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Abstract 

A method of preparing enantiopure hydroxy--butyrolactones containing multiple contiguous 

stereocentres in high yield with good diastereoselectivity has been developed. Osmium 

tetroxide mediated dihydroxylation of a range of -alkenyl--hydroxy-N-acyloxazolidin-2-

ones results in formation of triols that undergo spontaneous intramolecular 5-exo-trig 

cyclisation reactions to provide hydroxy--butyrolactones. The stereochemistry of these 

hydroxy--butyrolactones has been established using NOE spectroscopy, which revealed that 

1-substituted, 1,1-disubstituted, (E)-1,2-disubstituted, (Z)-1,2-disubstituted, and 1,1,2-

trisubstituted alkenes undergo dihydroxylation with anti-diastereoselectivity, whilst 1,2,2-

trisubstituted systems afford syn-diastereoisomers. The synthetic utility of this methodology 

has been demonstrated for the asymmetric synthesis of the natural product 2-deoxy-D-

ribonolactone. 



Introduction 

Enantiomerically pure trisubstituted -butyrolactones are found as fragments in a large 

number of natural products that display a broad range of biological activities
1
 and a wide 

range of methodology has been developed for their asymmetric synthesis.
2
 Hydroxy--

butyrolactones represent an important subset of this type of natural product
3
 and they have 

also been shown to be important chiral building blocks for natural product synthesis.
4
 For 

example, Nicolaou et al. have employed a substituted 5-hydroxy--butyrolactone as an 

intermediate for the synthesis of the antibiotic abyssomicin C.
4c

 Shioiri et al. also employed a 

trisubstituted -butyrolactone as a key intermediate for the stereoselective synthesis of the 

C20-C25 subunit of calyculin A.
4f

 Chamberlin et al. used functionalised hydroxy--

butyrolactones as key chiral building blocks for the enantioselective synthesis of the 

polyketide 9S-dihydroerythronolide A seco acid.
4g

  

 

A number of asymmetric methods exist for the synthesis of highly substituted hydroxy--

butyrolactones,
5
 with a number of these approaches based upon the diastereoselective 

reaction of substituted enolates with appropriately substituted electrophiles. For example, 

Johnson et al. prepared substituted silyl-protected 3-hydroxy--butyrolactones via double 

Reformatsky reactions, which involved reaction of a zinc propionate enolate with silyl 

glyoxylates to afford a new zinc enolate intermediate that then reacts further with an aryl 

ketone electrophile.
5d

 Baba et al. have shown that indium enolates of -substituted--bromo 

esters undergo diastereoselective Reformatsky reactions with -hydroxy ketones to form 3-

hydroxy--butyrolactones that contain three contiguous stereocentres in good yield and with 

high diastereoselectivity.
5i

 Luo and Gong et al. prepared trisubstituted 2-hydroxy--



butyrolactones by performing enantioselective aldol reactions between ketones and -keto 

acids using a proline derived organocatalyst, with subsequent diastereoselective reduction of 

the resulting ketone functionality to afford the desired -butyrolactones with high levels of 

diastereocontrol.
5f

 

 

Another common method of forming highly substituted hydroxy--butyrolactones is through 

dihydroxylation of ,-unsaturated carbonyl systems, with spontaneous intramolecular ring-

closure then occurring to afford a -butyrolactone skeleton. For example, Woerpel et al. 

carried out osmium tetroxide (OsO4) catalysed directed dihydroxylation reactions of -

hydroxy-,-unsaturated acids to afford hydroxy--butyrolactones as single diastereoisomers 

in good yield.
5c

 Brückner et al. have used Sharpless asymmetric dihydroxylation reactions of 

disubstituted
5m

 and trisubstituted
5g

 ,-unsaturated esters to prepare substituted 3-hydroxy--

butyrolactones in reasonable yield with low to moderate levels of enantiomeric excess (ee). 

Jenkinson et al. prepared synthetically useful and highly functionalised sugar-lactones using 

directed osmium dihydroxylations of chain extended ribulose and erythrose derivatives.
5b

 

 

We have previously reported that -alkenyl--hydroxy-N-acyloxazolidin-2-ones (1) undergo 

efficient epoxidation/lactonisation reactions with catalytic VO(acac)2 and a stoichiometric 

equivalent of tert-butylhydroperoxide to afford hydroxy--butyrolactones (3) (Scheme 1). It 

is proposed that an unstable epoxide (2) is generated with high levels of diastereocontrol, 

which is then ring-opened by intramolecular nucleophilic attack of the exocyclic carbonyl 

fragment that gives clean inversion of configuration at the C5 position. Hydrolysis of the 



resulting iminium species affords a highly functionalised hydroxy--butyrolactone skeleton 

containing multiple contiguous stereocentres.
6
 

 

Scheme 1. Epoxidation/lactonisation sequence with inversion of configuration at C5 to form a hydroxy--

butyrolactone 3 containing three contiguous stereocentres. 

 

As this epoxidation/lactonisation sequence leads to inversion of configuration at the C5 

position, it was decided to investigate an osmium catalysed dihydroxylation/lactonisation 

protocol in order to access complementary diastereoisomers of this type of hydroxy--

butyrolactone (Scheme 2). For example, dihydroxylation of the alkene fragment of the 

generic aldol substrate 1 with anti-diastereoselectivity to its -hydroxyl group would afford a 

triol (5), which would spontaneously lactonise to afford a diastereomeric hydroxy--

butyrolactone.  

 

 



 

Scheme 2. Proposed dihydroxylation/lactonisation of unsaturated aldols (1) to produce hydroxy--

butyrolactones (6). 

 

Therefore, we now report herein a highly diastereoselective dihydroxylation based approach 

for the synthesis of functionalised hydroxy--butyrolactones containing multiple contiguous 

stereocentres, where the major diastereoisomer of the lactone produced is controlled by the 

alkene substitution pattern. 

 

Results and Discussion 

The configuration of hydroxy--butyrolactone 3, formed from the epoxidation/lactonisation 

reaction of aldol 1a had previously been unequivocally assigned as (3S,4S,5S) using X-ray 

crystallographic analysis. Consequently, it was decided to investigate the corresponding 

dihydroxylation/lactonisation reaction of aldol 1a to confirm that a different diastereoisomer 

of hydroxy--butyrolactone would be produced. Therefore, unsaturated aldol 1a
7
 was treated 

under standard Upjohn conditions
8
 with 10 mol% OsO4 and N-methylmorpholine-N-oxide 

(NMO) in acetone:H2O (8:1) at room temperature to produce a new hydroxy--butyrolactone 

6a in 69% yield and in >49:1 dr (Scheme 3a). 
1
H NOE spectroscopic analysis of 6a showed a 

strong interaction between the C3 proton and the methylene protons of the C5 ethyl group, as 

well as a strong interaction between the C4 proton and the C5 CH2OH methylene protons 

(Scheme 3b), indicating a (3S,4S,5R) configuration. This assignment is consistent with the 



expected suprafacial dihydroxylation of unsaturated aldol 1a with anti-diastereoselectivity 

with respect to its -hydroxyl group. Thus, whilst our previously reported 

epoxidation/lactonisation sequence produces (3S,4S,5S)-hydroxy--butyrolactone 3, this 

dihydroxylation/lactonisation sequence provides its complementary C5 diastereoisomer (6a) 

in high dr. 

 

 

Scheme 3. a) Dihydroxylation/lactonisation of unsaturated aldol 1a to form hydroxy--butyrolactone 6a. b) 

Strong 
1
H NOE interactions in -butyrolactone 6a confirm a (3S,4S,5R) configuration. 

 

To further investigate the scope and effect of the alkene substitution pattern on the 

stereochemical outcome of this dihydroxylation/lactonisation protocol, a series of syn-aldols 

(1b-j) was prepared in good yield and high dr by reaction of the boron enolate of 5,5-

dimethyl-N-propionyl-oxazolidin-2-one (7a) with the corresponding ,-unsaturated 

aldehydes (Scheme 4).
7
 These syn-aldols (1b-j) were then treated with 10 mol% OsO4 and 

NMO in acetone:H2O (8:1) at room temperature to afford a series of hydroxy--

butyrolactones (6b-j) in good yield and generally high diastereoselectivity (Table 1, entries 1-

9). 



 

Scheme 4. SuperQuat auxiliary directed synthesis of unsaturated syn-aldols (1). 

Reaction of 1,1-disubstituted aldol 1b, which contains a terminal O-benzyl substituent, with 

10 mol% OsO4 and NMO proceeded with good levels of anti-diastereoselectivity to form 

hydroxy--butyrolactone 6b in high yield (Table 1, entry 1). The stereochemistry of hydroxy-

-butyrolactone 6b was unequivocally assigned as (3S,4S,5R) via X-ray crystallographic 

analysis (see supporting information). The terminal O-benzyl fragment of this type of lactone 

makes it particularly useful as a bifunctional synthetic building block for the synthesis of 

polyketide inspired synthetic targets.
9
 The stereochemistry of the remaining lactones (6) was 

determined by 
1
H NOE spectroscopic analysis as well as by comparison with literature 

precedent for each of the different substitution patterns (see below). 

 



Table 1. Dihydroxylation of aldols 1b-k to afford hydroxy--butyrolactones 6b-k. 

Entry Aldol (1b-k) 
Triol (5b-k)  

(not isolated)
a
 

Lactone (6b-k)
a,b 

dr
c 

Yield (%)
d 

1 

 
 

 

10:1 93 

2 

   

3:1 79 

3 

   

9:1 81 

4 

  
 

5:1 83 

5 

   

4:1 77 

6 

 
  

2:1 74 

7 

  
 

>49:1 82 

8 

   

>49:1 93 

9 

  
 

5:1 41 

10 

   

9:1 75 

a
Major diastereoisomer formed. 

b
Configuration of hydroxyl--butyrolactones confirmed by 

1
H NOE 

spectroscopic analysis. 
c
Determined by analysis of the crude 

1
H NMR spectra. 

d
Yields after purification by 

column chromatography. 



The dihydroxylation/lactonisation reaction of acrolein aldol 1c was less diastereoselective, 

giving a 3:1 mixture of diastereoisomers, with the major diastereoisomer (6c) being formed 

from dihydroxylation with anti-diastereocontrol in 79% yield (Table 1, entry 2). It was found 

that (E)-1,2-disubstituted aldols derived from cinnamaldehyde and crotonaldehyde (1d and 1e 

respectively) underwent dihydroxylation with greater levels of anti-diastereoselectivity to 

give hydroxy--butyrolactones 6d (9:1 dr) and 6e (5:1 dr) in good yields (Table 1, entries 3 

and 4). Pleasingly, the (E)-1,2-disubstituted aldol 1f containing an O-benzyl group also 

underwent dihydroxylation/lactonisation under standard Upjohn conditions to form the 

hydroxy--butyrolactone 6f in 77% yield with 4:1 diastereoselectivity (Table 1, entry 5). The 

related (Z)-1,2-disubstituted O-benzyl aldol 1g was found to undergo dihydroxylation with 

poor levels of anti-diastereoselectivity (2:1 dr), with the corresponding hydroxy--

butyrolactone 6g being formed with the opposite C6 configuration to that observed for (E)-

1,2-disubstituted aldol 1f (Table 1, entry 6). Reaction of (E)-1,1,2-trisubstituted aldol 1h 

under standard dihydroxylation/lactonisation conditions proceeded with excellent levels of 

anti-diastereoselectivity to afford hydroxy--butyrolactone 6h in 82% yield as a single 

diastereoisomer (Table 1, entry 7). The related O-benzyl (E)-1,1,2-trisubstituted aldol 1i also 

underwent dihydroxylation/lactonisation with similar levels of high anti-diastereoselectivity, 

providing the synthetically useful O-benzyl--butyrolactone 6i in 93% yield as a single 

diastereoisomer (Table 1, entry 8). However, the reaction of 1,2,2-trisubstituted aldol 1j 

derived from 3-methyl-2-butenal proceeded with reduced diastereoselectivity, with the major 

hydroxy--butyrolactone 6j diastereoisomer having the opposite configuration at C5 to that 

observed for the previous examples. Therefore, it follows that the 1,2,2-trisubstituted aldol 1j 

must preferentially undergo dihydroxylation syn to its -hydroxyl group (5:1 dr) before 

lactonisation to afford (3S,4S,5R)-hydroxy--butyrolactone 6j in 41% yield (Table 1, entry 9). 

