moiety. 

KEYWORDS: N4,N9-dioleoyl spermine, lipopolyamine, primary skin cells, siRNA delivery, 

steroids 
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INTRODUCTION 

Small (or short) interfering RNA (siRNA) delivery is a branch of polynucleic acid delivery 

that has many potential clinical applications and progress is being made towards RNA interference 

(RNAi) realising its potential and becoming an efficient medicine for the treatment of a wide range 

of diseases.1,2 Following the discovery of gene silencing in petunia flowers 3,4 and then in animal 

cells,5,6 siRNA is making significant progress in clinical trials, however, key obstacles still remain 

to be overcome.7-20 siRNA is a 21-24 double stranded nucleic acid with a relatively large molecular 

weight (~13 kDa) and ~40 negative charges (from the 21 bp phosphates). These physicochemical 

properties ensure siRNA molecules have poor intracellular uptake and so the major challenge lies in 

the ability to deliver siRNA efficiently to its site of action, the cytoplasm. Due to the efficiency of 

RNase, siRNA undergoes fast enzymatic degradation in serum.21 A wide variety of cationic lipids 

(lipoplexes) 21-26 and cationic polymers (polyplexes) 27,28 are being investigated as non-viral carriers 

for siRNA. They are more efficient than administering naked siRNA, but the in vitro/in vivo 

correlation of cationic lipid formulations is not good due to the various biological barriers and the 

interaction with serum components.25 Formulation and stability studies of siRNA are therefore 

important, but few structure-activity relationship (SAR) studies have been reported. Such SAR 

studies are urgently required for non-viral vectors in siRNA delivery as there is no immediate 

correlation between the efficiency of a vector used for pDNA and for siRNA delivery.1,18 

We are studying how novel lipopolyamines interact with a fluorescein-tagged siRNA in 

order to produce nanometre-sized particles suitable for transfecting cells with high efficiency and 

low toxicity. Our non-viral gene therapy (NVGT) delivery system focus is on the design of simple, 

practical formulations using lipopolyamines composed of two long-carbon chains or one chain and 

a steroid covalently bound to a polyamine e.g. the tetra-amine spermine (1,12-diamino-4,9­

diazadodecane), a natural RNA binding agent.29-31 The essential requirements for polynucleotide 

delivery are set out in detail in some of our recent research papers 32-36 Briefly these are: lipoplex 

mediated transport of siRNA through the cell membrane and thereby delivery to the cytosol. 

Overcoming the various lipid bilayer barriers requires the lipopolyamine to mask the polyanionic 

character of the siRNA as a nanoparticle (lipoplex) by electrostatic charge neutralisation, an 

important first step in NVGT. As the site of action of siRNA is in the cytosol, there is no 

requirement to enter the nucleus (as for pDNA), but the siRNA lipoplex must efficiently afford 

protection from the high enzyme activity of RNase which otherwise results in fast hydrolysis with 

no chance of a therapeutic endpoint. The rationale for this series of novel asymmetrical cationic 

lipids is also set out in the previous and following papers.33,36 We have chosen naturally occurring 

lipids and covalently bound them in different pairs to the naturally occurring polyamine spermine. 

Then, without any pre-preparation of liposomes, we titrate a fluorescein-tagged siRNA against the 

cationic lipids in order to investigate if they are suitable for efficient, non-toxic delivery to target 
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primary (hard-to-transfect) cells, by forming nanoparticles which will efficiently enter cells in 

NVGT. Such bio-nanoparticle lipoplex formulations leading to gene knock-down might be efficient 

in transfection, particularly if they work in the presence of serum nucleases (e.g. RNase) and if they 

show high cell viability. Such low toxicity might be especially predicted where the (asymmetrical) 

lipids of the formulation accurately mimic the constituents of human lipid bilayers. Herein we 

report our investigation on the formulation of siRNA with variation in the two lipid moieties 

regiospecifically covalently bound to the secondary amines of spermine. 

We make sequential changes to chain length from C10 (decanoyl) to C18 (oleoyl), and we 

incorporate two steroid moieties, cholesteryl from essentially planar AB-cholesterol 37,38 and 

lithocholoyl 39,40 from the naturally occurring cis-AB bile acid steroid lithocholic acid. There is 

therefore the potential for different interactions with cellular bilayers and, subsequent to absorptive 

endocytosis, for fusion with and thereby weakening of the endosomal bilayer. The six new 

synthetic lipopolyamines spontaneously form lipoplexes with siRNA which are assessed by 

physico- and bio-chemical techniques: target cell transfection efficiency (in the presence of serum 

thereby demonstrating RNase protection) through both delivery of a fluorescein-tagged siRNA and 

silencing of EGFP reporter gene stably expressed in HeLa cells, using both primary and cancer 

cell lines, confocal microscopy, cell viability measured in a 3-(4,5-dimethylthiazol-2-yl)-2,5­

diphenyltetrazolium bromide (MTT) cytotoxicity assay.41,42 We compare our results with those 

obtained with the non-liposomal lipopolyamine Lipogen® (N4,N9-dioleoyl spermine) 43,44 and also 

with a leading transfecting agent, TransIT-TKO. 

