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Abstract: In a variety of fields, system inversion is often required in order to determine inputs from measured or 

for desired outputs. However, inverse systems are often non-proper in the sense that they require differentiators 

in their realisation. This leads to numerical difficulties associated with the computer implementation of their 

mathematical models. To overcome these problems, approximate inversion also referred to as filtered inversion 

is proposed for systems modelled by bond graphs. Generic configurations of right and left filtered inverse bond 

graph models are proposed with dynamic structural conditions on the filters so that the resulting composite bond 

graph represents a proper system suitable for effective numerical implementations. 

Keywords: bond graph, inversion, filtered inverse, approximate inversion, essential orders.   

 

1. INTRODUCTION 

Inverse systems have received a great deal of attention over the years since the pioneering research work in this 

area published in the 60s (see for e.g. references [1-3] to name a few). System inversion appears not only 

implicitly in many control problems such as feedforward control and decoupling problems [4], iterative learning 

control [5] but also as an explicit problem whenever the determination of control actions associated with 

measured or pre-specified outputs are required (e.g. actuator sizing [6], flight trajectory planning [7]). However, 

inverse systems are known to be often non-proper or noncausal in the sense that they require differentiators for 

their realisation. This leads to numerical difficulties associated with the computer implementation of their 

mathematical models. To overcome these problems, the idea of filtered inverse was proposed by Yoshikawa and 

Sugie [8] as a type of approximate inverse systems that are proper (not requiring differentiators) and able to 

reproduce input from output in a certain frequency range. Following the work of Yoshikawa and Sugie presented 

using the transfer function approach, state-space methods to the filtered inverse problem have been proposed by 

Yamada et al [9].  
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Strictly speaking, there are two types of inversion problems: (i) left inverse which computes the inputs from 

measured outputs and (ii) right inverse which determines the inputs required to achieve some desired outputs. 

Both left and right inverses may exist only when a system has the same number of inputs as outputs, and in this 

case both inverse models are identical and left and right inversion problems need not be considered separately. 

However, as will be shown in this paper, in the case of invertible systems with identical number of inputs and 

outputs, there are some differences between right and left filtered inversion that depend on the input-output 

structure of the system. 

Bond graph modelling technique [10, 11], also developed in the 60s has increasingly been used for modelling 

and analysis of physical systems. Bond graphs provide a unified graphical representation of multi-domain 

engineering systems that enables models structural analysis i.e. properties not depending on numerical 

parameters on the one hand and automatic generation of mathematical models associated with various system 

analysis problems using the concept of causality and its generalisation to bicausality [12, 13] on the other hand. 

Inverse models and their applications in control systems design have previously been considered using bond 

graph representation [14]. In general, these exact inverse bond graph models and the associated mathematical 

models can hardly be implemented numerically for the reasons cited above.       

In this paper, a bond graph approach to filtered inversion of multivariable systems is proposed as an alternative 

to exact inverse bond graph models. It is shown that a composite bond graph configuration combining filters (or 

specification models) and actual system model can conveniently represents a filtered inverse bond graph model 

that is proper provided that the filters satisfy some appropriate structural dynamic properties that will be stated. 

The advantage of using bond graphs for such a problem is that the methodology is a physical-model based 

approach that can be extended to nonlinear systems modelled by bond graphs. The results presented here can be 

considered as an extension of the bond graph-based simulation of nonlinear inverse systems using physical 

performance specifications previously proposed in [15]. The mathematical model generated from the proposed 

filtered inverse bond graph can therefore be implemented as a numerically more robust although approximate 

inverse model in various control system design problems requiring system inversion.  

In the context of feedback control systems, "high gains" are commonly used for approximate inversion or 

estimation of state variables through observers. Thus, the proposed inversion methodology is closely related to 

"high gains" as both techniques deal with approximating non-proper dynamical systems (i.e. with differentiators) 

by dynamical systems that are proper. Such approximation problem has also been considered in the design of 

proper control law by Bonilla et al [16] (see also [17]). A contribution of the present paper is to present a general 
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framework for the filtered inversion problem using the structural properties of bond graphs and their associated 

physical interpretation. However, the problem of assigning the systems parameters or their relative values for 

better approximation such as expressed by "high gains" is not discussed in general but rather considered on an 

illustrative example that is developed later in the paper. 

In section 2, generic concepts of inverse and filtered inverse systems as well as some related input-output 

structural properties are recalled. Section 3 presents a bond graph interpretation of the concepts introduced in 

section 2 and build on the graphical properties to propose a bond graph based configuration to represent left and 

right filtered inverse models. The generation of mathematical models from filtered inverse bond graphs and the 

symbolic manipulations leading to appropriate state space forms are also discussed in section 3. An illustrative 

example is provided in section 4 and issues related to the proposed technique as well as its extension to nonlinear 

models are discussed in section 5. Section 6 concludes the paper.   