We then decided to investigate the effect of varying the -substituent of the unsaturated aldol 



on the dihydroxylation/lactonisation reaction. The -phenyl 1,1-disubstituted aldol 1k was 

prepared using our standard boron aldol protocol and subjected to the standard 

dihydroxylation/lactonisation conditions. It was found that -phenyl aldol 1k underwent 

dihydroxylation with good levels of anti-diastereoselectivity (9:1 dr), allowing the 

corresponding hydroxy--butyrolactone 6k to be isolated in 75% yield (Table 1, entry 10).  

 

Whilst the vast majority of alkene substitution patterns gave high levels of 

diastereoselectivity for our dihydroxylation/lactonisation sequence, the (Z)-1,2-disubstituted 

aldol 1g gave a 2:1 mixture of lactone diastereoisomers. In an attempt to improve the 

diastereoselectivity, (Z)-1,2-disubstituted aldol 1g was reacted under Sharpless asymmetric 

dihydroxylation conditions using both AD-mix- and AD-mix- (Scheme 5a and b).
10

 

Remarkably, the ‘mismatched’ reaction of (Z)-1,2-disubstituted aldol 1g with AD-mix- 

resulted in dihydroxylation/lactonisation with reversal of diastereoselectivity compared with 

the reaction using the standard Upjohn conditions. The hydroxy--butyrolactones (6g and 8) 

were obtained in 95% yield as a 4:1 mixture of diastereoisomers, with the major lactone (8) 

being formed as the result of dihydroxylation with syn-diastereoselectivity with respect to the 

-hydroxyl group of 1g (Scheme 5a). This facial selectivity is consistent with that observed 

previously by Sharpless et al. for reaction of a simplified (Z)-O-benzyl allylic alcohol with 

AD-mix-.
11

 Pleasingly, the use of AD-mix- resulted in ‘matched’ enhancement of the 

diastereoselectivity observed for dihydroxylation under Upjohn conditions, affording the 

hydroxy--butyrolactones (6g and 8) in 95% yield as a 17:1 mixture of diastereoisomers 

(Scheme 5b). In this case the major diastereoisomer (6g) obtained is the result of 

dihydroxylation with anti-diastereoselectivity relative to the -hydroxyl group of 1g, which is 



again consistent with the results obtained by Sharpless et al. using AD-mix- on related 

substrates. 

 

Scheme 5. Effect of using Sharpless asymmetric dihydroxylation conditions. 

 

Finally, in order to demonstrate the synthetic utility of our dihydroxylation/lactonisation 

protocol we decided to apply it to the synthesis of 2-deoxy-D-ribonolactone (11),
12

 which is a 

byproduct of oxidatively damaged DNA.
13

 2-Deoxy-D-ribonolactone (11) has also been 

shown to be a useful synthetic precursor,
14

 whilst its nucleoside derivatives are of structural 

interest because they can potentially act as universal bases and non-hydrogen bonding 

isosteres of nucleobases for chemical biology applications.
15

 Therefore, the boron enolate of 

-chloropropionyl-N-acyl-oxaolidin-2-one 7c was reacted with acrolein to afford syn-aldol 9 

in a 45% yield and in >95% de. Treatment of the -chloro--vinyl-aldol 9 with zinc dust and 

ammonium chloride in methanol resulted in dechlorination, providing the desired allylic 

alcohol 10 in 82% yield.
16

 The dechlorinated alcohol 10 was then subjected to the standard 

Upjohn dihydroxylation/lactonisation conditions, to afford 2-deoxy-D-ribonolactone (11) as a 

9:1 mixture of diastereoisomers in 87% yield (Scheme 6),
17

 whose spectroscopic data was 

consistent with that reported previously.
12 



 

Scheme 6. Asymmetric synthesis of 2-deoxy-D-ribonolactone (11). 

 

Assignment of Stereochemistry 

There are many literature examples of directed dihydroxylation reactions of allylic alcohols, 

with selected examples of dihydroxylations of allylic alcohols with various substitution 

patterns shown in Scheme 7.
18

 Several stereochemical models have been proposed to 

rationalise the observed diastereoselectivity in dihydroxylation reactions of allylic alcohols, 

most notably the models described by Kishi, Houk and Vedejs.
19-22

 



 

Scheme 7. Literature examples of dihydroxylation reactions of allylic alcohols with different alkene substitution 

patterns. 

 

The configuration of each of the hydroxyl--butyrolactone (6a-k) prepared in this study has 

been determined by 
1
H NOE spectroscopic analysis (Figure 1) and the conclusions compared 

with the literature precedent for dihydroxylation of each of the alkene substitution patterns 

shown in Scheme 7. The results from dihydroxylation/lactonisation of 1,1-disubstituted (1a 

and 1b), 1-substituted (1c), and (E)-1,2-disubstituted allylic alcohols (1d-f) are consistent 

with the anti-diastereoselectivity observed in catalytic osmylation reactions of related 



substrates with the same alkene substitution patterns (Scheme 7a-c). The 
1
H NOE spectrum 

of the O-benzyl hydroxy--butyrolactone 6b, derived from dihydroxylation/lactonisation of 

1,1-disubstituted aldol 1b, shows a strong interaction between the C3 proton and the C5 

methylene protons of the O-benzyl substituent that confirms the configuration of the C5 

stereocentre (Figure 1b). The 
1
H NOE spectra of the hydroxy--butyrolactones 6c-f also show 

strong interaction between the C3 proton and the C5 proton, confirming that these protons lie 

on the same face of the lactone ring (Figure 1c-f). 

 

The modest levels of anti-diastereoselectivity (2:1) observed for the reaction of (Z)-1,2-

disubstituted aldol 1g are in contrast with the observations of Donohoe et al., who found that 

simple (Z)-1,2-disubstituted allylic alcohols gave low levels (2:1) of syn-diastereoselectivity 

when dihydroxylation was carried out under Upjohn conditions (Scheme 7d).
23b

 In our case, 

the configuration of the C5 stereocentre of the major diasteroisomer of hydroxy--

butyrolactone 6g was confirmed by analysis of the 
1
H NOE spectrum, which showed a strong 

interaction between the C3 proton and the C5 proton (Figure 1g). However, the low levels of 

diastereoselectivity observed in both cases suggest that the directing effect of the allylic 

alcohol in (Z)-1,2-disubstituted systems is limited, therefore it is unsurprising that different 

substrates result in different diastereoisomers being formed with poor dr. 

 

The high levels of anti-diastereoselectivity observed for the (E)-1,1,2-trisubstututed aldols 

(1h and 1i) were consistent with the results of Fronza et al. who found that an acetonide 

protected allylic alcohol gave dihydroxylation with anti-diastereoselectivity when reacted 

under Sharpless conditions in the absence of a chiral ligand (Scheme 7e).
 24

 The configuration 

of the hydroxy--butyrolactones (6h and 6i) was confirmed by analysis of the 
1
H NOE 



spectra, which showed strong interactions between the proton on C3 and the C5 methyl 

protons as well as strong interactions between the C3 methyl group and the C5 CHOH proton 

in both cases (Figure 1h and 2i).  

 

The dihydroxylation/lactonisation of 1,2,2-trisubstituted aldol 1j proceeded with syn-

diastereoselectivity, which is consistent with the syn-diastereoselectivity previously observed 

by Donohoe et. al. for dihydroxylation of 1,2,2-trisubstituted allylic alcohols (Scheme 7f).
23b

 

The 5R stereochemistry of the major diastereoisomer of hydroxy--butyrolactone 6j was 

confirmed by a strong interaction in the 
1
H NOE spectra between the methyl protons on C3 

and the C5 proton (Figure 1j), whilst a vicinal coupling constant between the protons on C4 

and C5 of 
3
J = 7.4 Hz is indicative of a syn-relationship between these protons.

25
  

 

The -substituent of the aldol product was shown not to affect the stereochemical outcome of 

the dihydroxylation reaction unduly, with -phenyl 1,1-disubstituted aldol 1k undergoing 

dihydroxylation with the expected anti-diastereoselectivity (Scheme 7a) to afford hydroxy--

butyrolactone 6k, which exhibited the same characteristic interactions in its 
1
H NOE 

spectrum as the previous examples (Figure 1k). 



 

Figure 1. Strong interactions in the 
1
H NOE spectra of the hydroxyl--butyrolactones (6a-k). 

 

Of particular relevance to the results described is the previous report of Dias et al., who 

reported the dihydroxylation/lactonisation of a small series of closely related Evans derived 

-alkenyl-O-silyl aldol products (14a-d). Surprisingly, the configuration of the resulting O-

silyl--butyrolactones (16a-d) was reported as (3S,4S,5S), which was different to the results 

we had obtained, with lactones 16b and 16d reported to have arisen from an unprecedented 

antarafacial dihydroxylation reaction occurring with syn-diastereoselectivity to the -O-silyl 

hydroxyl group (Scheme 9).
5h,26

 Therefore, in order to investigate the effect of the O-silyl 

group on these dihydroxylation/lactonisation reactions, unsaturated aldol 1a was O-TBS 

protected using TBS-OTf and 2,6-lutidine and subjected to the standard Upjohn 

dihydroxylation/lactonisation conditions, which gave O-TBS -butyrolactone 13 in a 3:1 dr. 



This mixture was then deprotected using TBAF to give hydroxy--butyrolactone 6a in 65% 

yield and 3:1 dr (Scheme 8), whose 
1
H, 

13
C{

1
H}, and NOE spectra were identical to those of 

the lactone we had previously formed from dihydroxylation/lactonisation of the unprotected 

aldol 1a.  

 

Scheme 8. Dihydroxylation/lactonisation of unprotected aldol 1a and O-TBS aldol 12 afford the same major 

diastereoisomer of hydroxy--butyrolactone (6a). 

 

In light of this result, we propose that both the free hydroxyl and O-silyl protected 

unsaturated aldol derivatives of 1a undergo dihydroxylation with anti-diastereoselectivity to 

the stereodirecting group. We therefore suggest that the stereochemical assignments of the O-

silyl--butyrolactones (16a-d) previously reported by Dias et al.
5h

 are incorrect and propose 

that the configuration of these lactones be reassigned as shown in Scheme 9. 



 

Scheme 9. a) Dias et al.’s dihydroxylation/lactonisation of O-TBS protected unsaturated aldols (14a-d). b) 

Proposed reassignment of configuration of the reported O-silyl--butyrolactones (17a-d). 

 

Conclusions 

We have developed a method of preparing enantiomerically pure hydroxy--butyrolactones 

(6a-k) containing multiple contiguous stereocentres through directed 

dihydroxylation/lactonisation reactions of -alkenyl--hydroxy-N-acyloxazolidin-2-ones (1a-

k). The configurations of the resulting hydroxy--butyrolactones (6a-k) have been confirmed 

by 
1
H NOE spectroscopic analysis, which revealed that the diastereoselectivity of these 

directed dihydroxylation reactions is dependent on the alkene substitution pattern. It was 

found that 1-substituted, 1,1-disubstituted, (E)-1,2-disubstituted, (Z)-1,2-disubstituted, and 



1,1,2-trisubstituted alkenes undergo dihydroxylation with anti-diastereoselectivity to their -

hydroxyl groups, whereas a 1,2,2-trisubstituted alkene gave the syn-diastereoisomer. The 

poor levels of diastereoselectivity observed for the dihydroxylation/lactonisation of the (Z)-

1,2-disubstituted aldol (1g) could be improved using Sharpless’ asymmetric dihydroxylation 

conditions, with the ‘matched’ and ‘mismatched’ diastereoisomers being formed dependent 

on the enantiomer of ligand used. The synthetic utility of this directed 

dihydroxylation/lactonisation methodology has been demonstrated with a short synthesis of 

2-deoxy-D-ribonolactone (11). 

 

Experimental 

General: All reactions were performed using starting materials and solvents obtained from 

commercial sources without further purification using dry solvents under an atmosphere of 

nitrogen. 
1
H NMR spectra were recorded at 250, 300, 400 and 500 MHz and 

13
C{

1
H} NMR 

spectra were recorded at 75 MHz. Chemical shifts δ are quoted in parts per million and are 

referenced to the residual solvent peak. NMR peak assignments were confirmed using 2D 
1
H 

COSY where necessary. Chemical shift is reported in parts per million (ppm) and all 

coupling constants, J, are reported in Hertz (Hz). Infra-red spectra were recorded as thin films 

or were recorded with internal background calibration in the range 600-4000 cm
-1

, using thin 

films on NaCl plates (film), or KBr discs (KBr) as stated. High resolution mass spectra were 

recorded in either positive or negative mode using electrospray (ES) ionisation. Optical 

rotations were recorded with a path length of 1 dm; concentrations (c) are quoted in g/100 

mL. 