MATERIALS AND METHODS 

Materials. Chemicals, reagents, solvents, and buffers, were routinely purchased from 

Sigma-Aldrich (Gillingham, UK) except where indicated, and cell culture materials were from Life 

Technologies (Paisley, Scotland). HeLa cells stably expressing EGFP were obtained from the Cell 

Service at Cancer Research UK (CRUK, London Research Institute, Clare Hall Laboratories, South 

Mimms, London, UK). siRNA for delivery was fluorescein-tagged siRNA Delivery Control (Label 

IT®, Mirus, Cambridge, UK) and siRNA against EGFP was purchased from Qiagen (Crawley, UK): 

Sense strand: 5'-GCAAGCUGACCCUGAAGUUCAUTT-3', 

Anti-sense strand: 5'-AUGAACUUCAGGGUCAGCUUGCCG-3', 

Target DNA sequence: 5'-CGGCAAGCTGACCCTGAAGTTCAT-3'. 

General Details. Glassware, silica gel column and analytical chromatography (typically 

CH2Cl2:MeOH:conc. aq. NH3; 200:10:1 to 100:10:1 to 50:10:1 v/v/v), and ninhydrin or potassium 

permanganate used for the detection of polyamines, was as previously reported.35 All the 

synthesized lipopolyamines were homogenous on silica gel thin-layer chromatography (TLC) 

(CH2Cl2-MeOH-conc. aq. NH3 25:10:1, v/v/v) and showed satisfactory 1H nuclear magnetic 
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resonance (NMR) and 13C NMR spectroscopy as previously reported 35 and low- and high-

resolution mass spectrometric (HRMS) Fast Atom Bombardment (FAB) data (positive ion mode, 

reported as m/z and within 5 ppm) using m-nitrobenzyl alcohol as the matrix. N4,N9-Dioleoyl 

spermine was prepared as previously reported.43,44  

 N4-Cholesteryloxy-3-carbonyl-N9-oleoyl-1,12-diamino-4,9-diazadodecane 

 MS, FAB found 879.8 (100%, M++H), C56H102N4O3 requires (M+) 878. HRMS, FAB 

found 879.8022 (M++H), C56H103N4O3 requires (M++H) 879.8025. 

 N4-Decanoyl-N9-oleoyl-1,12-diamino-4,9-diazadodecane 

 MS, FAB found 621.5 (100%, M++H), C38H76N4O2 requires (M+) 620. HRMS, FAB found 

621.6036 (M++H), C38H77N4O2 requires (M++H) 621.6041. 

 N4-Decanoyl-N9-stearoyl-1,12-diamino-4,9-diazadodecane 

 MS, FAB found 623.4 (100%, M++H), C38H78N4O2 requires (M+) 622. HRMS, FAB found 

623.6218 (M++H), C38H79N4O2 requires (M++H) 623.6192. 

 N4-3α-Hydroxy-5-cholan-24-carbonyl-N9-oleoyl-1,12-diamino-4,9-diazadodecane 

 MS, FAB found 825.7 (100%, M++H), C52H96N4O3 requires (M+) 824. HRMS, FAB found 

825.7545 (M++H), C52H97N4O3 requires (M++H) 825.7555. 

 N4-Myristoleoyl-N9-myristoyl-1,12-diamino-4,9-diazadodecane 

 MS, FAB found 621.6 (100%, M++H), C38H76N4O2 requires (M+) 620. HRMS, FAB found 

621.6062 (M++H), C38H77N4O2 requires (M++H) 621.6041, FAB found 643.5843 (M++Na), 

C38H76N4O2Na requires (M++Na) 643.5860. 

 N4-Oleoyl-N9-stearoyl-1,12-diamino-4,9-diazadodecane 

 MS, FAB found 733.6 (100%, M++H), C46H92N4O2 requires (M+) 732. HRMS, FAB found 

733.7283 (M++H), C46H93N4O2 requires (M++H) 733.7293. 

 Particle Size. The average particle size for each lipoplex formed at a highly efficient N/P 

charge ratio of delivery was determined using a NanoSight LM10 (NanoSight Ltd, Salisbury, UK). 

All measurements were carried out on lipoplexes prepared from siRNA (25 pmol) in HEPES buffer 

(0.2 mL) at pH 7.4. Results were analysed with the Nanoparticle Tracking Analysis (NTA) 

software. 