 

2. INVERSE AND FILTERED INVERSE SYSTEMS 

Consider a square system (same number of inputs and outputs) described by its state space model 
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where mRu  is the input vector, mRy  is the output vector, nRx  represents the state vector and the 

matrices A , B , C  and D  are of appropriate dimensions. The transfer function of this system is given by 

 )()()( sss UY G  (2) 

 where    DBAICG 
1

)( ss  (3) 

When the system is invertible, its inverse model can be written in the minimal-order (lowest possible dynamic 

order) form [2, 4] 
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where z  is the inverse model state r-dimensional vector ( nr  ); A and C  are constant matrices of appropriate 

dimensions ; )( pB  and )( pD  are polynomial matrices in the differential operator dt/dˆp  . 
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The minimal inverse model (4) may be obtained using Silverman’s classical inversion algorithm that starts with 

the state space model (1) and consists of a sequence of algebraic row operations and differentiations on the 

output vector )(ty to solve the inputs in terms of the output components, followed by an appropriate state 

transformation [2]. Alternatively, with the transfer-function approach, the minimal inverse model may be 

constructed as a space-state realisation of the irreducible form of the inverse of the transfer function (3) [4]. 

Either way, it is clear from (4) that the realisation of the inverse model requires various derivatives of the output 

components )()()( 21 ty,,ty,ty m . Denoting 
i

 ; m,,,i 21 , the highest derivative order required for the 

output component )(ty i , it is shown that  n
i
  where n  is the order of the original forward system [2].  

From the numerical implementation viewpoint, differentiators in the inverse model are not desirable in general.  

A technique to avoid differentiators is to reconstruct approximate input through filtered inverse models that are 

proper or causal.  Using the transfer matrix representation (3), the following definitions are given. 

 

Definition 1[8] 

A left filtered inverse system, when it exists, may be defined by its proper rational matrix )(
LF

sG  such that  

 )()()(
LFLF

sss QGG    (5) 

 where   msTsTsTs
m

L2L1L )1()1()1(diag)(
21LF

 
 Q  (6) 

 0
i

T ; m,,,i 21  are chosen constants 

 and  
iL

 ; m,,,i 21  are non-negative integers 

 

Definition 2  

In a similar manner, a right filtered inverse system, when it exists, may be defined by its proper rational matrix 

)(
RF

sG  such that  

 )()()(
RFRF

sss QGG    (7) 

 where   msTsTsTs
m

R2R1R )1()1()1(diag)(
21RF

 
 Q  (8) 

 0
i

T ; m,,,i 21  are chosen constants 

 and  
iR

 ; m,,,i 21  are non-negative integers 
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Remark1 

In the above definitions, the terms isT
i

L)1(


   (resp. isT
i

R)1(


 ) are chosen for simplicity and any of these 

can be replaced by any rational function whose relative degree is greater than or equal to 
iL

  (resp. 
iR

 ). Hence 

it is obvious that filtered inverses are not unique and depend on the choice of the filters.  

 

Right or left filtered inverses above can be interpreted as cascading the inverse model with pre- or post-filters of 

appropriate orders to obtain proper dynamic systems that shape or approximately reconstruct the inputs over 

some frequency range defined by the constants 0iT or the parameters of any alternative rational function 

replacing isT
i

L)1(


  or isT
i

R)1(


 .  In order to achieve this, the filters must have appropriate structural 

dynamic properties, in particular, each relative degree 
iL

  in )(
LF

sQ   (resp. 
iR

  in )(
RF

sQ ) should be at least 

equal to a specific  minimum value 
iL

  (resp. 
iR

 ) uniquely determined by the input-output structure of the 

system: 

   
ii LL

  ; m,,,i 21  (9) 

 resp.  
ii RR

  ; m,,,i 21  (10) 

The minimum values 
iL

 ; m,,,i 21  such that a left inverse system )(
LF

sG  that is proper and satisfying (5) 

exists, are related to the “ L -integral” inverse introduced by Sain and Massey [3] and subsequently extended to 

the minimal “ ][
21 m

,,   – left  integral” inverse by Kamiyama and Furuta [18]. From the discrete system 

associated with the system  (1), the series of mkmk )1()1(   matrices kM  that relate the sequence of the k 

inputs segments 
TTTT

],0[ ](0)(1))([ uuuu kk   to the sequence of k outputs segments 
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The following results are recalled. 
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 Theorem 1 [8] 

There exists a filtered inverse system for a given system (1) if and only if the system (1) is invertible. 

 

Theorem 2 [3] 

The system (1) is invertible if and only if  

 m
nn


1

rankrank MM  (12) 

 

Denoting )(i
k

M  the  1)1()1(  mkmk  matrix obtained by eliminating the i-th column from kM , the 

minimum values 
iL

 ; m,,,i 21  in (9) can be determined using the following theorem. 

 

Theorem 3 [18] 

When the system (1) is invertible (i.e. mnn  1rankrank MM  from Theorem 2),  

let  

  m
1L

rankrankmin


 MM  (13) 

   1)(rankrank
LL

min
L

 im
i




MM m,,,i 21  (14) 

Then the system (1) is ][
L2L1L m

,,   – integral left invertible if and only if 
ii LL

  , m,,,i 21 . 

 

Although the minimal integral right inversion is not presented in [18], the result below is stated and can be 

proven in a similar manner as for the left inversion. Denoting )(ikM  the   mkmk )1(1)1(   matrix 

obtained by eliminating the i-th row from 
k

M , the minimum values 
iR

 ; m,,,i 21  are determined by the 

following theorem. 

Theorem 4  

When the system (1) is invertible (i.e. m
nn


1

rankrank MM  from Theorem 2),  

let  

  m
1R

rankrankmin


 MM  (15) 

   1))1(-)1(rankrankmin RR RR
 immi   MM  ; m,,,i 21  (16) 

Then the system (1) is ][
R2R1R m

,,   – integral right invertible if and only if 
ii RR

  , m,,,i 21 . 
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Remark 2 

In (16), the elimination process of the rows in order to determine 
iR

  starts from the last rows of the matrix 

R
M  as the format of the series of matrices is kept as given in (11). It is however possible to rearrange these 

matrices as in [3, 19] so that the elimination process starts from the first row.  