General Procedure for the Acylation of (S)-4-Benzyl-5,5-dimethyloxazolidin-2-one: n-

BuLi (1.1 equiv., 2.5 M solution in hexane) was added to a solution of (S)-4-benzyl-5,5-



dimethyloxazolidin-2-one (1 equiv.) in dry THF at -78˚C under nitrogen and was stirred for 

30 minutes. The appropriate acid chloride (1.1 equiv.) was added in one portion and the 

resulting solution was stirred for a further two hours. The reaction was quenched with 

saturated ammonium chloride and allowed to warm to ambient temperature. The THF was 

evaporated under reduced pressure, the resulting oil was redissolved in dichloromethane and 

extracted with brine. The combined organic extracts were dried over MgSO4 and 

concentrated to afford the crude product. 

(S)-4-Benzyl-5,5-dimethyl-3-propionyloxazolidin-2-one, 7a: The title compound was 

prepared according to the general procedure from n-BuLi (6.43 mL, 16.1 mmol, 2.5 M 

solution in hexane), (S)-4-benzyl-5,5-dimethyloxazolidin-2-one (3.00 g, 14.6 mmol) and 

propionyl chloride (1.40 mL, 16.1 mmol) in THF (90 mL). The crude product was purified by 

recrystallisation from diethyl ether and hexane to afford (S)-4-benzyl-5,5-dimethyl-3-

propionyloxazolidin-2-one 7a (3.52 g, 13.4 mmol, 92%) as a white solid. 
1
H NMR (300 

MHz, CDCl3): δH 7.31-7.17 (5H, m, Ph), 4.48 (1H, dd, J = 9.6, 3.9 Hz, CHN), 3.12 (1H, dd, 

J = 14.3, 3.9 Hz, CHHAHBPh), 2.94-2.81 (3H, m, CHAHBPh, COCH2), 1.34 (3H, s, 

C(CH3)(CH3)), 1.33 (3H, s, C(CH3)(CH3)), 1.12 (3H, t, J = 7.33 Hz, CH2CH3); 
13

C{
1
H} 

NMR (75 MHz, CDCl3): δC 174.4, 152.8, 137.1, 129.2, 128.8, 126.9, 82.3, 63.6, 35.5, 29.5, 

28.7, 22.4, 8.5; IR cm
-1 

ν = 1766 (C=Oox), 1703 (C=O); HRMS: m/z (ES) 262.1446, 

C15H20NO3 [M+H]
+ 

requires 262.1443; 
21

D][  = -42.0 (c = 0.50 g/100 mL in CHCl3). 

(S)-4-Benzyl-5,5-dimethyl-3-(2-phenylacetyl)oxazolidin-2-one, 7b: The title compound 

was prepared according to the general procedure from n-BuLi (1.71 mL, 4.3 mmol, 2.5 M 

solution in hexane), (S)-4-benzyl-5,5-dimethyloxazolidin-2-one (0.80 g, 3.9 mmol) and 

phenylacetyl chloride (0.56 mL, 4.3 mmol) in THF (30 mL). The crude product was purified 

using flash silica chromatography [CH2Cl2, Rf 0.61] to afford (S)-4-benzyl-5,5-dimethyl-3-(2-



phenylacetyl)oxazolidin-2-one 7b (0.96 g, 3.0 mmol, 76%) as a colourless oil, which 

solidified on standing. 
1
H NMR (300 MHz, CDCl3): δH 7.33-7.15 (10H, m, Phox, Ph), 4.46 

(1H, dd, J = 9.6, 3.8 Hz, CHN), 4.25 (2H, s, COCH2Ph), 3.11 (1H, dd, J = 14.4, 3.8 Hz, 

CHAHBPh), 2.82 (1H, dd, J = 14.4, 9.6 Hz, CHAHBPh), 1.34 (3H, s, C(CH3)(CH3)), 1.29 (3H, 

s, C(CH3)(CH3)); 
13

C{
1
H} NMR (75 MHz, CDCl3): δC 171.6, 152.7, 137.0, 133.8, 129.8, 

129.2, 128.8, 128.7, 127.3, 126.9, 82.5, 63.9, 41.9, 35.3, 28.7, 22.4; IR cm
-1 

ν = 1765 

(C=Oox), 1712 (C=O); HRMS: m/z (ES) 324.1605, C20H22NO3 [M+H]
+
 requires 324.1599; 

21

D][  = -36.0 (c = 0.50 g/100 mL in CHCl3). 

Non-Commercially Available Aldehydes 

(E)-4-(Benzyloxy)but-2-enal: Based on a literature procedure,
27

 oxalyl chloride (0.26 mL, 

3.1 mmol) was dissolved in dry dichloromethane (10 mL) at -55 ˚C under nitrogen. 

Dimethylsulphoxide (0.39 mL, 5.6 mmol) was added and the resulting solution was stirred 

for two minutes. (Z)-4-(Benzyloxy)but-2-en-1-ol (0.50 g, 2.8 mmol) in dichloromethane (1 

mL) was added dropwise to the solution to form a light yellow cloudy mixture, which was 

stirred for 15 minutes at -55 ˚C. Triethylamine (1.96 mL, 14.0 mmol) was then added and the 

resulting solution was stirred for a further 15 minutes at -55 ˚C. The thick white slurry was 

warmed to room temperature and was quenched with the addition of water (10 mL). The 

layers were separated and the aqueous layer was extracted three times with dichloromethane 

(20 mL). The combined organic layers were washed with 1 M HCl (10 mL) and saturated 

NaHCO3 before being dried over MgSO4 and concentrated. The crude product was purified 

using flash silica chromatography [1:8 EtOAc:Petroleum ether, Rf 0.25] to predominantly 

afford the cis alkene (0.42 g, 2.4 mmol, 84%) as a colourless liquid. The pure material was 

dissolved in dichloromethane (1 mL) with a catalytic amount of p-TSA and left at room 

temperature overnight to isomerise to the trans isomer (E)-4-(benzyloxy)but-2-enal in a 99:1 



ratio. 
1
H NMR (300 MHz, CDCl3): δH 9.58 (1H, d, J = 7.9 Hz, CHO), 7.39-7.28 (5H, m, Ph), 

6.85 (1H, dt, J = 15.8, 4.1 Hz, CH=CHCHO), 6.41 (1H, ddt, J = 15.8, 7.9, 1.9 Hz, CHCHO), 

4.60 (2H, s, OCH2Ph), 4.29 (2H, dd, J = 4.1, 1.9 Hz, CH2OBn); 
13

C{
1
H} NMR (75 MHz, 

CDCl3): δC 193.4, 153.2, 137.5, 131.9, 128.6, 128.1, 127.8, 73.1, 68.7; IR cm
-1 

ν = 1682 

(C=O); HRMS: m/z (ES) 199.0737, C11H12NaO2 [M+Na]
+
 requires 199.0734. 

4-(Benzyloxy)butanal: Oxalyl chloride (1.03 mL, 12.2 mmol) was dissolved in dry 

dichloromethane (50 mL) at -55 ˚C under nitrogen. Dimethylsulphoxide (1.58 mL, 22.2 

mmol) was added and the resulting solution was stirred for 2 minutes. 4-(Benzyloxy)butan-1-

ol (2.00 g, 11.1 mmol) in dichloromethane (5 mL) was added dropwise to the solution to 

form a light yellow cloudy mixture, which was stirred for 15 minutes at -55 ˚C. 

Triethylamine (7.73 mL, 55.5 mmol) was then added and the resulting solution was stirred 

for a further 15 minutes at -55 ˚C. The thick white slurry was warmed to room temperature 

and was quenched with the addition of water (50 mL). The layers were separated and the 

aqueous layer was extracted three times with dichloromethane (50 mL). The combined 

organic layers were washed with 1 M HCl (10 mL) and saturated NaHCO3 before being dried 

over MgSO4 and concentrated. The crude product was purified using flash silica 

chromatography [1:9 EtOAc:Petroleum ether, Rf 0.63] to afford 4-(benzyloxy)butanal (1.48 

g, 8.3 mmol, 75%) as a colourless liquid. 
1
H NMR (300 MHz, CDCl3): δH 9.68 (1H, s, CHO), 

7.30-7.18 (5H, m, Ph), 4.41 (2H, s, OCH2Ph), 3.43 (2H, t, J = 6.1 Hz, CH2OBn), 2.45 (2H, t, 

J = 7.1 Hz, CHOCH2), 1.87 (2H, app. quintet, J = 6.6 Hz, CH2CH2CH2OBn); 
13

C{
1
H} NMR 

(75 MHz, CDCl3): δC 202.1, 138.3, 128.3, 127.5, 72.8, 69.0, 40.8, 22.5; IR cm
-1 

ν = 1721 

(C=O); HRMS: m/z (ES) 201.0894, C11H14NaO2, [M+Na]
+ 

requires 201.0891. 

4-(Benzyloxy)-2-methylenebutanal: 4-(Benzyloxy)butanal (0.50 g, 2.8 mmol) was 

dissolved in 37% aqueous formaldehyde solution (0.27 mL, 3.7 mmol). Dimethylamine 

hydrochloride (0.30 g, 3.7 mmol) was added and the mixture was heated at 70 ˚C for 24 



hours. The reaction was cooled to room temperature, quenched with saturated NaHCO3, 

extracted into hexane and the combined organic fractions were washed with water, dried over 

MgSO4 and concentrated. The crude product was purified using flash silica chromatography 

[1:9 EtOAc:Petroleum ether, Rf 0.31] to afford 4-(benzyloxy)-2-methylenebutanal (0.41 g, 

2.2 mmol, 78%) as a colourless liquid. 
1
H NMR (300 MHz, CDCl3): δH 9.46 (1H, s, CHO), 

7.30-7.19 (5H, m, Ph), 6.31 (1H, s, C=CHAHB), 6.00 (1H, s, C=CHAHB), 4.43 (2H, s, 

OCH2Ph), 3.53 (2H, t, J = 6.4 Hz, CH2OBn), 2.51 (2H, t, J = 6.4 Hz, CH2=CCH2); 
13

C{
1
H} 

NMR (75 MHz, CDCl3): δC 194.4, 146.9, 138.2, 135.7, 128.4, 127.6, 127.5, 72.8, 67.9, 28.2; 

IR cm
-1 

ν = 1686 (C=O); HRMS: m/z (ES) 213.0912, C12H14NaO2, [M+Na]
+ 

requires 

213.0886. 

General Procedure for the Synthesis of -Alkenyl--hydroxy-N-acyloxazolidin-2-ones: 

Acylated (S)-4-benzyl-5,5-dimethyloxazolidin-2-one 7a or 7b (1 equiv.) was dissolved in dry 

dichloromethane at 0 ˚C under nitrogen and was stirred for 30 minutes. 9-

Borabicyclo[3.3.1]nonyl trifluoromethanesulfonate (9-BBN-OTf) (1.1 equiv., 0.5 M solution 

in hexanes) or dibutylboron triflate (1.1 equiv., 1.0 M in dichloromethane) was added 

dropwise. After 30 minutes, N,N-diisopropylethylamine (1.3 equiv.) was added and the 

resulting solution was stirred for 30 minutes before the reaction was cooled to -78 ˚C. The 

appropriate aldehyde (1.3 equiv.) was added in one portion and the reaction was allowed to 

warm to ambient temperature overnight. The reaction was quenched with pH 7 buffer 

solution (Na2PO4/NaH2PO4) (10 mL) and was stirred for ten minutes. Hydrogen peroxide (4 

mL) and methanol (8 mL) were then added and the solution was stirred for a further two 

hours. The methanol was evaporated, the solution diluted with dichloromethane and washed 

with saturated NaHCO3 and brine. The combined organic extracts were dried over MgSO4 

and concentrated to afford crude product. 