 Cell Culture. Three cell lines were used in the transfection experiments, a human primary 

skin fibroblast cells FEK4 45,46 derived from a foreskin explant, a human cervix carcinoma, HeLa 

derivative and transformed cell line (HtTA),47,48 and HeLa cells stably expressing EGFP.49,50 The 

HtTA cells being stably transfected with a tetracycline-controlled transactivator (tTA) consisting 

of the tet repressor fused with the activating domain of virion protein 16 of the herpes simplex 

virus (HSV). Cells were cultured as previously reported.35  

The HeLa cell line stably expressing the red-shifted enhanced variant of wild-type GFP 

(EGFP) used here as a reporter protein was obtained from the Cell Service at Cancer Research UK 

(CRUK, London Research Institute, Clare Hall Laboratories, South Mimms, London, UK) and was 
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constructed by Dr Yilun Liu. Briefly, it was generated by the centrin protein (CEN) being subcloned 

into the expression vector pEGFP-C1 (Clontech, Cowley, UK), downstream of EGFP, under the 

control of the human CMV promoter. Stably transfected cells were selected with G418 and 

maintained as a polyclonal cell line, cultivated as described as described in the following paper.36  

 RNA Condensation (RiboGreen Intercalation Assay). RiboGreen solution (Invitrogen, 

50 µL diluted 1 to 20) was added to each well of a 96-well plate (opaque bottom) containing free 

non-targeting siRNA1 (50 ng) (Dharmacon, Thermo Fisher Scientific Biosciences) or complexed 

with lipopolyamines at different ratios in TE buffer (50 µL, 10 mM Tris-HCl, 1 mM EDTA, pH 

7.5, in DEPC-treated water) using FLUOstar Optima Microplate Reader (BMG-LABTECH), ex = 

480 nm, em = 520 nm as previously reported.35  

 siRNA Transfection Experiments. For siRNA delivery we used fluorescein-tagged 

siRNA Delivery Control (Label IT®, Mirus). FEK4 and HtTA cells were seeded at 50,000 

cells/well in 12-well plates in Eagle’s Minimum Essential Medium (EMEM, 2 mL) containing 

fetal calf serum (FCS) for 24 h to reach a plate confluency of 50-60% on the day of transfection. 

Then the media were replaced by fresh media (437.5 L). The lipoplexes were prepared by mixing 

siRNA (12.5 pmol in 12.5 L) with the different amounts of the cationic lipopolyamines in Opti-

MEM (typically 2-20 g in 50 L) at 20 °C for 30 mins and then incubated with the cells (final 

volume of 0.5 mL) for 4 h at 37 °C in 5% CO2 v/v in full growth medium. Then the media were 

replaced by fresh media (2 mL) for 44 h at 37 °C in 5% CO2 v/v before the assay. 

 For EGFP gene silencing we used HeLa cells stably expressing EGFP, trypsinized at 

confluency 80-90%, and seeded at a density of 65,000 cells/well in 24-well plates. Cells were 

incubated for 24 h at 37 °C in 5% CO2 v/v prior to transfection. The lipoplexes were prepared by 

mixing the specified amounts of the transfection reagent that resulted in best siRNA delivery in 

OptiMEM serum-free medium (50 L), with 15 L of siRNA (1 M) in OptiMEM serum-free 

medium. The solutions were mixed for 2-3 s using a vortex mixer. On the day of transfection, the 

lipoplex solutions were added to wells containing Dulbecco’s Modified Eagle’s Medium (DMEM) 

(10% FCS) such that each well contained 15 pmol siRNA. The plates were then incubated for 48 h 

at 37 °C in 5% CO2 v/v before the assay. 

 In Vitro Cytotoxicity (MTT) Assay. FEK4 and HtTA cells were seeded in 96-well plates 

at 8,000 cells/well and incubated for 24 h at 37 °C in 5% CO2 v/v. Lipoplexes complexed with 

siRNA were added in the same way as in the transfection protocol. After incubation for 44 h, the 

media were replaced with fresh media (90 µL) and sterile filtered MTT solution (10 µL, 5 mg/mL) 

to reach a final concentration of 0.5 mg/mL.43,44 Then the plates were incubated for a further 4 h at 

37 °C in an atmosphere of 5% CO2 v/v. The percent viability was detected as previously reported.35  

 Flow Cytometry (FACS). For analysis of fluorescein-tagged siRNA by flow cytometry, 

fluorescence activated cell sorting (FACS), cell lines were trypsinized and resuspended in 15% 
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FCS EMEM. Cells were then centrifuged at 1,200 rpm for 5 min at 20 oC, washed twice by 

resuspending in PBS (1 mL/tube) and re-centrifuged at 1,200 rpm for 5 min at 20 oC. The collected 

cells were resuspended in PBS (500 L/tube) and then transferred to a flow cytometer tube 

(Becton Dickinson, UK). Levels of fluorescein-tagged siRNA in the transfected cells were 

detected and corrected for background fluorescence of the control cells by FACS (Becton 

Dickinson FACS Vantage dual Laser Instrument, argon ion laser 488 nm). Typically 10,000 events 

were recorded. Fluorescein-tagged siRNA delivery efficiency was calculated based on the 

percentage of the fluorescent cell sorting events in the established range (M1) with correction of 

the background fluorescence of the control samples, ex = 495 and em = 518 nm.  

