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Abstract 

The Darcy–Bénard problem with constant heat flux boundary conditions is studied in 

a regime where the fluid and solid phases are in local thermal non–equilibrium. The 

onset conditions for convective instability in the plane porous layer are investigated 

using a linear stability analysis. Constant heat flux boundary conditions are formu

lated according to the Amiri–Vafai–Kuzay Model A, where the boundary walls are 

assumed as impermeable and with a high thermal conductance. The normal mode 

analysis of the perturbations imposed on the basic state leads to a one–dimensional 

eigenvalue problem, solved numerically to determine the neutral stability condition. 

Analytical solutions are found for the limit of small wave numbers, and in the regime 

where the conductivity of the solid phase is much larger than the conductivity of the 

fluid phase. A comparison with the corresponding results under conditions of local 

thermal equilibrium is carried out. The critical conditions for the onset of convection 

correspond to a zero wave number only when the inter–phase heat transfer coefficient 

is sufficiently large. Otherwise, the critical conditions correspond to a nonzero wave 

number. 

Keywords: Porous medium; Darcy–Bénard problem; Buoyancy–induced instability; Local 

thermal non–equilibrium; Constant heat flux. 
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Nomenclature 

a dimensionless wave number, 

A; B integration constants 

c heat capacity per unit mass 

ez unit vector in the z−direction 

g; g gravitational acceleration; modulus of g 

h inter–phase heat transfer coefficient 

H dimensionless inter–phase heat transfer parameter, Eq. (8) 

k thermal conductivity 

K permeability 

L layer thickness 

n natural number 

qw wall heat flux 

R Darcy–Rayleigh number, Eq. (8) 

R� modified Darcy–Rayleigh number, Eq. (64) 

t dimensionless time, Eq. (6) 

T dimensionless temperature, Eq. (6) 

u dimensionless velocity, (u, v, w), Eq. (6) 

U dimensionless velocity disturbance, (U, V, W ), Eq. (15) 

x dimensionless position vector, (x, y, z), Eq. (6) 

Greek symbols 

α thermal diffusivity


β thermal expansion coefficient


γ dimensionless parameter, Eq. (8)


ΔT reference temperature difference, Eq. (7)


ε dimensionless perturbation parameter, Eq. (15)


Θ dimensionless fluid phase temperature disturbance, Eq. (15)


Θ� , Φ�, Ψ� dimensionless disturbance amplitudes, Eq. (26)


Θ�n, Φ�n, Ψ�n, Rn power series coefficients, Eq. (43)


λ dimensionless parameter, Eq. (8)


Λ� dimensionless function, Eq. (31)


µ dynamic viscosity
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ν kinematic viscosity 

ρ density 

ϕ porosity 

Φ dimensionless solid phase temperature disturbance, Eq. (15) 

Ψ dimensionless streamfunction disturbance, Eq. (21) 

ζ equal to z − 1 
2 

σ equal to H(γ + 1) 

Superscript, subscripts 

dimensional quantity 

B basic solution 

c critical value 

f fluid phase 

m volumetric average over the phases 

s solid phase 

th threshold value 

� differentiation with respect to z 

1 Introduction 

The onset of convection in porous media due to an externally imposed thermal gradient, 

originally formulated and solved in the pioneering papers by Horton and Rogers [1] and 

by Lapwood [2], is now a classical topic in fluid dynamics. The original statement of 

this problem, well–known as Darcy–Bénard problem or as the Horton–Rogers–Lapwood 

problem, corresponds to a plane porous channel bounded by a pair of isothermal walls 

kept at different temperatures. Among the many extensions of these papers, reviewed 

extensively in Chapter 6 of Nield and Bejan [3], here we focus our attention on the analysis 

of the thermoconvective instability in a fluid saturated porous medium under conditions 

of local thermal non–equilibrium. 

Local thermal non–equilibrium in a porous medium saturated by a fluid is modelled by 

assuming two temperature fields, one for the solid phase and one for the fluid phase. An 

inter–phase heat transfer coefficient h is defined, so that the local energy balance equations 

for the fluid phase and for the solid phase contain heat exchange terms proportional to 
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h and to the local temperature difference between the phases. This model, formulated 

following the earlier studies by Anzelius [4], by Schumann [5], and by other investigators 

such as Combarnous and Bories [6], is nowadays established in the form expressed by Nield 

and Bejan [3]. Surveys of the main results obtained on applying this non–equilibrium 

model to the analysis of convection in porous media have been carried out by Kuznetsov 

[7] and by Rees and Pop [8]. 