(S)-4-Benzyl-3-((2S,3S)-3-hydroxy-2-methyl-4-methylenehexanoyl)-5,5-dimethyloxazoli 

din-2-one, 1a: The title compound was prepared according to the general procedure from 9-

BBN-OTf (9.46 mL, 4.7 mmol), (S)-4-benzyl-5,5-dimethyl-3-propionyloxazolidin-2-one 7a 

(1.08 g, 4.3 mmol), N,N-diisopropylethylamine (0.94 mL, 5.4 mmol) and ethacrolein (0.45 g, 

5.4 mmol) in dichloromethane (90 mL) to afford a crude product as a pale yellow oil. The 

crude product was purified using flash silica chromatography to afford (S)-4-benzyl-3-

((2S,3S)-3-hydroxy-2-methyl-4-methylenehexanoyl)-5,5-dimethyloxazolidin-2-one 1a (1.19 

g, 3.4 mmol, 80%) as a colourless oil. 
1
H NMR (300 MHz, CDCl3): δH 7.34-7.20 (5H, m, 

Ph), 5.16 (1H, app. t, J = 1.0 Hz, CHcisHtrans=C), 4.98 (1H, app. t, J = 1.0 Hz, CHcisHtrans=C), 

4.53 (1H, dd, J = 9.0, 4.0 Hz, CHN), 4.40 (1H, d, J = 3.5 Hz, CHOH), 3.96 (1H, qd, J = 7.0, 

3.5 Hz, CHCO), 3.08 (1H, dd, J = 14.0, 4.0 Hz, CHAHBPh), 2.91 (1H, dd, J =14.0, 9.5 Hz, 

CHAHBPh), 2.91 (1H, br. s, OH), 2.02 (2H, m, CH2CH3) 1.40 (3H, s, (CH3)C(CH3)), 1.38 

(3H, s, (CH3)C(CH3)), 1.11 (3H, d, J = 7.0 Hz, CH3CH), 1.07 (3H, t, J = 7.0, CH3CH2); 

13
C{

1
H} NMR (75 MHz, CDCl3): δC 177.5, 152.6, 150.3, 137.0, 129.5, 129.1, 127.3, 109.9, 

82.7, 74.1, 63.8, 41.1, 35.8, 28.8, 25.7, 22.6, 12.5, 11.1; IR cm
-1 

ν = 3497 (br. OH), 1773 

(C=Oox), 1700 (C=O); HRMS: m/z (ES) 346.2014, C20H28NO4 [M+H]
+ 

requires 346.2013; 

21

D][  = -36.0 (c = 1.00 g/100 mL in CHCl3). 

(S)-4-Benzyl-3-((2S,3S)-6-(benzyloxy)-3-hydroxy-2-methyl-4-methylenehexanoyl)-5,5-di 

methyloxazolidin-2-one, 1b: The title compound was prepared according to the general 

procedure from dibutylboron triflate (1.78 mL, 1.8 mmol), (S)-4-benzyl-5,5-dimethyl-3-

propionyloxazolidin-2-one 7a (0.423 g, 1.6 mmol), N,N-diisopropylethylamine (0.36 mL, 2.1 

mmol) and 4-(benzyloxy)-2-methylenebutanal (0.40 g, 2.1 mmol) in dichloromethane (5 mL) 

to afford a crude product as a pale yellow oil. The crude product was purified using flash 

silica chromatography [1:4 EtOAc:Petroleum ether, Rf 0.27] to afford (S)-4-benzyl-3-

((2S,3S)-6-(benzyloxy)-3-hydroxy-2-methyl-4-methylenehexanoyl)-5,5-dimethyloxazolidin-



2-one 1b (0.57 g, 1.3 mmol, 78%) as a colourless oil. 
1
H NMR (300 MHz, CDCl3): δH 7.27-

7.16 (10H, m, Ph, Phox), 5.11 (1H, s, C=CHAHB), 4.95 (1H, s, C=CHAHB), 4.45-4.40 (3H, m, 

OCH2Ph, CHN), 4.32 (1H, br. d, J = 5.8 Hz, CHOH), 4.00 (1H, app. quintet, J = 6.6 Hz, 

CHCH3), 3.62-3.48 (2H, m, CH2OBn), 3.18 (1H, br. s, OH), 2.99 (1H, dd, J = 14.4, 4.3 Hz, 

CHAHBPh), 2.83 (1H, dd, J = 14.1, 8.7 Hz, CHAHBPh), 2.44-2.35 (1H, m, CHAHBOBn), 2.29-

2.21 (1H, m, CHAHBOBn), 1.31 (3H, s, C(CH3)(CH3)), 1.26 (3H, s, C(CH3)(CH3)), 1.12 (3H, 

d, J = 6.9 Hz, CHCH3); 
13

C{
1
H} NMR (75 MHz, CDCl3): δC 176.3, 152.2, 146.8, 137.9, 

136.7, 129.1, 128.6, 128.4, 127.7, 127.6, 126.8, 113.3, 82.2, 74.5, 73.0, 70.0, 63.3, 41.5, 35.3, 

32.7, 28.2, 22.1, 12.0; IR cm
-1 

ν = 3467 (OH), 1770 (C=Oox), 1694 (C=O); HRMS: m/z (ES) 

452.2458, C27H34NO5 [M+H]
+ 

requires 452.2436; 
17

D][  = -30.0 (c = 0.50 g/100 mL in 

CHCl3). 

(S)-4-Benzyl-3-((2S,3R)-3-hydroxy-2-methylpent-4-enoyl)-5,5-dimethyloxazolidin-2-one, 

1c: The title compound was prepared according to the general procedure from 9-BBN-OTf 

(3.78 mL, 1.9 mmol), (S)-4-benzyl-5,5-dimethyl-3-propionyloxazolidin-2-one 7a (0.40 g, 1.7 

mmol), N,N-diisopropylethylamine (0.43 ml, 2.5 mmol) and acrolein (0.16 mL, 2.5 mmol) in 

dichloromethane (90 mL) to afford a crude product as a pale yellow oil. The crude product 

was purified using flash silica chromatography to afford (S)-4-benzyl-3-((2S,3R)-3-hydroxy-

2-methylpent-4-enoyl)-5,5-dimethyloxazolidin-2-one 1c (0.26 g, 0.9 mmol, 53%) as a 

colourless oil. 
1
H NMR (300 MHz, CDCl3): δH 7.26-7.12 (5H, m, Ph), 5.83-5.70 (1H, ddd, J 

= 10.5, 5.5, 5.3 Hz, CH=CH2), 5.25 (1H, dt, J = 1.5 Hz, CHcisHtrans=C), 5.13 (1H, dt, J = 

10.5, 1.5 Hz, CHcisHtrans=C), 4.49 (1H, dd, J = 9.0, 4.5 Hz, CHN), 4.38 (1H, m, CHOH), 3.85 

(1H, dq, J = 7.0, 4.0 Hz, CHCH3), 3.0 (1H, dd, J = 14.5, 4.5 Hz, CHAHBPh), 2.85 (1H, dd, J 

=14.5, 9.0 Hz, CHAHBPh), 2.65 (1H, br. s, OH), 1.33 (3H, s, (CH3)C(CH3)), 1.31 (3H, s, 

(CH3)C(CH3)), 1.10 (3H, d, J = 7.0 Hz, CH3CH); 
13

C{
1
H} NMR (75 MHz, CDCl3): δC 176.9 

152.8, 137.7, 137.0, 129.5, 129.1, 127.3, 116.8, 82.8, 73.2, 63.8, 42.85, 35.9, 28.8, 22.6, 11.7; 



IR cm
-1 

ν = 3501 (br. OH), 1754 (C=O), 1702 (C=Oox); HRMS: m/z (ES) 340.1577, 

C18H23NNaO4 [M+Na]
+
 requires 340.1519; 



[]D
22

 = -26.0 (c = 0.60 g/100 mL in CHCl3). 

(S)-4-Benzyl-3-((2S,3R,E)-3-hydroxy-2-methyl-5-phenylpent-4-enoyl)-5,5-dimethyloxazo 

lidin-2-one, 1d: The title compound was prepared according to the general procedure from 9-

BBN-OTf (10.10 mL, 5.0 mmol), (S)-4-benzyl-5,5-dimethyl-3-propionyloxazolidin-2-one 7a 

(1.20 g, 4.6 mmol), N,N-diisopropylethylamine (1.03 mL, 5.9 mmol) and (E)-cinnimaldehyde 

(0.76 mL, 5.9 mmol) in dichloromethane (30 mL) to afford a crude product as a pale yellow 

oil. The crude product was purified using flash silica chromatography to afford (S)-4-benzyl-

3-((2S,3R,E)-3-hydroxy-2-methyl-5-phenylpent-4-enoyl)-5,5- dimethyloxazolidin-2-one 1d 

(1.41 g, 3.6 mmol, 78%) as a colourless oil. mp = 147–149 °C (Et2O); 
1
H NMR (300 MHz, 

CDCl3): δH 7.36-7.13 (10H, m, Ph), 6.59 (1H, dd, J = 16.0, 1.5 Hz, CH=CHPh), 6.12 (1H, dd, 

J = 16.0 Hz, 6.0 Hz, CH=CHPh), 4.54 (1H, m, CHOH), 4.47 (1H, dd, J = 9.0, 5.0 Hz, CHN), 

3.94 (1H, qd, J = 7.0, 4.0 Hz, COCH), 3.00 (1H, dd J = 14.0, 5.0 Hz, CHAHBPh), 2.84 (1H, 

dd, J = 14.0, 9.0 Hz, CHACHBPh), 2.74 (1H, br. s, OH), 1.32 (3H, s, (CH3)C(CH3)), 1.30 (3H, 

s, (CH3)C(CH3)), 1.13 (3H, d, J = 7.0 Hz, CH3CH); 
13

C{
1
H} NMR (75 MHz, CDCl3): δC 

177.1, 152.6, 137.7, 134.1, 129.3, 129.2, 129.1, 127.3, 82.7, 73.4, 63.8, 43.3, 35.9, 32.7, 32.2, 

29.6, 29.5, 23.1, 14.5, 12.0; IR cm
-1 

ν = 3443 (OH), 1768 (C=O), 1684 (C=Oox); HRMS: m/z 

(ES) 416.1821, C24H27NNaO4 [M+Na]
+
 requires 416.1838; 



[]D
23

 = +6.0 (c = 0.89 g/100 mL 

in CHCl3). 

(S)-4-Benzyl-3-((2S,3R,E)-3-hydroxy-2-methylhex-4-enoyl)-5,5-dimethyl-oxazolidin-2-

one, 1e: The title compound was prepared according to the general procedure from 9-BBN-

OTf (5.56 mL, 2.8 mmol), (S)-4-benzyl-5,5-dimethyl-3-propionyloxazolidin-2-one 7a (0.61 

g, 2.3 mmol), N,N-diisopropylethylamine (0.53 ml, 3.0 mmol) and (E)-crotonaldehyde (0.25 

mL, 3.0 mmol) in dichloromethane (50 mL) to afford a crude product as a pale yellow oil. 



The crude product was purified using flash silica chromatography to afford (S)-4-benzyl-3-

((2S,3R,E)-3-hydroxy-2-methylhex-4-enoyl)-5,5-dimethyloxazolidin-2-one 1e (0.70 g, 2.1 

mmol, 91%) as a clear oil. 
1
H NMR (300 MHz, CDCl3): δH 7.39-7.17 (5H, m, Ph), 5.74 (1H, 

dqd, J = 15.5, 6.5, 1.0 Hz, CH=CHCH3), 5.48 (1H, ddd, J = 15.5, 6.5, 1.0 Hz, CH=CHCH3), 

4.60 (1H, dd, J = 9.0, 4.5 Hz, CHN), 4.53 (1H, m, CHOH), 3.91 (1H, qd, J = 7.0, 4.5 Hz, 

COCH), 3.05 (1H, dd J =14.5, 4.5 Hz, CHAHBPh), 2.90 (1H, dd. J = 14.5, 9.0 Hz, 

CHAHBPh), 2.60 (1H, d, J = 2.5 Hz, OH), 1.70 (3H, d, J = 7.0 Hz, CH3CH=CH), 1.39 (3H, s, 

(CH3)C(CH3)), 1.38 (3H, s, (CH3)C(CH3)), 1.15 (3H, d, J = 7.0 Hz, CH3CH); 
13

C{
1
H} NMR 

(75 MHz, CDCl3): δC 176.9, 152.9, 137.1, 130.5, 129.5, 129.1, 128.9, 127.3, 82.7, 73.6, 63.8, 

43.2, 35.9, 28.7, 22.5, 18.2, 12.1; IR cm
-1 

ν = 3508 (br. OH), 1775 (C=Oox), 1696 (C=O); 

HRMS: m/z (ES) 332.1855, C19H26NO4 [M+H]
+
 requires 332.1856; 



[]D
21

 = -14.0 (c = 0.84 

g/100 mL in CHCl3). 

(S)-4-Benzyl-3-((2S,3R,E)-6-(benzyloxy)-3-hydroxy-2-methylhex-4-enoyl)-5,5-dimethyl 

oxazolidin-2-one, 1f: Based on a literature procedure,
27

 (S)-4-benzyl-5,5-dimethyl-3-

propionyloxazolidin-2-one 7a (1.95 g, 7.5 mmol) was dissolved in dry dichloromethane (50 

mL) at -10 ˚C under nitrogen and was stirred for 20 minutes. Dibutylboron triflate (8.97 mL, 

9.0 mmol, 1.0 M in dichloromethane) was added dropwise followed by triethylamine (1.35 

mL, 9.7 mmol) and the resulting solution was stirred for 30 minutes at 0 ˚C. The reaction was 

cooled to -78 ˚C and (E)-4-(benzyloxy)but-2-enal (1.45 g, 8.2 mmol) was added dropwise. 