For analysis of reduction of expression of EGFP by flow cytometry (FACS), HeLa cells 

stably expressing EGFP were trypsinized and resuspended in DMEM complete medium without 

phenol red. Cells were then centrifuged at 1,000 rpm for 5 min, washed twice by resuspending in 

PBS containing 0.1% BSA, and re-centrifuged at 1,000 rpm for 5 min. The collected cells were 

resuspended in PBS and then transferred to a flow cytometer tube. Cells (10,000-20,000 events) 

were analyzed using a FACSCanto flow cytometer (Becton Dickinson, UK), equipped with an 

argon ion laser at 488 nm for excitation, a Long Pass (LP) filter at 502 nm and a detector at 530 

nm (range +/-15 nm) for fluorescence emission, EGFP expression was calculated as:   

100% 
cellscontrolofcefluorescenEGFP

cellsdtransfecteofcefluorescenEGFPEGFP  

 

 Confocal Microscopy Cell Imaging. Cells were trypsinized at confluency 80-90% and 

were seeded at a density of 65,000 cells/well in 24-well plates that have round-glass cover slips (12 

mm in diameter) and were incubated for 24 h prior to transfection which was carried out as 

described above. After that 48 h incubation, the cell culture media in each well were aspirated and 

the cells washed with PBS (3 x 0.5 mL). The cell membrane was then stained with wheat germ 

agglutinin (WGA) conjugated to Alexa Fluor® 555. The WGA-Alexa Fluor® 555 working solution 

was adjusted to a concentration of 5 µg/mL in Hank’s balanced salt solution without phenol red. 

The cells were incubated for 10 min in the dye working solution at 37 °C, 5% CO2 in the dark. The 

cells were then washed with PBS (3 x 0.5 mL) and then fixed with 4% paraformaldehyde in PBS 

for 20 min at 20 °C in the dark. The cover slips were then removed from each well, washed with 

PBS (2 x 0.5 mL), left to dry briefly in air, and then mounted on glass slides using Mowiol 

(polyvinyl alcohol) solution as the mounting media and left in the dark at 20 °C (18 h) to allow 

hardening of the mounting media. The cells were examined using a Carl Zeiss laser scanning 

microscope LSM 510 meta, with EGFP excitation 488 nm, emission 505-550 nm (band pass filter), 

Alexa Fluor® 555 excitation 543 nm, emission 560-615 nm (band pass filter). 
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RESULTS AND DISCUSSION 

 

Synthesis of Lipopolyamines - Asymmetrical N4,N9-Disubstituted Spermines. 

Spermine

decanoyl, oleoyl           R = CO(CH2)8CH3   R' = CO(CH2)7CH=CH(CH2)7CH3  

decanoyl, stearoyl        R = CO(CH2)8CH3   R' = CO(CH2)16CH3                                      

myristoleoyl, myristoyl  R = CO(CH2)7CH=CH(CH2)3CH3   R' = CO(CH2)12CH3

oleoyl, stearoyl            R = CO(CH2)7CH=CH(CH2)7CH3   R' = CO(CH2)16CH3   

R
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Figure 1. N4,N9-Disubstituted spermines asymmetrically acylated with aliphatic chains and steroids. 

 

In nature, RNA polyanionic charges are neutralised by polyammonium ion counterions. 

The high cellular concentrations of positively charged polyamines (e.g. spermine, spermidine) 

have higher affinity for RNA than for DNA wound around the basic proteins, histones.29-31 The 

rational design and synthesis of six novel asymmetrical N4,N9-disubstituted spermines, comprised 

of different aliphatic chains and steroids, are set out in the preceding paper 35 as is their ready 

ability to fuse with plasma membranes. They were each prepared via the key intermediate N1,N12-

ditrifluoroacetyl-N4-t-butoxycarbonyl-1,12-diamino-4,9-diazadodecane.35 The chain lengths were 

varied from 10 to 18, and the level of unsaturation along the chains was also controlled in our 

novel siFection vectors, obtained as their free bases, four containing two different long chains:  N4-

decanoyl-N9-oleoyl-1,12-diamino-4,9-diazadodecane, N4-decanoyl-N9-stearoyl-1,12-diamino-4,9-

diazadodecane, N4-myristoleoyl-N9-myristoyl-1,12-diamino-4,9-diazadodecane, and N4-oleoyl-N9-

stearoyl-1,12-diamino-4,9-diazadodecane, and the two steroid conjugates N4-cholesteryloxy-3-

carbonyl-N9-oleoyl-1,12-diamino-4,9-diazadodecane and N4-3α-hydroxy-5-cholan-24-carbonyl-