The two–temperature model was first employed in a linear stability analysis of the Darcy– 

Bénard problem by Banu and Rees [9]. This study, which is based on Darcy’s law, uses the 

same boundary conditions as those considered by Horton and Rogers [1] and by Lapwood 

[2], namely constant temperature conditions. An extension of the analysis by Banu and 

Rees [9] to a more general local momentum balance equation, including both the form– 

drag term and the Brinkman term, was carried out by Postelnicu and Rees [10] for the case 

of stress–free isothermal boundaries, and by Postelnicu [11] for the case of isothermal rigid 

boundaries. Malashetty et al. [12] investigated the onset of the thermoconvective instabil

ity in the case of a non–isotropic porous medium under local non–equilibrium conditions. 

Heat generation occurring either in the fluid phase or in the solid phase has been taken 

into account by Nouri–Borujerdi et al. [13], together with the temperature difference be

tween the boundary walls, as the possible source of the thermal instability in a horizontal 

porous layer. All these papers deal with extensions of the Darcy–Bénard problem under 

the hypothesis of local thermal non–equilibrium, assuming thermal boundary conditions 

of the Dirichlet type. The case of Neumann thermal boundary conditions, i.e. uniform 

heat flux, have not been considered thus far and form the objective of the present study. 

This paper provides a linear stability analysis for a horizontal porous layer with a uniform 

heat flux prescribed on the plane boundary walls. The regime of local thermal non– 

equilibrium is studied including, as special cases, the limits of zero and infinite inter–phase 

heat transfer coefficient. The former limit is the regime of thermally decoupled phases, 

where the temperature field of the fluid is independent of the temperature field of the 

solid. The latter limit corresponds to local thermal equilibrium, investigated originally by 

Nield [14] and described in detail in Section 6.2 of Nield and Bejan [3]. We also investigate 

the two limits where the thermal conductivity of the fluid phase is either much larger or 

much smaller than the thermal conductivity of the solid phase. In the latter case, the 

linear stability problem admits a completely analytical solution. 
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2 Problem statement and governing equations 

We consider a plane porous layer having thickness L, bounded at z = 0 and at z = L by 

impermeable boundaries where a uniform heat flux, qw, is prescribed (see Fig. 1). The 

buoyant flow in the porous layer is studied under the following assumptions: 

•	 the Oberbeck–Boussinesq approximation holds; 

•	 Darcy’s law holds; 

•	 the viscous dissipation effect is negligible and volumetric heating is absent; 

•	 the local thermal non–equilibrium between the solid and fluid phases is modeled 

through an inter–phase heat transfer coefficient h. 

2.1 Governing equations 

As a consequence of the basic assumptions, the governing local balance equations can be 

written as 

� · u = 0,	 (1) 

K	
� × u = ρf g β � × T f ez , (2) 

∂T s 2 � � 
(1 − ϕ) (ρ c)s = (1 − ϕ) ks � T s + h T f − T s , (3)

∂t 

∂T f	 2 � � 
ϕ (ρ c)f + (ρ c)f u · � T f = ϕkf � T f + h T s − T f .	 (4)

∂t 

Eq. (2) represents the vorticity formulation of Darcy’s law. In fact, the curl operator has 

been applied to the local momentum balance equation in order to eliminate the pressure 

field. 

2.2 Boundary conditions 

The boundary conditions for the seepage velocity, u = (u, v, w), and for the temperature 

fields, T f, T s, may be expressed according to the models formulated by Amiri et al. [15] 

and recently revisited by Yang and Vafai [16]. 