The solution was stirred at -78 ˚C for 45 minutes and then warmed to 0 ˚C and stirred for a 

further 3 hours. The reaction was cooled to -10 ˚C and pH 7 buffer solution 

(Na2PO4/NaH2PO4) (30 mL) was added followed by methanol (24 mL) and hydrogen 

peroxide (12 mL). The methanol was evaporated, the solution diluted with dichloromethane 

and washed with saturated NaHCO3 and brine. The combined organic extracts were dried 

over MgSO4 and concentrated. The crude product was purified using flash silica 



chromatography [1:4 EtOAc:Petroleum ether, Rf 0.19] to afford (S)-4-benzyl-3-((2S,3R,E)-6-

(benzyloxy)-3-hydroxy-2-methylhex-4-enoyl)-5,5-dimethyloxazolidin-2-one 1f (2.91 g, 6.7 

mmol, 89%) as a yellow oil. 
1
H NMR (300 MHz, CDCl3): δH 7.27-7.15 (10H, m, Ph, Phox), 

5.83 (1H, dtd, J = 15.6, 5.4, 1.0 Hz, CH=CHCH2OBn), 5.68 (1H, dd, J = 15.6, 5.4 Hz, 

CH=CHCH2OBn), 4.48-4.38 (4H, m, CH2OBn, CHN, CHOH), 3.96 (2H, d, J = 5.4 Hz, 

CH2OBn), 3.86 (1H, qd, J = 7.0, 4.2 Hz, CHCH3), 2.99 (1H, dd, J = 14.2, 4.6 Hz, 

CHAHBPh), 2.82 (1H, dd, J = 14.4, 9.0 Hz, CHAHBPh), 2.76 (1H, broad s, OH), 1.30 (3H, s, 

C(CH3)(CH3)), 1.28 (3H, s, C(CH3)(CH3)), 1.10 (3H, d, J = 7.1 Hz, CHCH3); 
13

C{
1
H} NMR 

(75 MHz, CDCl3): δC 176.3, 152.4, 138.2, 136.6, 132.0, 129.1, 128.7, 128.6, 128.3, 127.7, 

127.6, 126.8, 82.3, 72.2, 72.1, 70.0, 63.3, 42.7, 35.4, 28.3, 22.1, 11.6; IR cm
-1 

ν = 3474 (OH), 

1771 (C=Oox), 1693 (C=O); HRMS: m/z (ES) 460.2064, C26H31NNaO5 [M+Na]
+ 

requires 

460.2099; 
25

D][  = -28.0 (c = 0.50 g/100 mL in CHCl3). 

(S)-4-Benzyl-3-((2S,3R,Z)-6-(benzyloxy)-3-hydroxy-2-methylhex-4-enoyl)-5,5-dimethyl 

oxazolidin-2-one, 1g: Based on a literature procedure,
27

 (S)-4-benzyl-5,5-dimethyl-3-

propionyloxazolidin-2-one 7a (0.50 g, 1.9 mmol) was dissolved in dry dichloromethane (20 

mL) at -10 ˚C under nitrogen and was stirred for 20 minutes. Dibutylboron triflate (2.29 mL, 

2.3 mmol, 1.0 M in dichloromethane) was added dropwise followed by triethylamine (0.35 

mL, 2.5 mmol) and the resulting solution was stirred for 30 minutes at 0 ˚C. The reaction was 

cooled to -78 ˚C and (Z)-4-(benzyloxy)but-2-enal (0.37 g, 2.1 mmol) was added dropwise. 

The solution was stirred at -78 ˚C for 45 minutes and then warmed to 0 ˚C and stirred for a 

further three hours. The reaction was cooled to -10 ˚C and pH 7 buffer solution 

(Na2PO4/NaH2PO4) (10 mL) was added followed by methanol (8 mL) and hydrogen peroxide 

(4 mL). The methanol was evaporated, the solution diluted with dichloromethane and washed 

with saturated NaHCO3 and brine. The combined organic extracts were dried over MgSO4 

and concentrated. The crude product was purified using flash silica chromatography [1:2 



EtOAc:Petroleum ether, Rf 0.63] to afford (S)-4-benzyl-3-((2S,3R,Z)-6-(benzyloxy)-3-

hydroxy-2-methylhex-4-enoyl)-5,5-dimethyloxazolidin-2-one 1g (0.74 g, 1.7 mmol, 88%) as 

a colourless gum, which crystallised on standing. 
1
H NMR (300 MHz, CDCl3): δH 7.29-7.12 

(10H, m, Ph), 5.71-5.52 (2H, m, CH=CH), 4.63-4.49 (1H, m, CHOH), 4.44-4.39 (3H, m, 

CH2OBn, CHN), 4.10 (1H, ddd, J = 12.7, 6.5, 1.3 Hz, CHAHBOBn), 4.00 (1H, ddd, J = 12.6, 

5.5, 1.3 Hz, CHAHBOBn), 3.87 (1H, m, CHCH3), 2.97 (1H, dd, J = 14.3, 4.5 Hz, CHAHBPh), 

2.81 (1H, dd, J = 14.3, 9.0 Hz, CHAHBPh), 2.73 (1H, broad s, OH), 1.30 (3H, s, 

C(CH3)(CH3)), 1.26 (3H, s, C(CH3)(CH3)), 1.11 (3H, d, J = 7.0 Hz, CHCH3); 
13

C{
1
H} NMR 

(75 MHz, CDCl3): δC 175.9, 152.6, 138.1, 136.7, 132.1, 129.6, 129.2, 128.7, 128.5, 127.9, 

127.8, 126.9, 82.4, 72.5, 69.0, 66.2, 63.4, 43.1, 35.5, 28.4, 22.2. 12.4; IR cm
-1 

ν = 3477 (OH), 

1771 (C=Oox), 1692 (C=O); HRMS: m/z (ES) 460.2097, C26H31NNaO5 [M+Na]
+
 requires 

460.2099; 
25

D][  = -12.0 (c = 0.50 g/100 mL in CHCl3). 

(S)-4-Benzyl-3-((2S,3S,E)-3-hydroxy-2,4-dimethylhept-4-enoyl)-5,5-dimethyloxazolidin-

2-one, 1h: The title compound was prepared according to the general procedure from 9-

BBN-OTf (7.08 mL, 3.5 mmol), (S)-4-benzyl-5,5-dimethyl-3-propionyloxazolidin-2-one 7a 

(0.84 g, 3.2 mmol), N,N-diisopropylethylamine (0.73 mL, 4.2 mmol) and 2-methyl-pentenal 

(0.48 mL, 4.2 mmol) in dichloromethane (100 mL) to afford a crude product as a pale yellow 

oil. The crude product was purified using flash silica chromatography to afford (S)-4-benzyl-

3-((2S,3S,E)-3-hydroxy-2,4-dimethylhept-4-enoyl)-5,5-dimethyloxazolidin-2-one 1h (0.95 g, 

2.6 mmol, 82%) as a colourless oil. 
1
H NMR (300 MHz, CDCl3): δH 7.27-7.12 (5H, m, Ph), 

6.51 (1H, tt, J = 7.0, 1.5 Hz, C=CH), 4.45 (1H, dd, J = 9.0, 4.5 Hz, CHN), 4.23 (1H, br. s, 

CHOH), 3.91 (1H, dq, J = 7.0, 4.0 Hz, COCH), 3.10 (1H, dd J = 14.5, 4.5 Hz, CHACHBPh), 

2.84 (1H, dd, J = 14.5, 9.0 Hz, CHACHBPh), 2.84 (1H, br. d, OH), 2.10 – 1.92 (2H, m, 

CH2CH3), 1.53 (3H, s, CH3C=CH), 1.32 (3H, s, (CH3)C(CH3)), 1.29 (3H, s, (CH3)C(CH3)), 

1.00 (3H, d, J = 7.0 Hz, CH3CH), 0.90 (3H, t, J = 7.5 Hz, CH2CH3); 
13

C{
1
H} NMR (75 MHz, 



CDCl3): δC 177.3, 152.7, 137.1, 133.4, 129.5, 129.0, 128.8, 127.2, 82.67, 76.1, 63.8, 41.1, 

35.8, 28.7, 22.5, 21.3, 14.4, 13.5, 11.5; IR cm
-1 

ν = 3493 (br. OH), 1777 (C=O), 1680 (C=O); 

HRMS: m/z (ES) 382.1977, C21H29NNaO4 [M+Na]
+ 

requires 382.1994; 



[]D
25

 = -5.0 (c = 1.00 

g/100 mL, CHCl3). 

(S)-4-Benzyl-3-((2S,3S,E)-6-(benzyloxy)-3-hydroxy-2,4-dimethylhex-4-enoyl)-5,5-dimeth 

yloxazolidin-2-one, 1i: The title compound was prepared according to the general procedure 

from dibutylboron triflate (1.50 mL, 1.5 mmol), (S)-4-benzyl-5,5-dimethyl-3-

propionyloxazolidin-2-one 7a (0.36 g, 1.4 mmol), N,N-diisopropylethylamine (0.31 mL, 1.8 

mmol) and (E)-4-(benzyloxy)-2-methylbut-2-enal
28

 (0.34 g, 1.8 mmol) in dichloromethane (3 

mL) to afford a crude product as a pale yellow oil. The crude product was purified using flash 

silica chromatography [1:9 EtOAc:Petroleum ether, Rf 0.24] to afford (S)-4-benzyl-3-

((2S,3S,E)-6-(benzyloxy)-3-hydroxy-2,4-dimethylhex-4-enoyl)-5,5-dimethyloxazolidin-2-one 

1i (0.28 g, 0.6 mmol, 46%) as a colourless oil. 
1
H NMR (300 MHz, CDCl3): δH 7.27-7.15 

(10H, m, Ph, Phox), 5.71 (1H, br. t, J = 6.3 Hz, C=CH), 4.46-4.43 (3H, m, OCH2Ph, CHN), 

4.28 (1H, d, J = 3.7 Hz, CHOH), 4.02 (2H, d, J = 6.6 Hz, CH2OBn), 3.96-3.91 (1H, m, 

CHCH3), 3.01 (1H, dd, J = 14.3, 4.0 Hz, CHAHBPh), 2.82 (2H, dd, broad s, J = 14.3, 9.1 Hz, 

CHAHBPh, OH), 1.57 (3H, s, CH3C=CH), 1.30 (3H, s, C(CH3)(CH3)), 1.26 (3H, s, 

C(CH3)(CH3)), 1.05 (3H, d, J = 7.4 Hz, CHCH3); 
13

C{
1
H} NMR (75 MHz, CDCl3): δC 176.6, 

152.3, 138.3, 138.1, 136.7, 129.1, 128.6, 128.4, 127.8, 127.6, 126.9, 122.9, 82.4, 75.2, 72.1, 

66.2, 63.5, 40.6, 35.3, 28.3, 22.1, 13.6, 10.9; IR cm
-1 

ν = 3481 (OH), 1771 (C=Oox), 1698 

(C=O); HRMS: m/z (ES) 452.2446, C27H34NO5 [M+H]
+ 

requires 452.2436; 
20

D][  = -42.0 (c 

= 0.50 g/100 mL in CHCl3). 

(S)-4-Benzyl-3-((2S,3R)-3-hydroxy-2,5-dimethylhex-4-enoyl)-5,5-dimethyloxazolidin-2- 

one, 1j: The title compound was prepared according to the general procedure from 9-BBN-



OTf (8.05 mL, 4.0 mmol), (S)-4-benzyl-5,5-dimethyl-3-propionyloxazolidin-2-one 7a (0.96 

mg, 3.7 mmol), N,N-diisopropylethylamine (0.83 ml, 4.8 mmol) and 3-methyl-2-butenal 

(0.46 mL, 4.8 mmol) in dichloromethane (100 mL) to afford a crude product as a pale yellow 

oil. The crude product was purified using flash silica chromatography to afford (S)-4-benzyl-

3-((2S,3R)-3-hydroxy-2,5-dimethylhex-4-enoyl)-5,5-dimethyloxazolidin-2- one 1j (1.28 g, 

3.7 mmol, 92%) as a white solid. 
1
H NMR (300 MHz, CDCl3): δH 7.35-7.17 (5H, m, Ph), 

5.23 (1H, d, J = 9.0 Hz, CHC=C), 4.60 (1H, m, CHOH), 4.52 (1H, dd, J = 9.0, 4.5 Hz, CHN), 

3.93 (1H, qd, J = 7.0, 5.0 Hz, COCH), 3.05 (1H, dd J = 14.5, 4.5 Hz, CHACHBPh), 2.90 (1H, 

dd, J = 14.5, 9.0 Hz, CHACHBPh), 2.35 (1H, br. s, OH), 1.72 (3H, s, C=C(CH3)A(CH3)B), 1.68 

(3H, s, C=C(CH3)A(CH3)B), 1.39 (3H, s, (CH3)C(CH3)), 1.37 (3H, s, (CH3)C(CH3)), 1.18 (3H, 

d, J = 7.0 Hz, CH3CH); 
13

C{
1
H} NMR (75 MHz, CDCl3): δC 176.7, 153.0, 137.2, 137.1, 

129.5, 129.1, 127.3, 124.5, 82.6, 69.9, 63.8, 43.4, 35.9, 28.6, 26.4, 22.5, 18.8, 12.6; IR cm
-1 

ν 

= 3479 (br. OH), 1769 (C=O), 1681 (C=O); HRMS: m/z (ES) 346.2011, C20H28NO4 [M+H]
+ 

requires 346.2013; 



[]D
21

 = -27.0 (c = 1.00 g/100 mL in CHCl3). 