In a study on the feedback decoupling problem, known to be linked to right invertibility, Commault et al [19] 

introduced the essential orders of the outputs in relation to the concept of “rank essential” rows proposed by 

Cremer [20]. The duality between right and left inversion is used here to introduce the essential orders of the 

inputs and highlight the interpretation of these integers in the context of right and left inverse systems. 

 

Definition 3[20] 

For a given matrix W , the i-th row irw  (resp. the i-th column icw ) is said to be essential if irw  (resp. icw )   is 

not linearly dependent of other rows (resp. other columns). This means that the i-th row irw  (resp. the i-th 

column icw )  cannot be written as a linear combination of other rows (resp. other columns) of W . 

Definition 3 implies that eliminating an essential row or column from a square matrix will decrease its rank by a 

unit. Therefore from the structure of the 
k

M  matrices defined in (11), equation (14) in Theorem 3 can be 

rewritten as: 
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 where ib  and id  are the i-th columns of the matrices B and D  respectively and superscript T  denotes the 

matrix transpose. 

Similar to the left integral inversion, an alternative expression to (16) for 
iR

  in Theorem 4 is as follows: 


















 


R
incolumnessentialanis)

1
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where ic  and id  are the i-th rows of the matrices C and D  respectively. 

 

Definition 5 [19] 

 If the system (1) is right invertible, the integer 
iR

  given by (16) or (18) is called the essential order of the i-th 

output iy . 
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In a similar way, the following definition is given. 

Definition 4 

 If the system (1) is left invertible, the integer 
iL

  given by (14) or (17) will be referred to as the essential order 

of the i-th input iu . 

 

Because the systems considered in this paper are square systems (i.e. with same number m  of inputs as outputs), 

if the system is invertible, both right and left inverses exist, are identical with the integers 
L

  and 
R

  defined in 

(13) and (15) being obviously identical. The integer 
L

  is called the inherent integration by Sain and Massey [3] 

in their proposed “L-integral” inverse systems that reproduce the L-th integral of the inputs to the original 

system. The minimum integral inverse by Kamiyama and Furuta [18] defines a tighter version of this concept 

where the “ ][
L2L1L m

,,   – integral” left inverse system outputs are the 
iL

 -th integral of each input iu  

to the original system. An interpretation of the inherent integration is that any realisation of the inverse of (1) 

requires 
L

  derivatives of at least one component of the output [2]. In a similar way, the definition of the 

][
L2L1L m

,,   – integral left inverse system implies that the reconstruction of each input iu  requires 
iL

  

derivatives of at least one component of the output. 

For square invertible systems, denoting 
RLLR   , the sequence of 

LR  input-output segments are related 

by the equation  

  ][0][0 LRLRLR  ,, uy M   (19) 

 where  
TTTT

LR][0 ](0)(1))([
LR

uuuu ,     (20)

  TTTT
LR][0 ])0((1))([

LR
yyyy ,    (21) 

 and the matrix 
LRM as defined by (11) 

Recalling that the “delay” inverse problem or the associated “integral” inverse problem consists in solving (19) 

for (0)u [21], the definition of the minimum values 
iR

 ; m,,,i 21  in terms of essential rows in the matrix 

LRM  corresponds for each output iy  to  the selection of the linearly independent row associated with the 

minimal delay (or minimum number of integrations) of this output required to solve the integral inverse problem. 

As for the minimum values 
iL

 ; m,,,i 21  associated with essential columns of the matrix 
LRM , these 
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indicate for each input iu , the minimal delay required to reconstruct this input from the outputs in the integral 

inverse problem. These observations lead to the following properties for the inverse systems. 

 

Property 1 

In the left inverse model, when it exists, the essential order 
iL

  of the i-th input component )(tu
i

 as defined by 

(14) or (17) is the highest derivative of at least one component of the output appearing in the reconstruction of 

the i-th input component )(tu
i

. 

 

Property 2 [22] 

In the right inverse model, when it exists, the essential order 
iR

  of the i-th output component )(ty
i

 as defined 

by (16) or (18) is the highest derivative of the i-th output component )(ty
i

 in the inverse model i.e. required for 

the determination of all input components. 

 

Properties 1 and 2 above indicate the number of differentiators required for the realisation of left or right 

inverses and this justifies the structural properties (9) and (10) which the filters must satisfy for the filtered 

inverse to be proper dynamical systems. A bond graph approach to this problem is presented in the next section.  

 

3. BOND GRAPH APPROACH TO FILTERED INVERSION 

3.1 Bond graph based inversion 

A necessary and sufficient condition for a filtered inverse system to exist is obviously that the inverse system 

exists. Bond graph based inversion presented in [14] uses the length of causal paths in the forward model
1
 to 

determine the inverse model when it exists. 

Definition 5  [14] 

 In the forward bond graph model, the length  pl  of an input-output causal path p  is defined as 

     pnpnˆpl DI  , where  pnI  (resp.  pnD ) is the number of energy storage elements in integral (resp. 

derivative) causality met when following the path p . This number determines the net number of integration 

between the input and the output. 