N9-oleoyl-1,12-diamino-4,9-diazadodecane (Figure 1). These six target N4,N9-asymmetrical diacyl 

spermines were homogenous on silica gel TLC (CH2Cl2-MeOH-conc. aq. NH3 25:10:1, v/v/v) and 



all showed satisfactory HRMS data (within 5 ppm). We have therefore investigated them as 

potential non-viral vectors in our continuing SAR studies of pDNA versus siRNA delivery in order 

to investigate novel lipopolyamine molecules that have different lipid moieties on N4,N9-positions 

of the polyamine spermine backbone.35 

RNA Binding (RiboGreen intercalation assay). 

N4-oleoyl-N9-stearoyl spermine

N4-myristoleoyl-N9-myristoyl spermine

N4-decanoyl-N9-stearoyl spermine

N4-decanoyl-N9-oleoyl spermine

N4-cholesteryl-N9-oleoyl spermine

N4-lithocholoyl-N9-oleoyl spermine

N4,N9-dioleoyl spermine
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Figure 2. RiboGreen intercalation assay of siRNA complexed with different lipopolyamines. 

The RiboGreen siRNA intercalation assay (Figure 2), comparable to measuring DNA 

condensation in an ethidium bromide fluorescence quenching assay,51 was carried out on the 6 

asymmetrical lipopolyamine vectors and the results compared with N4,N9-dioleoyl spermine. There 

is efficient siRNA binding as assessed by 90% fluorescence quenching at N/P charge ratios 3-4 for 

all the vectors except N4-myristoleoyl-N9-myristoyl spermine which shows 80% fluorescence 

quenching at N/P charge ratio 4.5. Therefore, as a result of neutralization of RNA phosphate 

negative charges by lipopolyamine ammonium positive charges, siRNA is efficiently condensed. 

N/P charge ratios were determined with 2.0 alkylammonium ion (N) charges on each cationic lipid 

and 40 phosphate anion (P) charges on ds-RNA of 21 bp where each terminal sugar residue is not 

phosphorylated in the synthesis. The results from siRNA binding, investigated using a RiboGreen 

fluorescence quenching assay, revealed that the majority of our synthetic lipopolyamines are able 

efficiently to condense siRNA to 10% fluorescence at N/P charge ratio 4; N4-myristoleoyl-N9­

myristoyl spermine was able to quench the fluorescence by 80% at N/P charge ratio 4.5 (Figure 2). 
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siRNA Delivery and In Vitro Cytotoxicity. 

Figure 3. FACS analysis showing the live population gated (above), and of FEK4 (middle) and of 

HtTA (below) 48 h after delivery of fluorescein-tagged siRNA complexed with N4-myristoleoyl­

N9-myristoyl spermine: untransduced cells, fluorescein-positive cells. 

The transduction of fluorescein-tagged siRNA into the cell lines FEK4 and HtTA was 

investigated and compared with a market leader, TransIT-TKO (Mirus). The practical 

concentrations (in a final volume of 0.5 mL) were determined experimentally by using ascending 

amounts of lipopolyamines until ~80% transfection was reached and there was not a further step-

up in siRNA delivery efficiency at the next highest concentration. The gated flow cytometric 
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FACS analysis of FEK4 and HtTA cell lines 48 h after delivery of fluorescein-tagged siRNA 

clearly shows a high percentage of transduced fluorescein-positive cells (Figure 3). These are 

typical and representative FACS data, in this example tagged siRNA delivered complexed with the 

lipopolyamine N4-myristoleoyl-N9-myristoyl spermine. The monomodal distribution of cells 

showing a positive fluorescein signal, counted by FACS analysis, indicates siRNA delivery to 

~90% of the gated population of live cells. The FEK4 primary cells show a mean fluorescence 

intensity (MFI) around 90 compared to the autofluorescence of the control (~4). From the 