(S)-4-Benzyl-3-((2S,3S)-3-hydroxy-4-methyl-2-phenylpent-4-enoyl)-5,5-dimethyloxazolid 

in-2-one, 1k: The title compound was prepared according to the general procedure from 9-

BBN-OTf (0.45 mL, 0.9 mmol), (S)-4-benzyl-5,5-dimethyl-3-(2-phenylacetyl)oxazolidin-2-

one 7b (0.27 g, 0.8 mmol), N,N-diisopropylethylamine (0.17 ml, 1.0 mmol) and methacrolein 

(0.08 mL, 1.0 mmol) in dichloromethane (70 mL) to afford a crude product as a pale yellow 

oil. The crude product was purified using flash silica chromatography to afford (S)-4-benzyl-

3-((2S,3S)-3-hydroxy-4-methyl-2-phenylpent-4-enoyl)-5,5-dimethyloxazolidin-2-one 1k 

(0.24 g, 0.6 mmol, 75%) as a colourless oil. 
1
H NMR (300 MHz,CDCl3): δH 7.42-7.20 (5H, 

m, Ph), 7.14-6.98 (5H, m, Ph), 5.27 (1H, d, J = 7.0 Hz, PhCH) 4.92 (1H, m, CHcisHtrans=C), 

4.85 (1H, br. app. pent., J = 1.5 Hz, CHcisHtrans=C), 4.69 (1H, d, J = 8.0 Hz, CHOH), 4.43 

(1H, dd, J = 9.0, 4.0 Hz, CHN), 2.82 (1H, dd J = 14.0, 4.0 Hz, CHAHBPh), 2.63 (1H, dd, J = 



14.0, 9.0 Hz, CHACHBPh), 2.05 (1H, br. s, OH), 1.74 (3H, s, CH2=CCH3), 1.27 (3H, s, 

(CH3)C(CH3)), 1.24 (3H, s, (CH3)C(CH3)); 
13

C{
1
H} NMR (75 MHz, CDCl3): δC 172.9, 

152.5, 144.8, 136.9, 134.7, 130.26, 129.4, 129.1, 128.9, 128.4, 127.1, 114.2, 82.5, 63.7, 53.4, 

35.3, 28.7, 22.5, 18.7; IR cm
-1 

ν = 3489 (OH), 1768 (C=O), 1671 (C=Oox); HRMS: m/z (ES) 

394.2019, C24H28NO4 [M+H]
+ 

requires 394.2018; 



[]D
25

 = -89.9 (c = 1.00 g/100 mL, CHCl3). 

General Procedure for the Synthesis of (3S,4S)-Hydroxy--lactones (6a-6k, 11): Osmium 

tetroxide (OsO4) (0.1 equiv.) was added in one portion to a stirring solution of the appropriate 

-alkenyl--hydroxy-N-acyloxazolidin-2-one 1a-1k (1.0 equiv.) in acetone/water (8:1 ratio) 

under nitrogen. After five minutes, NMO (N-methylmorpholine N-oxide, 60% by weight in 

water, 1.1 equiv.) was added in one portion and stirred for 24 hours. The resulting reaction 

mixture was concentrated under reduced pressure and immediately purified via column 

chromatography. 

(3S,4S,5R)-5-Ethyl-4-hydroxy-5-(hydroxymethyl)-3-methyldihydrofuran-2(3H)-one, 6a: 

OsO4 (22 mg, 0.09 mmol) was added to a solution of 1a (305 mg, 0.88 mmol) in 

acetone/water (8:1, 3 mL) followed by addition of NMO (60% by weight in water, 0.16 mL, 

0.97 mmol) according to the general procedure to afford the crude product as black oil. 

Purification via column chromatography afforded 6a (120 mg, 0.61 mmol, 69 %, 49:1 dr). 
1
H 

NMR (500 MHz, MeOD): δH 4.24 (1H, d, J = 9.4 Hz, CHOH), 3.74 (1H, d, J = 12.1 Hz, 

CHAHBOH), 3.52 (1H, d, J = 12.2 Hz, CHAHBOH), 2.68 (1H, qd, J = 9.4, 7.1 Hz, CHCO), 

1.81 (1H, dq, J = 15.0, 7.5 Hz, CHAHBCH3), 1.71 (1H, dq, J = 15.0 , 7.5 Hz, CHAHBCH3), 

1.28 (3H, d, J = 7.5 Hz, CH3), 1.01 (3H, t, J = 7.5 Hz, CH2CH3); 
13

C{
1
H} NMR (75 MHz, 

MeOD): δC 179.6, 90.2, 76.5, 64.7, 44.2, 25.0, 13.9, 8.6; IR cm
-1 

ν =  3368 (br. OH), 1751 

(C=O); HRMS: m/z (ES) 175.0957, C8H15O4 [M+H]
+ 

requires 175.0970; 
24

D][  = - 3.4 (c = 

0.88 g/100 mL in CHCl3). 



(3S,4S,5R)-5-(2-(Benzyloxy)ethyl)-4-hydroxy-5-(hydroxymethyl)-3-methyldihydrofuran-

2(3H)-one, 6b: OsO4 (8 mg, 0.03 mmol) was added to a solution of 1b (140 mg, 0.31 mmol) 

in acetone/water (8:1, 1.5 mL) followed by addition of NMO (60% by weight in water,  0.07 

mL, 0.34 mmol) according to the general procedure to afford the crude product as black oil. 

Purification via column chromatography afforded 6b (80 mg, 0.28 mmol, 93%, 10:1 dr). 
1
H 

NMR (300 MHz, CDCl3): δH 7.31-7.18 (5H, m, Ph), 4.43 (2H, s, OCH2Ph), 4.12 (1H, br. s, 

OH), 3.96 (1H, d, J = 8.4 Hz, CHOH), 3.59-3.49 (4H, m, CH2OBn, CH2OH), 2.80 (1H, br. s, 

OH), 2.49 (1H, app. quintet, J = 7.4 Hz, CHCH3), 2.07-1.91 (2H, m, CH2CH2OBn), 1.20 (3H, 

d, J = 7.4 Hz, CHCH3); 
13

C{
1
H} NMR (75 MHz, CDCl3): δC 177.4, 136.5, 128.8, 128.5, 

128.3, 87.8, 76.5, 73.9, 66.4, 64.8, 42.9, 30.3, 13.7; IR cm
-1 

ν = 3402 (OH), 1754 (C=O); 

HRMS: m/z (ES) 303.1210, C15H20NaO5, [M+Na]
+ 

requires 303.1208; 
24

D][  = +18.0 (c = 

0.50 g/100 mL in CHCl3). 

(3S,4S,5R)-4-Hydroxy-5-(hydroxymethyl)-3-methyldihydrofuran-2(3H)-one, 6c: OsO4 

(15 mg, 0.06 mmol) was added to a solution of 1c (150 mg, 0.52 mmol) in acetone/water 

(8:1, 5 mL) followed by addition of NMO (60% by weight in water, 0.09 mL, 0.52 mmol) 

according to the general procedure to afford the crude product as black oil. Purification via 

column chromatography afforded a diastereomeric mixture of 6c major and 6c minor (60 

mg, 0.41 mmol, 79%, 3:1 dr). The two diastereoisomers were analysed as a mixture. 

(3S,4S,5R)-major: 
1
H NMR (500 MHz, MeOD): δH 4.19-4.17 (1H, m, CHCH2OH), 4.02 – 

3.99 (1H, m, CHOH), 3.94 (1H, dd, J = 12.8, 2.5 Hz, CHACHBOH), 3.72 (1H, dd, J = 12.8, 

4.8 Hz, CHACHBOH), 2.66 (1H, dq, J = 8.9, 7.1 Hz, CHCH3), 1.30 (3H, d, J = 7.3 Hz, CH3); 

13
C{

1
H} NMR (75 MHz, MeOD): δC 180.0, 86.8, 75.6, 62.0, 45.7, 13.6; (3S,4S,5S)-minor: 

1
H NMR (500 MHz, CDCl3): δH 4.57 (1H, dt, J = 5.8, 3.7 Hz, CHCH2OH), 4.27 (1H, t, J = 

6.0 Hz, CHOH), 3.90 (2H, d, J = 3.7 Hz, CHACHBOH), 2.71 (1H, dt, J = 13.6, 7.6 Hz, 

CHCH3), 1.29 (3H, d, J = 7.5 Hz, CH3); 
13

C{
1
H} NMR (75 MHz, MeOD): δC 181.6, 84.1, 



76.2, 62.2, 45.5, 14.4; IR cm
-1 

ν = 3377 (br. OH), 2934 (br. OH), 1763 (C=O); HRMS: m/z 

(ES) 147.0650, C6H11O4 [M+H]
+ 

requires 147.0657; 
24

D][  = +4.0 (c = 0.50 g/100 mL in 

MeOH). 

(3S,4S,5S)-4-Hydroxy-5-((S)-hydroxy(phenyl)methyl)-3-methyldihydrofuran-2(3H)-one, 

6d: OsO4 (13 mg, 0.05 mmol) was added to a solution of 1d (198 mg, 0.50 mmol) in 

acetone/water (8:1, 3 mL) followed by addition of NMO (60% by weight in water, 0.1 mL, 

0.55 mmol) according to the general procedure to afford the crude product as black oil. 

Purification via column chromatography afforded 6d (90 mg, 0.41 mmol, 81 %, 9:1 dr). 
1
H 

NMR (500 MHz, CDCl3): δH 7.41-7.25 (5H, m, Ph), 4.76 (1H, d, J = 5.7, CHPh), 4.22 (1H, 

dd, J = 9.2, 7.5 Hz, CHCHPh), 3.95 (1H, dd, J = 9.2, 7.5 Hz, CHOH), 2.56 (1H, dq, J = 9.2, 

7.2 Hz, CHCO), 1.19 (3H, d, J = 6.9 Hz, CH3CH); 
13

C{
1
H} NMR (75 MHz, CDCl3): δC 

178.4, 134.5, 129.1, 128.7, 127.4, 80.1, 74.9, 70.9, 43.1, 14.1; IR cm
-1 

ν = 3358 (br. OH), 

1753 (C=O); HRMS: m/z (ES) 223.0964, C12H15O4 [M+H]
+
 requires 223.0970; 

23

D][  = +44.0 

(c = 1.62 g/100 mL in CHCl3). 

(3S,4S,5R)-4-Hydroxy-5-((S)-1-hydroxyethyl)-3-methyldihydrofuran-2(3H)-one, 6e: 

OsO4 (13 mg, 0.05 mmol) was added to a solution of 1e (164 mg, 0.50 mmol) in 

acetone/water (8:1, 3 mL) followed by addition of NMO (60% by weight in water, 0.09 mL, 

0.54 mmol) according to the general procedure to afford the crude product as black oil. 