                                                      

1
 Some authors also refer to "forward model" as "direct model" 
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The model inversion procedure is summarised below in the following three steps: 

(i) Determination of a minimal-length set of disjoint input-output causal paths in the forward model. If no set 

of disjoint input-output causal paths exist then the system is not invertible and the procedure ends. 

(ii) Propagation of the bicausal information from the output SS elements to the associated input SS elements 

along the power lines associated with the minimal-length set of disjoint input-output causal paths 

determined in step (i) and extension of their causal implications 

(iii) Causal completion of the bond graph using classical causality assignment procedures such as SCAP [10]. 

 

3.2. Bond graph interpretation of essential orders. 

Various systems structural properties presented through matrix computation in the previous section can be 

derived from a graphical approach using bond graph causality.  

 

Property 3 [23] 

On a forward bond graph model, the essential order of the i-th output iy is given by 

 





m

ij
j

ymi j
lL

1

R ;   m,,,i 21  (22) 

 where mL  is the sum of the lengths of m  shortest disjoint input-output causal paths 

 and 
jyl  is the length of the shortest causal path linking any input component to the output iy . 

(
jyl is also known as the relative degree of the j-th output iy ). 

 

Definition 6  [23] 

 In the inverse bond graph model, the order  p  of an output-input causal path p  is defined as 

     pnpnp ID  , where  pnI  (resp.  pnD ) is the number of energy storage elements in integral (resp. 

derivative) causality met when following the path p . This number determines the net number of derivation 

between the output and the input. 
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Remark 3 

The length and order of causal paths, as given in Definition 5 and 6 above in the context of forward and inverse 

bond graph models respectively, are opposite of each other and defined so that these numbers are non negative 

for physical systems modelled by bond graph. These numbers refer to natural input-output integrations in 

forward models and the associated output-input derivations in inverse models. 

From the Definition 6 above and the remark that the essential order 
iR

  of the i-th output  is the highest 

derivative of the i-th output appearing in the inverse model (Property 2), a property equivalent to Property 3 can 

be stated as follow. 

 

Property 4 [23] 

On the inverse bond graph model, the essential order of the i-th output iy is the highest order of the causal path 

linking the output iy  to any input component.  

Dual version of the above properties related to the essential orders of the inputs can now be stated. 

 

Property 5 

On a bond graph model, the essential order of the i-th input iu  is given by 

 





m

ij
j

umi j
lL

1

L ;   m,,,i 21  (23) 

 where mL  is the sum of the lengths of m  shortest disjoint input-output causal paths. 

 and 
jul  is the length of the shortest causal path linking the j-th input ju  to any output component. 

 

Property 6 

On the inverse bond graph model, the essential order of the i-th input iu  is the highest order of the causal path 

linking any output component to the input iu . 
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3.3 Bond graph based configuration for filtered inversion 

Mathematical models derived from inverse bond graphs obtained from the procedure in section 3.1 are non-

proper as they require differentiators. An alternative to the exact inversion is to consider an approximate or 

filtered inverse by cascading the inverse model with an appropriate pre- or post-filter (or another physical 

system) with appropriate structural dynamic properties so that the overall system is a proper dynamical system. 

In particular for right filtered inverse, the relative degrees 
iR

  of the filters should be at least equal to the 

essential orders 
iR

  of the outputs
2
 and for left filtered inverse the relative degrees 

iL
  of the filters should at 

least equal to the essential order 
iL

  of the inputs: 

 ii RR   ; m,,,i 21  (24) 

 
ii LL

  ; m,,,i 21  (25) 

In the above structural conditions (24) and (25), the case where the filters are chosen so that the relative degrees 

are equal to the essential orders will lead to filtered inverses that are proper with direct transmission terms that 

will carry through the measurement or specification noise. To avoid this, the filters relative degrees should be 

strictly greater than the essential orders so that the filtered inverses are strictly proper.  

Generalising the physical specification based inversion presented in [15] for single-input single-output systems, 

bond graph based configurations for filtered inversion are given in Fig. 1 and Fig. 2 for right and left filtered 

inverse models respectively. In order to represent various possible configurations associated with the type of 

input and output variables (effort or flow), the input  1u  and the output 1y  of the actual system are assumed to 

be effort variables while the input nu  and the output ny of the actual system are assumed to be flow variables. 

For the right filtered inverse configuration (Fig.1), SS : zero elements perform the isolation of the filtered desired 

outputs iyF  which act as input to the inverse of the actual system to compute the filtered or required inputs 
i

u
F

. 

This is done by connecting the SS : zero element to a 1 or 0 junction if the output is an effort of a flow variable 

respectively. As for the left filtered inverse configuration (Fig. 2), the isolation of the output of the exact inverse 

model for post-filtering is done using a unit effort amplifier AE or a unit flow amplifier AF depending whether 

the input is an effort or a flow variable respectively.  

                                                      

2 In the context of specification based (or right filtered) inversion in [15], the structural condition that the relative degree of the right filter 

should be greater than the relative degree of the system is true for monovariable systems but not necessarily for multivariable systems. 
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As a reminder, the SS-element is a non-standard bond graph element that generalises and replaces sources and 

sensors elements to enable flexible causality assignments associated with various computational problems. Non-

standard AE and AF elements are two-port interpretation of active bonds associated with effort and flow 

variables. Their constitutive equations ensure that the power flow is zero and the introduction of these elements 

by Gawthrop [11,13] proved to be very convenient in the context of bicausal bond graphs. Details on these 

elements are also given in [15]. 