(approaching normal) distribution, the majority of cells efficiently received larger amounts of the 

fluorescein-tagged siRNA. The MFI in the histogram of the HtTA cells is approximately twice that 

of the FEK4 primary cells (~200 vs. ~90 arbitrary fluorescence units respectively). 
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Figure 4. Lipofection of the primary skin cell line FEK4 and the cancer cell line HtTA after 

delivery of siRNA (12.5 pmol) complexed with N4-decanoyl-N9-oleoyl spermine at different ratios. 
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Figure 5. Lipofection of the primary skin cell line FEK4 and the cancer cell line HtTA after delivery 

of siRNA (12.5 pmol) complexed with N4-decanoyl-N9-stearoyl spermine at different ratios. 
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Figure 6. Lipofection of the primary skin cell line FEK4 and the cancer cell line HtTA after 

delivery of siRNA (12.5 pmol) complexed with N4-myristoleoyl-N9-myristoyl spermine and N4-

oleoyl-N9-stearoyl spermine at different ratios. 
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Figure 7. Lipofection of the primary skin cell line FEK4 and the cancer cell line HtTA after 

delivery of siRNA (12.5 pmol) complexed with N4-cholesteryloxy-3-carbonyl-N9-oleoyl spermine 

and N4-lithocholoyl-N9-oleoyl spermine at different ratios. 

 

All our siRNA delivery experiments are performed in the presence of serum. From our 

typical delivery results with these novel lipopolyamines (Figures 4, 5, 6, and 7) we conclude that 

delivery increases with lipopolyamine N/P charge ratio in both cell lines. High efficiency (71-

93%) of siRNA delivery was achieved on optimisation, N4-oleoyl-N9-stearoyl spermine, N4-

myristoleoyl-N9-myristoyl spermine, and N4-decanoyl-N9-oleoyl spermine being comparable with 

N4,N9-dioleoyl spermine. Therefore, whilst siRNA delivery is dose dependent, the balance of 

optimised delivery with toxicity (cell viability) will also have to be considered (Figure 8).  
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The highest efficiency of siRNA delivery into primary skin cell line FEK4 cells was found 

with N4-myristoleoyl-N9-myristoyl spermine (89%), N4-lithocholoyl-N9-oleoyl spermine (87%), 

N4-decanoyl-N9-oleoyl spermine (86%), N4-oleoyl-N9-stearoyl spermine (84%), N4-decanoyl-N9-

stearoyl spermine (77%), and the lowest with N4-cholesteryloxy-3-carbonyl-N9-oleoyl spermine 

(71%). The results of siRNA delivery into cancer HtTA cells follow a similar pattern from highest 

efficiency with N4-lithocholoyl-N9-oleoyl spermine (93%) to lowest with N4-cholesteryloxy-3-

carbonyl-N9-oleoyl spermine (76%). Incorporating two asymmetrical chains or other lipid 

moieties, our siRNA delivery results (Figure 8, histograms, carried out in triplicate on 3 separate 

experiments, n = 9) show that our synthesized asymmetrical lipopolyamines are efficient delivery 

vectors that work both in primary (hard-to-transfect) cell lines and even in the presence of serum 

i.e. of hydrolytic RNases. The siRNA delivery efficiencies of the tested asymmetrical 

lipopolyamines, except N4-cholesteryloxy-3-carbonyl-N9-oleoyl spermine, are comparable with the 

results obtained with a market leader TransIT-TKO, a commercially available reagent (92% FEK4 

and 93% HtTA). 
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Figure 8. Lipofection and cytotoxicity effects of siRNA (12.5 pmol) complexed with:  TransIT-

TKO (4 μL), Dioleoyl (N4,N9-dioleoyl spermine) (8 μg, N/P = 44), Oleoyl-Stearoyl (N4-oleoyl-N9-

stearoyl spermine) (20 μg, N/P = 109), Decanoyl-Oleoyl (N4-decanoyl-N9-oleoyl spermine) (10 μg, 

N/P = 65), Decanoyl-Stearoyl (N4-decanoyl-N9-stearoyl spermine) (30 μg, N/P = 193), Myristoleoyl-

Myristoyl (N4-myristoleoyl-N9-myristoyl spermine) (20 μg, N/P = 129), Cholesteryl-Oleoyl (N4-

cholesteryloxy-3-carbonyl-N9-oleoyl spermine) (8 μg, N/P = 36), and Lithocholoyl-Oleoyl (N4-

lithocholoyl-N9-oleoyl spermine) (8 μg, N/P = 39) on the primary skin cell line FEK4 and the HeLa 

derived cancer cell line HtTA (mean ± S.D., n = 9). 
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The cell viability (MTT assay) results for the siRNA lipoplexes (Figure 8, lines) indicate 

that there is not a large difference in the cell viability between the commercially available TransIT-

TKO, FEK4 (85%) and HtTA (75%) cells, and N4-myristoleoyl-N9-myristoyl spermine and N4-

cholesteryloxy-3-carbonyl-N9-oleoyl spermine, next is N4-oleoyl-N9-stearoyl spermine, while N4-

decanoyl-N9-stearoyl spermine, N4-decanoyl-N9-oleoyl spermine, and N4-lithocholoyl-N9-oleoyl 

spermine lipopolyamines are more toxic to both cell lines. 