Purification via column chromatography afforded a diastereomeric mixture of 6e major and 

6e minor (66 mg, 0.41 mmol, 83%, 5:1 dr). The two diastereoisomers were analysed as a 

mixture. (3S,4S,5R)-major: 
1
H NMR (500 MHz, CDCl3): δH 4.11 (1H, dd, J = 8.8, 7.0 Hz, 

CHOH), 4.04-3.95 (2H, m, CHOCO, CHOHCH3), 2.68 (1H, dq, J = 9.1, 7.1 Hz, CHCO), 

1.37 (3H, d, J = 6.5 Hz, CH3CHOH), 1.32 (3H, d, J = 7.1 Hz, CH3CH); 
13

C{
1
H} NMR (75 

MHz, CDCl3): δC 176.8, 86.4, 74.9, 66.6, 44.2, 19.9, 12.8; (3S,4S,5S)-minor: 
1
H NMR (500 



MHz, CDCl3) δH 4.35-4.32 (1H, m, CHOH), 4.32 – 4.27 (2H, m, CHOCO, CHOHCH3), 2.76 

(1H, dq, J = 7.7, 5.3 Hz, CHCO), 1.39 (3H, d, J = 6.7 Hz, CH3CHOH), 1.32 (3H, d, J = 7.5 

Hz, CH3CH); 
13

C{
1
H} NMR (75 MHz, CDCl3) δC 177.3, 82.9, 76.3, 67.1, 44.6, 19.8, 14.0; IR 

cm
-1 

ν = 3356 (br. OH), 1754 (C=O); HRMS: m/z (ES) 183.0613, C7H12NaO4 [M+Na]
+
 

requires 183.0628. 

(3S,4S,5S)-5-((S)-2-(Benzyloxy)-1-hydroxyethyl)-4-hydroxy-3-methyldihydrofuran-

2(3H)-one, 6f: OsO4 (6 mg, 0.02 mmol) was added to a solution of 1f (100 mg, 0.22 mmol) 

in acetone/water (8:1, 1.2 mL) followed by addition of NMO (60% by weight in water, 0.04 

mL, 0.25 mmol) according to the general procedure to afford the crude product as black oil. 

Purification via column chromatography afforded 6f (47 mg, 0.17 mmol, 77%, 4:1 dr). 
1
H 

NMR (300 MHz, CDCl3): δH 7.33-7.20 (5H, m, Ph), 4.50 (2H, s, OCH2Ph), 4.04-3.90 (3H, 

m, CH3CHCHOH, COOCH, OCH2CHOH), 3.63-3.52 (3H, m, CH2OBn, OH), 2.95 (1H, d, J 

= 4.3 Hz, OH), 2.61-2.51 (1H, m, CHCH3), 1.22 (3H, d, J = 7.0 Hz, CHCH3);
 13

C{
1
H} NMR 

(75 MHz, CDCl3): δC 176.6, 137.1, 128.8, 128.4, 128.1, 84.3, 74.6, 74.0, 71.1, 69.3, 43.2, 

12.4; IR cm
-1 

ν = 3396 (OH), 1760 (C=O); HRMS: m/z (ES) 289.1041, C14H18NaO5, 

[M+Na]
+ 

requires 289.1051; 
24

D][  = +4.0 (c = 0.50 g/100 mL in CHCl3). 

(3S,4S,5S)-5-((R)-2-(Benzyloxy)-1-hydroxyethyl)-4-hydroxy-3-methyldihydrofuran-

2(3H)-one, 6g: OsO4 (6 mg, 0.02 mmol) was added to a solution of 1g (100 mg, 0.22 mmol) 

in acetone/water (8:1, 1.2 mL) followed by addition of NMO (60% by weight in water, 0.04 

mL, 0.25 mmol) according to the general procedure to afford the crude product as black oil. 

Purification via column chromatography afforded the product in 74% yield, 2:1 dr, 6g major 

(28 mg, 0.11 mmol, 45%), 6g minor (13 mg, 0.05 mmol, 21%) and a mixture of 6g major 

and 6g minor (4 mg, 0.15 mmol, 7%). (3S,4S,5R)-5-(S)-major: 
1
H NMR (300 MHz, 50:50 

CDCl3:C6H6): δH 7.32-21 (5H, m, Ph), 4.43 (1H, d, J = 11.6 Hz, OCHAHBPh), 4.36 (1H, d, J 



= 11.6 Hz, OCHAHBPh), 4.03 (1H, dd, J = 9.9, 7.3 Hz, CH3CHCHOH), 3.85 (1H, dd, J = 7.3, 

5.1 Hz, COOCH), 3.79-3.75 (1H, m, OCH2CHOH), 3.51 (1H, dd, J = 10.3, 3.3 Hz, CHA-

HBOBn), 3.46 (1H, dd, 10.3, 4.2 Hz, CHAHBOBn), 3.21 (1H, br. s, OH), 2.59 (1H, br. s, OH), 

2.50 (1H, dq, 9.9, 7.1 Hz, CHCH3), 1.25 (3H, d, J = 7.1 Hz, CHCH3); 
13

C{
1
H} NMR (75 

MHz, CDCl3): δC 176.5, 136.9, 128.8, 128.5, 128.2, 83.1, 74.5, 74.3, 70.9, 70.4, 42.7, 12.6; 

IR cm
-1 

ν = 3418.67 (OH), 1759.65 (C=O); HRMS: m/z (ES) 289.1042, C14H18NaO5, 

[M+Na]
+ 

requires 289.1051; 
24

D][  = -2.0 (c = 0.50 g/100 mL in CHCl3). (3S,4S,5S)-5-(R)-

minor: 
1
H NMR (300 MHz, CDCl3): δH 7.40-7.30 (5H, m, Ph), 4.59 (2H, s, OCH2Ph), 4.43 

(1H, dd, J = 8.0, 4.7 Hz, COOCH), 4.32 (1H, dd, J = 4.7, 2.6 Hz, CH3CHCHOH), 4.18-4.13 

(1H, m, OCH2CHOH), 3.79 (1H, dd, J = 9.9, 3.3 Hz, CHAHBOBn), 3.69 (1H, dd, J = 9.9, 5.0 

Hz, CHAHBOBn), 3.11 (1H, br. s, OH), 2.87 (1H, br. s, OH), 2.68 (1H, qd, J = 7.8, 2.5 Hz, 

CHCH3), 1.30 (3H, d, J = 7.8 Hz, CHCH3);
 13

C{
1
H} NMR (75 MHz, CDCl3): δC 178.4, 

137.3, 128.8, 128.3, 128.1, 79.2, 75.0, 73.9, 71.0, 69.1, 43.8, 13.8; IR cm
-1 

ν = 3421 (OH), 

1774 (C=O); HRMS: m/z (ES) 289.1032, C14H18NaO5, [M+Na]
+ 

requires 289.1051; 
24

D][  = -

6.0 (c = 0.50 g/100 mL in CHCl3). 

(3S,4S,5R)-4-Hydroxy-5-((S)-1-hydroxypropyl)-3,5-dimethyldihydrofuran-2(3H)-one, 

6h: OsO4 (15 mg, 0.06 mmol) was added to a solution of 1h (209 mg, 0.58 mmol) in 

acetone/water (8:1, 3 mL) followed by addition of NMO (60% by weight in water, 0.11 mL, 

0.64 mmol) according to the general procedure to afford the crude product as black oil. 

Purification via column chromatography afforded (3S,4S,5R)-4-hydroxy-5-((R)-1-

hydroxypropyl)-3,5-dimethyl-dihydrofuran-2(3H)-one, 6h (89 mg, 0.48 mmol, 82%, >49:1 

dr). 
1
H NMR (300 MHz, CDCl3): δH 4.12 (1H, dd, J = 9.8, 5.4 Hz, CHOH), 3.93 (1H, d, J = 

5.4 Hz, OH), 3.57 (1H, d, J = 8.5 Hz, OH), 3.37 (1H, ddd, J = 10.8, 8.8, 2.2 Hz, CHOHCH2), 

2.62 (1H, dq, J = 9.9, 7.1 Hz, CHCH3) 1.67 (1H, dqd, J = 15.1, 7.5, 2.4 Hz, CHAHBCH3) 

1.45-1.28 (1H, m, CHAHBCH3), 1.23 (3H, s, CH3CO), 1.18 (3H, d, J = 7.1 Hz, CHCH3), 0.97 



(3H, t, J = 7.3 Hz, CH2CH3); 
13

C{
1
H} NMR (75 MHz, CDCl3): δC 178.0, 89.1, 75.6, 75.2, 

41.6, 24.1, 16.4, 12.8, 11.3; IR cm
-1 

ν = 3356 (br. OH), 1748 (C=O); HRMS: m/z (ES) 

189.1120, C9H17O4 [M+H]
+ 

requires 189.1127; 
23

D][  = -5.4 (c = 1.30 g/100 mL in CHCl3). 

(3S,4S,5S)-5-((S)-2-(Benzyloxy)-1-hydroxyethyl)-4-hydroxy-3,5-dimethyldihydrofuran-

2(3H)-one, 6i: OsO4 (4 mg, 0.02 mmol) was added to a solution of 1i (75 mg, 0.17 mmol) in 

acetone/water (8:1, 0.7 mL) followed by addition of NMO (60% by weight in water,  0.03 

mL, 0.18 mmol) according to the general procedure to afford the crude product as black oil. 

Purification via column chromatography afforded 6i (43 mg, 0.15 mmol, 93%, >49:1 dr). 
1
H 

NMR (300 MHz, CDCl3): δH 7.31-7.17 (5H, m, Ph), 4.49 (1H, d, J = 11.6 Hz, OCHAHBPh), 

4.43 (1H, d, J = 11.6 Hz, OCHAHBPh), 3.86 (1H, d, J = 10.5 Hz, CHCH3CHOH), 3.77 (1H, 

dd, J = 7.6, 6.2 Hz, CHOHCH2OBn), 3.54 (1H, dd, J = 10.0, 6.2 Hz, CHAHBOBn), 3.47 (1H, 

dd, J = 9.8, 7.8 Hz, CHAHBOBn), 3.42 (1H, br. s, OH), 2.90 (1H, br. s, OH), 2.65-2.53 (1H, 

m, CHCH3), 1.20-1.16 (6H, m, CHCH3, CCH3); 
13

C{
1
H} NMR (75 MHz, CDCl3): δC 175.9, 

136.6, 128.9, 128.6, 128.3, 87.7, 76.8, 74.3, 74.0, 70.0, 40.6, 13.9, 12.7; IR cm
-1 

ν = 3420 

(OH), 1761 (C=O); HRMS: m/z (ES) 281.1368, C15H21O5, [M+H]
+ 

requires 281.1388; 
23

D][  

= -12.0 (c = 0.50 g/100 mL in CHCl3). 

(3S,4S,5R)-4-Hydroxy-5-(2-hydroxypropan-2-yl)-3-methyldihydrofuran-2(3H)-one, 6j: 

OsO4 (14 mg, 0.05 mmol) was added to a solution of 1j (184 mg, 0.53 mmol) in 

acetone/water (8:1, 3 mL) followed by addition of NMO (60% by weight in water, 0.10 mL, 

0.59 mmol) according to the general procedure to afford the crude product as black oil. 

Purification via column chromatography afforded 6j (38 mg, 0.22 mmol, 41%, 5:1 dr) as a 

pale oil. 
1
H NMR (300 MHz, CDCl3): δH 4.94 (1H, d, J = 4.1 Hz, OH), 4.26 (1H, app. dt, J = 

3.9, 1.5 Hz, CHOH), 4.09 (1H, d, J = 4.1 Hz, CHOCO), 2.96 (1H, br. s, OH), 2.68 (1H, qd, J 

= 7.8, 1.5 Hz, CHC(CH3)2OH), 1.38 (3H, s, (CH3)C(CH3)), 1.36 (3H, s, (CH3)C(CH3)), 1.19 



(3H, d, J = 7.8 Hz, CH3CH); 
13

C{
1
H} NMR (75 MHz, CDCl3): δC 179.5, 84.0, 76.3, 73.0, 

46.9, 28.7, 25.0, 13.5; IR cm
-1 

ν = 3295 (br. OH), 1754 (C=O); HRMS: m/z (ES) 175.0970, 

C8H15O4 [M+H]
+
 requires 175.0970; 

23

D][  = -55.6 (c = 0.99 g/100 mL in CHCl3). 

(3S,4S,5R)-4-Hydroxy-5-(hydroxymethyl)-5-methyl-3-phenyldihydrofuran-2(3H)-one, 

6k: OsO4 (6 mg, 0.03 mmol) was added to a solution of 1k (94 mg, 0.25 mmol) in 

acetone/water (8:1, 3 mL) followed by addition of NMO (60% by weight in water, 0.06 mL, 

0.26 mmol) according to the general procedure to afford the crude product as black oil. 

Purification via column chromatography afforded 6k (42 mg, 0.19 mmol, 75%, 9:1 dr) as a 

pale oil. 
1
H NMR (400 MHz, CDCl3): δH 7.29-7.23 (3H, m, Ph), 7.18-7.13 (2H, m, Ph), 4.62 

(1H, d, J = 10.5 Hz, CHOH), 3.80 (1H, d, J = 10.5 Hz, CHCO), 3.70 (1H, d, J = 12.6 Hz, 

CHAHBOH), 3.58 (1H, d, J = 12.6 Hz, CHAHBOH), 1.32 (3H, s, CH3); 
13

C{
1
H} NMR (75 

MHz, CDCl3): δC 174.3, 135.1, 129.4, 129.0, 128.4, 86.5,75.3, 65.5, 53.8, 16.9; IR IR cm
-1 

ν 

= 3308 (br. OH), 1745 (C=O); HRMS: m/z (ES) 223.0961, C12H15O4 [M+H]
+ 

requires 

223.0970; 
23

D][  = -9.1 (c = 0.83 g/100 mL in MeOH). 