In the present study, we will adopt the so–called Model A [16]. This model of the constant 

heat flux boundary conditions is based on the assumption that the boundaries z = 0, L 
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are in a condition of local thermal equilibrium. Moreover, it is assumed that the supplied 

wall heat flux qw is given by the sum of the Fourier heat fluxes 

∂T f ∂T s 
, ,−kf 

∂z 
−ks 

∂z 

in the fluid phase and in the solid phase, where each flux is weighted by the volumetric 

fraction of the corresponding phase, ϕ and 1 − ϕ respectively. Thus, the velocity and 

temperature boundary conditions can be written as 

z = 0, L :


⎧⎪⎪⎪⎪⎪⎪⎪⎨ ⎪⎪⎪⎪⎪⎪⎪⎩


w = 0,


∂T f ∂T s −ϕkf − (1 − ϕ) ks
∂z 

= qw, (5)
∂z


T f = T s. 

As pointed out by Yang and Vafai [16], this formulation of the constant heat flux boundary 

conditions is appropriate when the impermeable boundary wall is of finite thickness and 

with a high thermal conductivity. We mention that, in Eq. (5), the condition involving 

the heat fluxes is based on an energy balance at the boundary. There, the surface porosity 

is considered equal to the porosity ϕ. In fact, the latter assumption is legitimate for a 

homogeneous porous medium [17, 18]. 

2.3 Dimensionless quantities 

We define dimensionless variables as follows: 

L2 αf 
x = x L, t = t , u = u , T s,f = Ts,f ΔT, (6)

αf L 

where 

qw L 
ΔT = , km = (1 − ϕ) ks + ϕkf . (7)

km 

We also introduce the dimensionless parameters 

αf hL2 ϕkf g β ΔT K L 
λ = , H = , γ = , R = . (8)

αs ϕkf (1 − ϕ) ks αm ν 

Here, R is the Darcy–Rayleigh number. On the other hand, αf = kf /(ρ c)f and αs = 

ks/(ρ c)s are the thermal diffusivities of the fluid phase and of the solid phase respectively, 

while αm = km/(ρ c)f is the effective thermal diffusivity. Then, Eqs. (1)–(4) may be 

rewritten in the form, 

� · u = 0, (9) 
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1 + γ � × u = ϕ R � × (Tf ez) , (10)
γ 

∂Ts
λ 

∂t 
= �2Ts + H γ (Tf − Ts) , (11) 

∂Tf 1 
+ u · �Tf = �2Tf + H (Ts − Tf ) . (12)

∂t ϕ 

while the boundary conditions, Eq. (5), can be expressed as


z = 0, 1 :


⎧⎪⎪⎪⎪⎪⎪⎪⎨ ⎪⎪⎪⎪⎪⎪⎪⎩


w = 0,


∂Tf ∂Ts −γ 
∂z 

− 
∂z 

= 1 + γ, (13)


Tf = Ts. 

We mention that, due to to the constant heat flux boundary conditions, the solution of 

Eqs. (9)–(13) determines the temperature fields Tf and Ts only up to an arbitrary additive 

constant. 

3 The basic solution 

A steady–state solution of Eqs. (9)–(13) with a zero velocity exists, ⎧ ⎪⎪⎨ ⎪⎪⎩


uB = 0, 
(14) 

TsB = TfB = 1 − z, 

where “B” stands for basic solution. For all values of H, γ and λ the basic state solution is 

local thermal equilibrium basic solution. We have chosen the arbitrary additive constant 

in the expressions of TsB and TfB so that TfB = 0 at z = 1. 

4 Linear stability 

We now perturb the basic solution, 

u = uB + ε U, Ts = TsB + ε Φ, Tf = TfB + ε Θ, (15) 

where ε is a small perturbation parameter satisfying |ε| � 1. We substitute Eq. (15) into 

Eqs. (9)–(12) and neglect terms of O(ε2). Thus, we obtain the following linearized system, 

� · U = 0, (16) 
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1 + γ � × U = ϕ R � × (Θ ez) , (17)
γ 

λ 
∂

∂t 
Φ

= �2Φ+ H γ (Θ − Φ) , (18) 

∂Θ 1 
∂t 

− 
ϕ

W = �2Θ+ H (Φ − Θ) . (19) 

Given that the porous layer, the basic solution and the boundary conditions share a rota

tional symmetry about the z−axis, we conclude that the wave vector of the linear distur

bances may be equivalently orientated in any direction within the horizontal (x, y)−plane. 