 Lipoplex Particle Size Measurements. The particle size of the formulation is also an 

important factor in improving delivery.52 Particle size characterization measurements, by 

laser/NTA, were carried out on selected lipoplexes at their most efficient concentration for 

delivery, varying the amount of cationic lipid/siRNA 12.5 pmol. The nanoscale of the formed 

siRNA lipoplexes ranged from (mean ± S.D., n = 9):  N4,N9-dioleoyl spermine (110 ± 23 nm, at 8 

μg, N/P = 44), N4-decanoyl-N9-stearoyl spermine (130 ± 36 nm, at 30 μg, N/P = 193), N4-decanoyl-

N9-oleoyl spermine (150 ± 35 nm, at 10 μg, N/P = 65), to N4-myristoleoyl-N9-myristoyl spermine 

(170 ± 38 nm, at 20 μg, N/P = 129) and N4-oleoyl-N9-stearoyl spermine (170 ± 46 nm, at 20 μg, 

N/P = 109), values around a particle size of 155 nm, in the range 130-170 nm. These lipoplex 

nanoparticle sizes compare with those from pEGFP of N4-decanoyl-N9-oleoyl spermine (90 ± 18 

nm) to N4-myristoleoyl-N9-myristoyl spermine (210 ± 37 nm) values around a pDNA lipoplex 

particle size of 165 nm.35 These nanoscale self-assembled siRNA lipoplexes of asymmetrical 

N4,N9-diacyl spermines transduce target cell lines efficiently. The N/P ratios of the siRNA lipoplex 

nanoparticles that were determined to show optimum delivery (Figure 8) are all significantly above 

N/P = 4.5, the charge ratio above which our synthetic asymmetrical lipospermines achieved almost 

complete siRNA binding (Figure 2). Therefore, optimal siRNA delivery efficiency is not only a 

matter of siRNA binding and associated charge neutralisation, but also of total lipospermine 

content in the formulae, resulting in a net positive charge and an excess of acyl lipids. 

The length and type of the aliphatic chains (the hydrophobic domain) incorporated into 

cationic lipids significantly affects their pDNA transfection efficiency,17, 32-35, 44 but this factor is 

not yet understood for siRNA delivery. This series of novel non-viral vectors is designed to mimic 

the composition of cell membrane phospholipid bilayers with their high percentage of 

asymmetrical fatty chains. We are taking advantage of having short- and long-fatty chains in the 

same molecule, or a saturated and an unsaturated fatty chain, or a fatty acyl chain with a steroid, 

mixing these different hydrophobic domains in order to facilitate inter-membrane mixing leading 

to endosomal escape 53 which will deliver the siRNA directly into the cytosol. Experimental 

evidence for this is that the di-C14 vector N4-myristoleoyl-N9-myristoyl spermine was one of the 

best in this series. By incorporating two different acyl moieties, and changing their length and 

oxidation level in a stepwise manner, we have demonstrated some structurally different examples 

of non-viral lipopolyamine vectors capable of siRNA lipoplex self-assembly and effecting efficient 
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siRNA delivery. A common moiety in these effective siRNA delivery vectors is a cis-mono-

unsaturated alkyl chain, e.g. the oleoyl group (C18), a result possibly related to the issues of 

hydrophobic moiety hydration or packing.52-54 By incorporating two different lipid moieties, we 

have shown that all our synthesized lipopolyamines afford siRNA delivery results varying in 

range, and at different N/P charge ratios, and also most of the tested asymmetrical diacyl 

spermines are not toxic except N4-lithocholoyl-N9-oleoyl spermine and those containing saturated 

C10 acyl chains, e.g. N4-decanoyl-N9-stearoyl spermine. Therefore, by considering a combination 

of the siRNA lipoplex delivery efficiency and cell viability (Figure 8) we see that N4-oleoyl-N9-

stearoyl spermine and N4-myristoleoyl-N9-myristoyl spermine are as effective as TransIT-TKO, 

typically resulting in 89% cell delivery in the presence of serum i.e. of RNase. We have shown 

that adding a second lipid chain is better than incorporating a steroid. 