(3S,4S,5S)-5-((R)-2-(benzyloxy)-1-hydroxyethyl)-4-hydroxy-3-methyldihydrofuran-

2(3H)-one, 6g: AD-mix-β (252 mg, 1.4 g/mmol of allylic alcohol) was dissolved in a 1:1 

mixture of 
t
BuOH and water (1.8 mL, 10 mL/mmol of allylic alcohol). MeSO2NH2 (17 mg, 

0.18 mmol) was added and the biphasic suspension was cooled to 0 ˚C. (S)-4-Benzyl-3-

((2S,3R,Z)-6-(benzyloxy)-3-hydroxy-2-methylhex-4-enoyl)-5,5-dimethyloxazolidin-2-one 

(80 mg, 0.18 mmol) dissolved in CH2Cl2 (1 mL) was added dropwise via syringe to the 

stirring suspension followed by OsO4 (4.5 mg, 0.18 mmol). The suspension was stirred 

vigorously whilst slowly warming to room temperature. After 48 hours, the reaction was 

quenched with solid sodium sulfite (100 mg) at room temperature. The suspension was 

filtered through a pad of Celite®/Florisil®, eluting with ethyl acetate before the solution was 



dried over MgSO4 and concentrated. The crude product was purified via column 

chromatography [1:1 EtOAc:Petroleum ether, Rf 0.15] to afford (3S,4S,5S)-5-((R)-2-

(benzyloxy)-1-hydroxyethyl)-4-hydroxy-3-methyldihydrofuran-2(3H)-one 6g (46 mg, 0.17 

mmol, 95%, 17:1 dr) as a white oil. 

(3S,4S,5R)-5-((S)-2-(Benzyloxy)-1-hydroxyethyl)-4-hydroxy-3-methyldihydrofuran-

2(3H)-one, 8: AD-mix-α (252 mg, 1.4 g/mmol of allylic alcohol) was dissolved in a 1:1 

mixture of 
t
BuOH and water (1.8 mL, 10 mL/mmol of allylic alcohol). MeSO2NH2 (17 mg, 

0.18 mmol) was added and the biphasic suspension was cooled to 0 ˚C. (S)-4-Benzyl-3-

((2S,3R,Z)-6-(benzyloxy)-3-hydroxy-2-methylhex-4-enoyl)-5,5-dimethyloxazolidin-2-one 

(80 mg, 0.18 mmol) dissolved in CH2Cl2 (1 mL) was added dropwise via syringe to the 

stirring suspension followed by OsO4 (4.5 mg, 0.18 mmol). The suspension was stirred 

vigorously whilst slowly warming to room temperature. After 48 hours, the reaction was 

quenched with solid sodium sulfite (100 mg) at room temperature. The suspension was 

filtered through a pad of Celite®/Florisil®, eluting with ethyl acetate before the solution was 

dried over MgSO4 and concentrated. The crude product was purified using via column 

chromatography [1:1 EtOAc:Petroleum ether, Rf 0.15] to afford (3S,4S,5R)-5-((S)-2-

(benzyloxy)-1-hydroxyethyl)-4-hydroxy-3-methyldihydrofuran-2(3H)-one 8 (46 mg, 0.17 

mmol, 95%, 4:1 dr) as a white oil. 

Synthesis of 2-Deoxy-D-ribonolactone 

(S)-4-Benzyl-3-(2-chloroacetyl)-5,5-dimethyloxazolidin-2-one, 7c: The title compound was 

prepared according to the general procedure from n-BuLi (10.7 mL, 26.8 mmol, 2.5 M 

solution in hexane), (S)-4-benzyl-5,5-dimethyloxazolidin-2-one (5.00 g, 24.3 mmol) and 

chloroacetyl chloride (2.07 mL, 26.8 mmol) in THF (150 mL). The crude product was 

purified using flash silica chromatography [1:9 EtOAc:Petroleum ether, Rf 0.50] to afford 



(S)-4-benzyl-3-(2-chloroacetyl)-5,5-dimethyloxazolidin-2-one 7c (5.69 g, 20.1 mmol, 83%) 

as a colourless oil that solidified on standing. 
1
H NMR (300 MHz, CDCl3): δH 7.32-7.20 (5H, 

m, Ph), 4.76 (1H, d, J = 15.8 Hz, COCHAHBCl), 4.64 (d, J = 15.8 Hz, COCHAHBCl), 4.49 

(1H, dd, J = 9.7, 3.9 Hz, CHN), 3.20 (1H, dd, J = 14.4, 3.8 Hz, CHHAHBPh), 2.88 (1H, dd, J 

= 14.4, 9.8 Hz, CHAHBPh), 1.38 (3H, s, C(CH3)(CH3)), 1.36 (3H, s, C(CH3)(CH3)); 
13

C{
1
H} 

NMR (75 MHz, CDCl3): δC 166.4, 152.4, 136.5, 129.1, 128.9, 127.1, 83.7, 64.1, 44.0, 35.0, 

28.7, 22.4; IR cm
-1 

ν = 1769 (C=Oox), 1709 (C=O); HRMS: m/z (ES) 304.0722, 

C14H16ClNNaO3 [M+Na]
+ 

requires 304.0716; 
25

D][  = -32.0 (c = 0.50 g/100 mL in CHCl3). 

(S)-4-Benzyl-3-((2S,3R)-2-chloro-3-hydroxypent-4-enoyl)-5,5-dimethyloxazolidin -2-one, 

9: The title compound was prepared according to the general procedure from dibutylboron 

triflate (7.70 mL, 7.7 mmol), (S)-4-benzyl-3-(2-chloroacetyl)-5,5-dimethyloxazolidin-2-one 

7c (1.97g, 7.0 mmol), N,N-diisopropylethylamine (1.58 mL, 9.1 mmol) and acrolein (0.61 

mL, 9.1 mmol) in dichloromethane (15 mL) to afford a crude product as a pale yellow oil. 

The crude product was purified using flash silica chromatography [1:4 EtOAc:Petroleum 

ether, Rf 0.27] to afford (S)-4-benzyl-3-((2S,3R)-2-chloro-3-hydroxypent-4-enoyl)-5,5-

dimethyloxazolidin-2-one 9 (1.07g, 3.2 mmol, 45%) as a colourless oil. 
1
H NMR (300 MHz, 

CDCl3): δH 7.31-7.17 (5H, m, Ph), 5.88 (1H, ddd, J = 17.3, 10.5, 5.8 Hz, CH=CH2), 5.72 (1H, 

d, J = 5.1 Hz, CHCl), 5.40 (1H, dt, J = 17.3, 1.3 Hz, CH=CHAHB), 5.28 (1H, dt, J = 10.5, 1.2 

Hz, CH=CHAHB), 4.59 (1H, app. t, J = 5.5 Hz, CHOH), 4.48 (1H, dd, J = 9.5, 3.8 Hz, CHN), 

3.14 (1H, dd, J = 14.4, 3.8 Hz CHAHBPh), 3.00 (1H, br. s, OH), 2.88 (1H, dd, J = 14.4, 9.5 

Hz, CHAHBPh), 1.36 (3H, s, C(CH3)(CH3)), 1.33 (3H, s, C(CH3)(CH3)); 
13

C{
1
H} NMR (75 

MHz, CDCl3): δC 167.9, 152.0, 136.4, 135.0, 129.1, 128.8, 127.0, 118.9, 83.3, 72.9, 64.0, 

59.1, 34.9, 28.5, 22.2; IR cm
-1 

ν = 3496 (OH), 1771 (C=Oox), 1703 (C=O); HRMS: m/z (ES) 

338.1149, C17H21ClNO4 [M+H]
+ 

requires 338.1159; 
24

D][  = -12.0 (c = 1.00 g/100 mL in 

CHCl3). 



(S)-4-Benzyl-3-((S)-3-hydroxypent-4-enoyl)-5,5-dimethyloxazolidin-2-one, 10: (S)-4-

Benzyl-3-((2S,3R)-2-chloro-3-hydroxypent-4-enoyl)-5,5-dimethyloxazolidin-2-one 9 (1.08 g, 

3.2 mmol) was dissolved in dry methanol (12 mL) under nitrogen. Zinc dust (0.83 g, 12.8 

mmol) and ammonium chloride (0.69 g, 12.8 mmol) were added and the reaction was stirred 

for one hour. The suspension was filtered through Celite and concentrated to afford the crude 

product as a yellow oil. The crude product was purified using flash silica chromatography 

[1:4 EtOAc:Petroleum ether, Rf 0.18] to afford  (S)-4-benzyl-3-((S)-3-hydroxypent-4-enoyl)-

5,5-dimethyloxazolidin-2-one 10 (0.79 g, 2.6 mmol, 82%) as a colourless oil. 
1
H NMR (300 

MHz, CDCl3): δH 7.33-7.24 (5H, m, Ph), 5.89 (1H, ddd, J = 17.3, 10.5, 5.4 Hz, CH=CH2), 

5.32 (1H, d, J = 17.3 Hz, CH=CHAHB), 5.15 (1H, d, J = 10.5 Hz, CH=CHAHB), 4.58-4.50 

(2H, m, CHOH, CHN), 3.16-3.09 (3H, m, CHACHBPh, CH2CHOH), 2.93-2.85 (2H, m, 

CHACHBPh, CHOH), 1.39 (3H, s, C(CH3)(CH3)), 1.37 (3H, s, C(CH3)(CH3));
 13

C{
1
H} NMR 

(75 MHz, CDCl3): δC 172.3, 152.7, 138.8, 136.8, 129.1, 128.9, 127.0, 115.5, 82.7, 68.9, 63.5, 

42.6, 35.6, 28.6, 22.3; IR cm
-1 

ν = 3483 (OH), 1771 (C=O), 1694 (C=Oox); HRMS: m/z (ES) 

304.1511, C17H22NO4, [M+H]
+ 

requires 304.1548; 
20

D][  = -52.0 (c = 0.50 g/100 mL in 

CHCl3). 

2-Deoxy-D-ribonolactone - (4S,5R)-4-Hydroxy-5-(hydroxymethyl)dihydrofuran-2(3H)-

one, 11: OsO4 (16 mg, 0.06 mmol) was added to a solution of 10 (200 mg, 0.66 mmol) in 

acetone/water (8:1, 2.5 mL) followed by addition of NMO (60% by weight in water, 0.12 

mL, 0.73 mmol) according to the general procedure to afford the crude product as black oil. 

Purification via column chromatography afforded 11 (76 mg, 0.57 mmol, 87%, 9:1 dr). 

(4S,5R)-major: 
1
H NMR (500 MHz, MeOD): δH 4.46 (1H, dt, J = 6.7, 2.3 Hz, CHOH), 

4.40–4.39 (1H, m, CHCH2OH), 3.79 (1H, dd, J = 12.4, 3.3 Hz, CHAHBOH), 3.72 (1H, dd, J = 

12.4, 3.7 Hz, CHAHBOH), 2.94 (1H, dt, J = 17.9, 6.8 Hz, CHAHBC=O), 2.40 (1H, dd, J = 

17.9, 2.5 Hz, CHAHBC=O);
 13

C{
1
H} NMR (75 MHz, MeOD): δC 179.5, 91.0, 70.6, 63.4, 



40.0; (4S,5S)-minor:
 1

H NMR (500 MHz, MeOD): δH 4.63-4.50 (2H, m, CHOH & 

CHCH2OH), 3.90 (2H, dd, J = 5.4, 1.6 Hz, CH2OH), 2.93 (1H, dd, J = 17.6, 5.9 Hz, 

CHAHBC=O), 2.45 (1H, dd, J = 17.7, 1.6 Hz, CHACHBC=O); 
13

C{
1
H} NMR (75 MHz, 

MeOD): δC 179.5, 87.4, 69.8, 62.1, 40.9; IR cm
-1 

ν = 3356 (OH), 1749 (C=O); HRMS: m/z 

(ES) 155.0333, C5H8NaO4, [M+Na]
+ 

requires 155.0320; 
25

D][  = +4.0 (c = 0.50 g/100 mL in 

MeOH) [lit: 
25

D][  = +2.17 (c = 0.6 g/100 mL in MeOH)].
12a 
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