 

Remark 4 

Because the right inverse is used to determine an input required to achieve a desired output for the actual system, 

in Fig. 1, the Filter_Ri can also be referred to as Specification Systems and the inverse problem under 

consideration will then be that of determining the inputs to the actual system so that its outputs behave like the 

outputs of the Specification  Systems subject to the inputs ius  [15]. 

 

3.4 Mathematical models from bond graph based right filtered inverse 

Mathematical equations derived from the bond graph configurations in Fig. 1 and Fig. 2 are not readily available 

in the form of standard state space equations (1) and require some symbolic manipulations to be rewritten in this 

form. The right filtered inverse model derived from the composite bond graph in Fig.1 can in the first instance be 

written as  
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x

bxx

C

A
; m,,,i 21  (26b) 

Equations (26a) represent the inverse model of the actual system where Fu  is the vector of filtered inputs to be 

calculated, x  is the minimal-order state vector (associated with energy storage elements that remain in integral 

causality in the inverse bond graph), 
)(

F
k

iy  are the derivatives of the outputs from the chosen filters (or 

specification systems), matrices A , C  and vectors ikb , ikd  are of appropriate dimensions and obtained from 

the inverse bond graph model. Equations (26b) represent the state-space model of the so-called Filter_Ri; 
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m,,,i 21  with iRx  the state vectors, matrices iRA , iRC  and vector iRb  are of appropriate dimensions and 

derived from the bond graph model of each Filter_Ri. Equations (26a) are conveniently written so that the 

derivatives of the outputs from the filters 
)(

F
k

iy  appear explicitly. 

To rearrange the set of equations (26a) and (26b) into the standard state space representation, if the filters are 

chosen so that the structural condition (24) i.e. 
ii RR

  ; m,,,i 21  are satisfied, then all the successive 

derivatives 
)(

F
k
iy ;   

i
,,,k

R
21   can be obtained from (26b) as functions of the state variables 

iR
x  and 

eventually the input 
i

y  and substituted into (26a). The state equation of the right filtered inverse may then be 

written as 
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In (27), the last summation terms 



m

i

iiii y
Ri

Ri

Ri

1

R

1

RR 


 bb AC  in the expression of x  and the direct transmission 

term 



m

i

iiii y
Ri

Ri

Ri

1

R

1

RR 


 bd AC  in the expression of 
F

u  are present only in the case where 
ii RR

  . 

 

3.5 Mathematical models from bond graph based left filtered inverse 

For the left filtered inverse model in Fig. 2, the equations that are derived from the composite bond graph model 

can be written in the first instance as 
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Equations (28a) represent the inverse model of the actual system written for convenience in a different form to 

that of equations (26a). In this case, individual inputs iu  are expressed explicitly. Equations (28b) represent the 

state-space model of the Filter_Li; m,,,i 21 . Substituting the expression of 
i

u  from (28a) into the first line 

of (28b) and combining the state vector of the inverse system and that of the filters leads to the mathematical 

model that can be written as 
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where the block partitioned vectors and matrices are 
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Equation (29) still contains the derivatives of the inverse model inputs ( )k(
y  in this case) despite the overall 

model being a priori a proper dynamic system if the structural condition (25) is met. From the configuration in 

Fig.2, this situation arises from the structure of the system where the derivatives )k(
y  from the exact inverse 

model are integrated in a latter stage through the left filters Filter-Lis. To transform (29) into a state space 

equation model that does not contain any time derivative of the inputs, the following lemma is proposed which is 

a generalisation of the procedure for the elimination of time derivatives of inputs presented in [24] in the case of 

forward model containing a first order derivative of the input. 

 

Lemma 1 

Consider a system with input )(ty  and output )(tu  described by the equations 
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where the output matrix C is so that 0BAC 
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 for 121  p,,,i    (32) 
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The state transformation 
 




1-p

0i

i-p

1j

ij
j ttt )(-)()( )(1 i

yxz BA  (33) 

leads to the following dynamical state equation form that does not contain any time derivative of the inputs 
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The proof of this lemma is given in the Appendix A. 

 

If the left filters Filter-Li are chosen so that the structural conditions (25) i.e. ii LL   ; m,,,i 21  are 

satisfied, then  from (28b), 0A i
j
ii L
1-

LL bc  for i,,j L1   and for this reason, it can easily be verified the 

matrices A
~

, 
k

~
B  and C

~
 in (30) associated with the equation (29) are so that 0BAC 
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121 L  i,,,i   (i.e. condition (32) in Lemma 1 is satisfy).  

Therefore, applying the state transformation (33) 
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to the left filtered inverse model (29) leads to the standard state equation without the need for input 

differentiators 
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4. EXAMPLE  

In this section, an illustrative example is presented for a two-input two-output linear system. Consider the 

electrical circuit given in Fig. 3 where the inputs are the voltage source 
1

u and the current source 
2

u  and the 
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outputs are chosen as the voltage 
1

y  across the capacitor 
1

C  and the current 
2

y  through the inductor 
2

L . The 

(forward) bond graph model of the system is shown in Fig. 4 and the inverse bond graph obtained from applying 

the procedure proposed in [14] is given in Fig. 5. The minimal-order inverse model directly derived from the 

inverse bond graph in Fig. 5 is given by (37) where the unique state variable 2q  is the energy variable (charge) 

of the capacitor 2C . Because of the differentiators required for the realisation of this model, its numerical 

implementation is not easy and both the right and left filtered inverse models which are approximate but proper 

will be considered in the sequel. 
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  (37) 

 

4.1 Right filtered inverse 

From the forward bond graph model in Fig. 4, it can easily be seen that the sum of the lengths of the 2 shortest 

disjoint input-output causal paths is 3
2
L  (length 2 between 1u  and 1y  and length 1 between 2u  and 2y ). 