siRNA Mediated Gene Silencing. We postulate that the lipid moieties in our cationic 

lipids interact with the phospholipid bilayer of the cell membrane, facilitating cell entry either in 

crossing the membrane bilayer and/or in helping to weaken the endosomal bilayer and thereby 

aiding siRNA either as a nanoparticle or now free (uncomplexed) from the condensing 

lipopolyamine to escape into the cytosol and silence target genes. These self-assembled non-

liposomal formulations of siRNA will have different shapes (volumes) according to the lipid 

substituent pattern. The longer chain non-steroidal asymmetrical lipopolyamines are remarkably 

non-toxic and capable of delivering siRNA to primary cell lines in the presence of serum and with 

high efficiencies. These are important new siRNA delivery vectors, but siRNA delivery does not 

necessarily equate with target gene silencing. Therefore, HeLa cells stably expressing EGFP were 

used to test the ability of lipoplexes of selected synthesized asymmetrical lipopolyamines to 

mediate gene silencing, comparable with recently reported HeLa705 cells containing an aberrant 

luciferase gene 55 and C6 glioma cells stably expressing GFP.56 The three lipopolyamines that 

showed the best balance between highly efficient fluorescein-tagged siRNA delivery and the 

associated cell viability (Figure 8) were chosen to test their abilities to knock-down EGFP reporter 

gene. HeLa cell transfection with siRNA, i.e. delivery and functional knock-down, using a siRNA 

against EFGP (siEGFP) was comparable to that achieved with TransIT-TKO (24%) as a positive 

control (Figure 9). The EGFP expression in the transfected HeLa cells was significantly reduced 

(from 100%) to 23%, 34%, and 34% for Dioleoyl (10 μg cationic lipid), Myristoleoyl-Myristoyl 

and Oleoyl-Stearoyl respectively (each at 25 μg cationic lipid) (Figure 9). The MFIs of siRNA 

tagged with the fluorescent dye Alexa Fluor 647 and delivered with Dioleoyl, Myristoleoyl-

Myristoyl, and Oleoyl-Stearoyl to HeLa cells stably expressing EGFP, under the same conditions 

as used in the gene silencing experiments, were 606, 421, and 951 fluorescence units respectively. 

Using a scrambled siRNA as a negative control (siNC, Figure 9), we have also demonstrated that 

the gene silencing achieved with all four vectors is due to sequence-specific EGFP gene knock-

down and not due to other off-target or cationic lipid-related effects, e.g. cell toxicity.  
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Figure 9. Silencing of EGFP expression in a HeLa cell line that stably expresses EGFP, 48 h post-

transfection with siRNA against EGFP (siEGFP, 15 pmol/well, 15 nM) complexed with Dioleoyl 

(N4,N9-dioleoyl spermine, 10 μg), Myristoleoyl-Myristoyl (N4-myristoleoyl-N9-myristoyl spermine, 

25 μg), Oleoyl-Stearoyl (N4-oleoyl-N9-stearoyl spermine, 25 μg), and TransIT-TKO (4 L/well) as 

a positive control. The data obtained with siNC are a negative control (mean ± S.D., n = 6).  

 
            

    
 

Figure 10. Confocal photomicrographs of HeLa cells stably expressing EGFP, showing cell 

membranes stained with WGA-Alexa Fluor® 555 (blue) and EGFP fluorescence (green). 

Representative pictures are shown of untransfected HeLa cells (control, left) and HeLa cells 48 h 

post-transfection with siRNA against EGFP delivered with N4-myristoleoyl-N9-myristoyl spermine 

(gene silencing to 34%, right) (LSM 510 meta, under the 60× oil immersion objective). 
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Using confocal laser scanning microscopy, these HeLa cells are shown to be transfected 

successfully with siRNA against EGFP. As the cells biosynthesize EGFP by transcription and 

translation, the diminution in the green fluorescence is quantifiable for post-transcriptional siRNA 

activity by gene silencing. siRNA lipoplexes of N4-myristoleoyl-N9-myristoyl spermine showed 

loss of cytosolic green fluorescence from EGFP to 34% (Figure 10, cf Figure 3). The cell 

membranes are labeled with WGA-Alexa Fluor® 555 (shown in blue). The presence of an 

unsaturation center in at least one of the fatty acid chains is a common feature for effective gene 

knock-down with our vectors. We conclude that the delivery and knock-down results obtained with 

these asymmetrical lipopolyamines, values comparable to those obtained with TransIT-TKO and 

N4,N9-dioleoyl spermine, can be attributed to the fusogenic ability of the unsaturated fatty acid 

chains (which have at least one cis-double bond) that favors (L to HII) phase transition, facilitating 

both membrane fusion and endosomal escape.44,49,57 Such lipopolyamines are efficient non-viral 

vectors in both siRNA lipoplex delivery and gene silencing. As more and better vectors remain 

critical requirements for clinical siRNA delivery,18 these SAR study results should find ready 

application.  
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ABBREVIATIONS USED 

DMEM, Dulbecco’s Modified Eagle’s Medium; EGFP, enhanced green fluorescent protein; 

EMEM, Eagle’s Minimum Essential Medium; FCS, fetal calf serum; HRMS, high-resolution mass 

spectrometry; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; NTA, 

Nanoparticle Tracking Analysis; NVGT, non-viral gene therapy; WGA, wheat germ agglutinin. 
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