As a consequence it is not restrictive to assume two–dimensional disturbances lying in the 

(x, z)−plane. This means that we may write, 

U = U(x, z, t), V = 0, W = W (x, z, t), Φ = Φ(x, z, t), Θ = Θ(x, z, t). (20) 

Hence, Eq. (16) can be identically satisfied by defining a streamfunction, Ψ(x, z, t), such 

that 

∂Ψ ∂Ψ 
U = ϕ 

∂z 
, W = − ϕ 

∂x 
. (21) 

On account of Eq. (21), Eqs. (17)–(19) yield 

�2Ψ+ 
1 + 
γ

γ 
R

∂

∂x 
Θ 

= 0, (22) 

λ 
∂

∂t 
Φ

= �2Φ+ H γ (Θ − Φ) , (23) 

∂Θ ∂Ψ 
∂t 

+ 
∂x 

= �2Θ+ H (Φ − Θ) . (24) 

The boundary conditions associated with the eigenvalue problem Eqs. (22)–(24) are now 

given by 

z = 0, 1 :


⎧⎪⎪⎪⎪⎪⎪⎪⎨ ⎪⎪⎪⎪⎪⎪⎪⎩


Ψ = 0, 

∂Θ ∂Φ 
γ + = 0,

∂z ∂z 

Θ = Φ. 

(25)


4.1 Stationary modes 

It is possible to show using an integral method that solutions of Eqs. (22)–(25) either 

decay or grow exponentially in time and that the exponential growth rate is real. In 

other words, the principle of the exchange of stabilities applies, and therefore all modes of 
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� � 
� � 

�

� �


� � 

� � � �

� �

instability are stationary. Therefore we are able to set all time derivatives to zero in order 

to determine the onset criterion. We begin by substituting, 

Ψ = � Φ = � Θ = � (26)Ψ(z) cos(a x), Φ(z) sin(a x), Θ(z) sin(a x). 

into Eqs. (22)–(25), after which we obtain, 

� 2 � Θ = 0,Ψ�� − a Ψ+ a 
1 + γ

R � (27)
γ � 2 � �Φ�� − a Φ+ H γ Θ − Φ� = 0, (28) 

� 2 � � �Θ�� − a Θ+ H Φ − Θ� + a Ψ = 0, (29) 

� γ Θ� � + � �z = 0, 1 : Ψ = 0, Φ� = 0, Θ = Φ�, (30) 

where the primes denote differentiation with respect to z.


An alternative formulation of the differential problem Eqs. (27)–(30) may be obtained by


defining the new dependent variable,


� Φ(z)
Λ(z) = Θ(� z) + . (31)

γ 

Thus, combination of Eqs. (28) and (29) allows one to rewrite Eqs. (27)–(30) as 

1 + γ Φ�

2 �Ψ� �� − a Ψ+ a

γ
R Λ� − 

γ 
= 0, (32) 

� 2 � �Λ�� − a Λ + a Ψ = 0, (33) 

1 + γ� 2 � � �Φ�� − a Φ+ H γ Λ − Φ = 0, (34)
γ 

γ 
z = 0, 1 : Ψ = 0, Λ� = 0, Φ = Λ. (35)

1 + γ 

4.1.1 The limit of local thermal equilibrium 

Local thermal equilibrium occurs when the inter–phase heat transfer coefficient h becomes 

asymptotically large, i.e. in the limit H → ∞. Within this regime, Eq. (28) can be satisfied 

only if � Φ(z), for all z.Θ(z) = � Equivalently, if H → ∞, Eq. (34) can be satisfied only if 

1 + γ 
Λ(z) = Φ(z), (36)

γ 

for every z. Thus, in the limit of local thermal equilibrium the eigenvalue problem 

Eqs. (32)–(35) simplifies to 

Ψ� �� − a Ψ+ aR � (37)2 � Λ = 0, 
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� �

� �

� � 

� � 

� 2 � �Λ�� − a Λ + a Ψ = 0, (38) 

z = 0, 1 : Ψ = 0, Λ� = 0. (39) 

We note that, on taking the limit γ → ∞ of Eqs. (27)–(30) with a finite H, we obtain � Θ and Φ = �
� 2 � Θ = 0,Ψ�� − a Ψ+ aR � (40) 