However the length of the shortest causal path linking any input component to the outputs (or relative degrees) 

as defined in Property 3 are respectively  1
1


y

l  (between 2u  and 1y  via 
1

C ) and 1
2


y

l  (between 2u  and 2y  

as indicated in Fig.4). It can therefore be deduced that the essential orders of the outputs as defined in (22) are 

respectively 2
1R
  and 2

2R
 . This result can also be derived from the inverse bond graph in Fig. 5 using 

Property 4 where the highest order of the causal path linking the outputs to any input component can be verified 

to be respectively 2
1R
  and 2

2R
 . In the reduced inverse model (37), it can also be seen that the highest 

derivation order of the output 
1

y  is 2 and that of  
2

y  is also 2 which coincide with the outputs essential orders 

1R
  and 

2R
  (Property 2). 

Therefore, the relative degrees of the right filters Filter_R1 and Filter_R2 (or any performance specification 

systems on the outputs 1y  and 2y ) in Fig. 1 should be at least 2 for each output if the overall filtered inverse 

system dynamic is to be proper.  
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In this example, the right filters Filter_Ri or specification systems are chosen as RLC circuits in serial or parallel 

configurations and driven by voltage or current sources with the output selected so as to match the effort or flow 

variable type of the output and to satisfy the relative degree conditions (23). The overall right filtered inverse 

configuration is given in Fig. 6.  

For the purpose of the illustration, if all physical parameters (of the actual system and the filters) are set equal to 

one, the equations of the right filtered inverse model derived from the bond graph configuration in Fig. 6 can be 

written, after symbolic manipulations to perform the substitution of the derivatives of the outputs, as follows 
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  (38) 

with  T

22s2s1s1s

T ][ qpqqpx associated with the energy variables indicated in Fig. 6; T

21

T ][ yyy   and 

T

2F1F

T

F
][ uuu  

This system is proper and can be numerically implemented without difficulty. If for instance the inputs to the 

Filter_Ri or specification systems 
1

y  and 
2

y are set as unit step inputs, the right inverse problem considered is 

therefore that of computing the inputs 
1F

u  and 
2F

u  so that the outputs of the actual system in Fig. 3 behave like 

the outputs of the RLC specification systems subject to unit step inputs. With all parameters set to one and unit 

step inputs 
2

y  starting at s1t  and 
1

y  starting at s10t , the simulation results are shown in Fig. 7 and 8. 

Fig. 7 shows the step input 
2

y to the specification system 2 and the output of this system 
2F

y which is the 

desired output of the actual system (the input 
1

y and the desired output 
1F

y  are identical to 
2

y  and 
2F

y  but 

starting at s10t ).  Fig. 8 shows the computed inputs 
1F

u  and 
2F

u  to achieve the outputs 
1F

y  and 
2F

y . 

 

4.2 Left filtered inverse 

As previously noticed, the sum of the lengths of the 2 shortest disjoint input-output causal paths is 3
2
L  and it 

can now be seen from the forward bond graph model in Fig. 4 that the length of the shortest causal path linking 
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the input to any output component are respectively  2
1
ul  and 1

2
ul . Therefore the essential orders of the 

inputs as defined in (23) are respectively 2L1   and 1L2  .  

This result can also be derived from the inverse bond using Property 6 where the highest order of the causal path 

linking any output component to the inputs )(
1

tu  and )(
2

tu  can be verified to be respectively 2L1   and 

1L2  . It can also be seen from the inverse model equation (37) that input essential orders coincide with the 

highest derivative of the output components appearing in the i-th input component )(tui  (Property 1). 

In this case, to satisfy the structural conditions (25), the left filters chosen are a RLC circuit with a relative order 

2
1L
  for the input )(

1
tu  and a RL circuit with a relative order 1

2L
  for the input )(

2
tu . The overall left 

filtered inverse configuration is given in Fig. 9.  

For the purpose of the illustration, all physical parameters for the actual system and for the filters are again set 

equal to one.  The equations of the left filtered inverse derived from the bond graph configuration in Fig. 8 can 

be written after some simple symbolic manipulations as follows 
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with 
T

2F1F1F2

T ][ pqpqx  associated with the energy variables indicated in Fig. 9; T

21

T ][ yyy   and 
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2F1F

T

F
][ uuu   

 and 





























1001

0010

0111

0001

A ; 





















10

00

01

00

0
B ; 





















10

00

00

10

1
B ; 





















00

00

11

00

2
B ; 










1000

0100
C  

Equation (39) contains the derivatives of the inputs to the inverse system and this can cause problems in their 

numerical implementation. To overcome this issue, the state vector transformation   y-yxz 
221

- BABB   

according to (33) in Lemma 1 is performed on the model (39) and leads to the state equations in the standard 

form of a proper dynamical system 
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Now assume that the computed inputs 
1F

u  and 
2F

u  from the right filtered inverse (Fig. 8) are applied to the 

actual system in Fig.3 and consider the problem of reconstructing these inputs from the measurement of the 

outputs 
1

y  and 
2

y of the actual system. To emphasize the merit of the filtered inverse, the exact inverse model 

(37) with derivative blocks was first cascaded with the actual system and implemented in the Simulink
®

 

environment. While it was possible to reconstruct the input 
2F

u  (Fig.10b) in this manner, numerical instabilities 

prevented the reconstruction of 
1F

u  (Fig.10a). It is certain that adding any measurement noise to the output of 

the actual system will increase the numerical instability problem and make it more difficult to reconstruct any of 

the outputs including 
2F

u . 