� 2 � �Θ�� − a Θ+ a Ψ = 0, (41) 

z = 0, 1 : Ψ = 0, Θ� = 0. (42) 

By employing Eq. (31), we can conclude that the limit γ → ∞ with a finite H yields � Θ = �Φ = � Λ. Therefore, the eigenvalue problem Eqs. (40)–(42) is completely equivalent to 

that given by Eqs. (37)–(39). In other words, the condition of local thermal equilibrium 

is attained either by taking the limit H → ∞ with a finite γ, or by taking the limit 

γ → ∞ with a finite H. We mention that, on account of Eq. (8), γ → ∞ means a 

volumetric conductance of the fluid phase, ϕkf , which is much greater than the volumetric 

conductance of the solid phase, (1 − ϕ) ks. We note that the onset criterion for Eqs. (37)– 

(39) or Eqs. (40)–(42) is well–known: Rc = 12 and ac = 0; see Nield and Bejan [3]. 

4.2 Stationary modes with a zero wave number 

Given that the local thermal equilibrium limit of the present problem has a critical wave 

number equal to zero and that the neutral curve has a quadratic minimum at that point, 

any slight relaxation of the local thermal equilibrium condition is unlikely to change this 

qualitative behaviour. Therefore it is a reasonable first step in our detailed analysis to 

consider the small–a solution. 

(Ψ� , Θ� , Φ�, R) = (aΨ�0, Θ�0, Φ�0, R0) + a 2(aΨ�2, Θ�2, Φ�2, R2) 
(43) 

+ a 4(aΨ�4, Θ�4, Φ�4, R4) + .· · · 

At O(1) we obtain the equations, 

Θ� ��
0 + H(Φ�0 − Θ�0) = 0, Φ� ��0 + Hγ(Θ�0 − Φ�0) = 0, Ψ� �� = −R0 

γ + 1 
Θ�0. (44)0 γ 

It may be shown that these equations have the following solutions, 

γ + 1 
Θ�0 = Φ�0 = 1, Ψ�0 = −2

1 R0 
γ 

(z 2 − z). (45) 
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� � 

� � 

� 

� � � � 

Although the common value of Θ�0 and Φ�0 should be an arbitrary constant, we have set 

it equal to 1 for convenience and to break the overall scale invariance of the solution. For 

further convenience we will set z = ζ + 12 . As further solutions are also even about z = 12 , 

they will be even in ζ. Therefore the solutions given in Eq. (45) become, � �� � 
γ + 1 ζ2 1 

Θ�0 = Φ�0 = 1, Ψ�0 = −R0 
γ 2 

− 
8 

. (46) 

At O(a2) the equations for Θ�2 and Φ�2 are, 

Θ� ��
2 + H(Φ�2 − Θ�2) = −Ψ�0 +Θ�0, Φ�2�� + Hγ(Θ�2 − Φ�2) = Φ�0. (47) 

Therefore we may form, 

ζ2 1 
γΘ�2

�� +Φ�2�� = (γ + 1) + R0(γ + 1) 
2 

− 
8 

, (48) 

which may be integrated once to obtain, 

ζ3 ζ 
γΘ� �

2 +Φ� �2 = (γ + 1)ζ + R0(γ + 1) 
6 

− 
8 

, (49) 

where the constant of integration has been omitted because it is even. This quantity 

should be zero at the boundaries, ζ = ±1 , because it is one of the boundary conditions 2 

given in Eq. (30) and this solvability condition leads to the requirement that, 

R0 = 12. (50) 

This result shows that the onset criterion corresponding to the zero wave number is un 


changed under local thermal non–equilibrium conditions, and it is therefore independent


of the values of H and γ.


Having obtained R0 we may now complete the solution for Θ�2 and Φ�2; they are,


12 cosh σζ 6ζ2 

Θ�2 = B − 14 ζ
2 + 12 ζ

4 + 
H2(γ + 1)2γ cosh 1 σ 

− 
H(γ + 1)γ

, (51) 
2 

Φ�2 = B − 14 ζ
2 + 12 ζ

4 12 cosh σζ 
+

6ζ2 3/2 
+ 

12 
, (52)− 

H2(γ + 1)2 cosh 1 σ H(γ + 1) 
− 

Hγ H2(γ + 1)γ
2 

where σ = H(γ + 1). The value, B, is an arbitrary constant and we may select it to be


zero because its value does not affect the solvability condition at O(a4).