The above left filtered inverse model (40b), with all filters parameters set to one, was then cascaded with the 

actual system and the reconstructed inputs are shown in Fig. 11.  Although there are no numerical issues with 

this simulation, the reconstruction of the input 
1

u  is relatively inaccurate (Fig.11a) while there is a noticeable 

phase lag for the input 
2

u  (Fig.11b). These results are due to the choice of the parameters of the filters that 

imposes a too low band pass to the left filtered inverse model. To improve the accuracy of the inputs 

reconstruction, a different set of parameters was chosen for the filters as indicated in Table 1, referring to bond 

graph model in Fig.9 

F0010
1F

.C   H10
1F

.L   Ω100
1F
R  H0010

2F
.L   Ω1

2F
R  

Table 1. Alternative set of parameters for the filters of the left filtered inverse model in Fig.9 

With the set of parameters in Table 1, the simulation results are presented in Fig.12 indicating that the left 

filtered inverse model in this case reconstructs the inputs relatively well. 

 

5. DISCUSSION  

The filtered inversion technique presented in this paper enables to formally obtain an approximate right or left 

inverse model that is dynamical and does not require differentiators for its realisation. As demonstrated in the 
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example in section 4, there are two separate issues that are to be considered: (i) the structural properties of the 

filters in terms of their relative degrees compared to the essential orders as given by (24) & (25) and (ii) the 

choice of numerical parameters for the filters that will depend on the model inputs. 

Although the method presented can be applied independently of the bond graph representation, it is clear that 

this modelling tool provides a convenient framework for the structural analysis and also lends itself to the 

extension of the methodology to nonlinear systems. In section 2, classical approach to system inversion and 

filtered inversion are presented for linear systems using state space and transfer function representation. 

However, the bond graph interpretation of the associated concepts in section 3.1 to 3.3 does not necessarily 

assume the linearity of the bond graph model.  

Even if the system is nonlinear, right filtered inversion or specification-based inversion as it was called in [15] 

can still be applied using bond graph representation. In this case, the Filter_Ris or specification systems in Fig. 1 

will be the bond graph models of given linear or nonlinear systems that meet the structural property (24) and 

prescribe the desired performance of the actual system. Mathematical models symbolic manipulations from (26) 

to (27) presented for the linear case can also be performed, if allowed by the type of nonlinearities, to eliminate 

the derivatives of the outputs in the final state space model. Also, the choice of the numerical parameters for the 

specification system in the right inversion is less constrained as it is dictated by the desired output performance 

of the actual system for which the designer would like to determine the associated input. 

For left filtered inverse, given that the problem is to reconstruct the inputs from the measured outputs, the choice 

of the numerical parameters for the Filter_Lis is very important for good approximation of the inputs. These 

have to take into consideration not only the assumed frequency spectrum of the system inputs but also the noise 

level that may affect the measurement. If the actual system is nonlinear, the symbolic manipulations to get the 

mathematical model in the form similar to (29) with the derivatives of the outputs are feasible. However, the 

kind of state transformation proposed in Lemma 1 to eliminate the derivatives of the outputs is not obvious in the 

nonlinear case. Although, a procedure to eliminate a first order derivative of the input from a nonlinear 

mathematical model with a certain format is proposed in [24], the extension to higher order derivatives of the 

inputs as it would be the case with inverse models could be the topic for further research. 

 

6. CONCLUSIONS 

A problem associated with exact inverse models is that they generally require differentiators for their realisation 

leading to numerical implementations that are usually computationally inefficient. To address this issue for 
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physical systems, bond graph based filtered inverse models are proposed in this paper as a method to derive 

approximate inverse that are proper dynamical models. Using bond graph representation, it has been shown that 

some structural analysis can be performed on the original system to determine the properties of the filters to be 

cascaded with the original system to obtain approximate inverses that are proper. Bond graph based 

configurations to represent filtered inverse models that enable the automated generation of inverse model 

equations are proposed. It is however noted that the equations generated require some symbolic manipulations 

and some state transformation in the case of left filtered inverse in order to get the standard state space model 

without the derivatives of the inputs. The extension of the proposed methodology to nonlinear systems is 

discussed and while there are no major issues with the right filtered inversion, further work needs to be done for 

left filtered inversion. 
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APPENDIX A - Proof of Lemma 1 

Consider a system with input )(ty  and output )(tu  described by the equations 
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With the state transformation  
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Deriving the new state vector )(tz with respect to time and substituting the expression of )(tx  from (A1) lead to 
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The terms with index 1j  in the last double summation cancel the second summation term in (A3) except for 

the term )(
0

tyB and therefore (A3) can be simplified into 
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Replacing the expression of )(tx  obtained from (A2) into (A4) gives 
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This reduces to  
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Substituting the expression of )(tx  obtained from (A2) into the output )()( tt xu C  from (A1) gives 
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And under the assumption that 0BAC 
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 for 121  p,,,i  , the output can therefore be written as 
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List of figure captions 

 

Fig. 1 Right filtered inverse bond graph configuration (for the actual system, 1u  and 1y  are assumed to be effort 

variables while nu  and ny  are assumed to be flow variables). Relative degree 
iR

  of  Filter_Ri should be at 

least equal to the essential order 
iR

  of the output iy  

 

Fig. 2 Left filtered inverse bond graph configuration (for the actual system, 1u  and 1y  are assumed to be effort 

variables while nu  and ny  are assumed to be flow variables). Relative degree 
iL

  of  Filter_Li should be at 

least equal to the essential order 
iL

  of the output iu  

 

Fig. 3 An electrical circuit example 

 

Fig. 4 Forward bond graph model of the electrical circuit in Fig. 3 with minimal length disjoint input-output 

causal paths indicated 

 

Fig. 5 Inverse bond graph model of the electrical circuit in Fig. 3 with highest order output-input causal paths 

indicated 

 

Fig. 6 – Right filtered inverse model configuration 

 

Fig. 7 – Right filtered inverse simulation results: step inputs 1y  and 2y  to the Filters or specification systems 

and resulting prescribed outputs 1Fy  and 2Fy  for the actual system. 

 

Fig. 8 – Right filtered inverse simulation results: computed inputs 1Fu  and 2Fu  to be applied to the actual 

system in order to achieve the desired filtered outputs 1Fy  and 2Fy  in Fig. 7 

 

Fig. 9 – Left filtered inverse model configuration 

 

Fig. 10 – Response of the exact inverse model cascaded with the actual system to reconstruct the inputs (with all 

parameters set to one) –  (a) Reconstruction of input 1Fu  and (b) Reconstruction of input 2Fu  

 

Fig. 11 – Response of the left filtered inverse cascaded with the actual system to reconstruct the inputs (with all 

parameters set to one) – (a) Reconstruction of input 1Fu  and (b) Reconstruction of input 2Fu  

 

Fig. 12 – Response of the left filtered inverse cascaded with the actual system to reconstruct the inputs (with 

parameters given in Table 1) – (a) Reconstruction of input 1Fu  and (b) Reconstruction of input 2Fu  
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iR

  of the output iy  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Left filtered inverse bond graph configuration (for the actual system, 1u  and 1y  are assumed to be effort 

variables while nu  and ny  are assumed to be flow variables). Relative degree 
iL

  of  Filter_Li should be at 

least equal to the essential order 
iL

  of the output iu  

 

 

f=0 

e=0 

1F
: uSS

nuF:SS

...

model) (inverse
system Actual

AE

AF

1

0 1
: ySS

ny:SS

 

1
y

n
y

1
: uSS

nu:SS

1
u

nu

Filter_L1 Filter_Ln 

0

e=0 

f=0 

e=0 

f=0 

1s1 or: uySS
nn uy sor:SS

zero:SSzero:SS

1F
: uSS

nuF:SS
model) (inverse

system Actual

e=0 

f=0 

1F
y

nyF

...

1

1 0



Filter_R1 

or 
Specification 

System 1 

Filter_Rn 

or 
Specification 

System n 
 



 28 

 

 

 

 

 

 

 

Fig. 3 An electrical circuit example  

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Forward bond graph model of the electrical circuit in Fig. 3 with minimal length disjoint input-output 

causal paths indicated 

 

 

 

 

 

 

 

 

 

Fig. 5 Inverse bond graph model of the electrical circuit in Fig. 3 with highest order output-input causal paths 

indicated 

 

 

 

u1

 

u2

 

C2

 

C1

 

A

 

y2

 

L1

 

L2

 

R

 

v

 

y1

1u

1L 2u

1C
2L

2C

R

1y

2y

 

f

 

e

 

1

 

R

 

C

 

C

 

0

 

0

 

1

 

1

 

1

 

I

 

I

 

MSf

 

MSe 1u: 2u:
2y:Df1y:De

1L:
2L:

2C:
1C:

R:

1p
1q

2q

2p

 

f

 

e

 

1

 

R

 

C

 

C

 

0

 

0

 

1

 

1

 

1

 

I

 

I

 

MSf

 

MSe
2u:

1L:
2L:

2C:
1C:

R:

SSSS
1y:SS

2y:SS
1u:

2q



 29 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 – Right filtered inverse model configuration 
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Fig. 7 – Right filtered inverse simulation results: step inputs 1y  and 2y  to the Filters or specification systems 

and resulting prescribed outputs 1Fy  and 2Fy  for the actual system 
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Fig. 8 – Right filtered inverse simulation results: computed inputs 1Fu  and 2Fu  to be applied to the actual 

system in order to achieve the desired filtered outputs 1Fy  and 2Fy  in Fig. 7 
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Fig. 9 – Left filtered inverse model configuration 
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Fig. 10 – Response of the exact inverse model cascaded with the actual system to reconstruct the inputs (with all 

parameters set to one) –  (a) Reconstruction of input 1Fu  and (b) Reconstruction of input 2Fu  
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Fig. 11 – Response of the left filtered inverse cascaded with the actual system to reconstruct the inputs (with all 

parameters set to one) – (a) Reconstruction of input 1Fu  and (b) Reconstruction of input 2Fu  
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Fig. 12 – Response of the left filtered inverse cascaded with the actual system to reconstruct the inputs (with 

parameters given in Table 1) – (a) Reconstruction of input 1Fu  and (b) Reconstruction of input 2Fu  

 