The equation for Ψ�2 is now,


Ψ� ��
2 = −R0 

γ + 1 
Θ�2 − R2 

γ + 1 
Θ�0 +Ψ�0. (53)

γ γ 
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� � 

� 

� � 

� � 

We omit the full expression for the right hand side of this equation for the sake of brevity, 

but the solution is, 

Ψ�2 = −12 
γ + 1 ζ6 − (2

1 )6 

+ 
ζ4 − (2

1 )4 ζ2 − (2
1 )2 ζ4 − (2

1 )4 

γ 60 48 
− 

16 
− 

2H(γ + 1)γ � �� � �� � (54) 
12 cosh σζ γ + 1 ζ2 1 

+ 
H3(γ + 1)3γ cosh 1 σ 

− 1 − R2 
γ 2 

− 
8 

. 
2 

The equations for Θ�4 and Φ�4 at O(a4) are, 

Θ� ��
4 + H(Φ�4 − Θ�4) = −Ψ�2 +Θ�2, Φ� ��4 + Hγ(Θ�4 − Φ�4) = Φ�2. (55) 

We follow the same procedure as above for Θ�2 and Φ�2, namely, we integrate once and 

apply the boundary condition that γΘ� �
4 + Φ� �4 = 0. This yields the following solvability 

condition, 

8 72 1/5 2 24 48 tanh 1 σ 
R2 = + 2 . (56)

7 
− 

γ H(γ + 1) 
− 

H2(γ + 1)2 H3(γ + 1)3 − 
σH3(γ + 1)3 

This value of R2 is of great importance: if it is positive, then the value a = 0 represents 

a local minimum in the neutral curve. We can see from Eq. (55) that the value is R2 = 7
8 

in the local thermal equilibrium limit and in that case a = 0 actually represents a global 

minimum. On the other hand, if R2 is negative, this will imply that a = 0 represents a 

local maximum, and we should expect a global minimum at a nonzero value of a. 

Anticipating our numerical results which are presented later, if we need to determine the 

point at which transition between a = 0 representing a local minimum in the neutral curve 

and representing a maximum, then we need R2 = 0. It is not possible to determine H as 

an explicit function of γ or vice versa, but such threshold values of γ may be written in 

terms of σ = H(γ + 1), as follows: 

1 2 24 48 tanh 2
1 σ 

γ = 63 
5σ2 − 

σ4 + 
σ6 − 

σ7 . (57) 

It is possible to analyse Eq. (56) further. When H � 1 then γ = O(1) and hence σ � 1. 

The tanh function in Eq. (56) may now be expanded in a Taylor’s series and we obtain, 

8 72 17 
R2 = + O(H) (58)

7 
− 

γ 840 

Therefore R2 = 0 when 

51 
γ = + O(H). (59)

40 
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On the other hand, when H → ∞ and γ 0, then it is clear that σ → ∞. Therefore→ 

Eq. (56) becomes, 

8 72 
R2 ∼ 

7 
− 

5Hγ 
(60) 

at leading order. Hence R2 = 0 implies that 

63 
Hγ = . (61)

5 

5 Numerical solution 

The eigenvalue problem Eqs. (32)–(35) can be solved numerically by employing a sixth– 

order Runge–Kutta solver combined with a shooting technique. More precisely, Eqs. (32)– 

(34) can be integrated numerically by means of the Runge–Kutta solver with the initial 

conditions 

Ψ(0) = 0, Ψ�(0) = η, Λ(0) = 1, Λ�(0) = 0, 

γ (62) 
Φ(0) = � , Φ� �(0) = ξ. 

1 + γ 

As already noted in Section 4.2, the condition Λ(0)� = 1 serves to break the overall scale 

invariance of the solution. On the other hand, the parameters η and ξ, that denote the 

values of Ψ� �(0) and Φ� �(0) respectively, are unknown and are determined, together with the 

eigenvalue R, by imposing the three boundary conditions at z = 1, 

� � � γ � (63)Ψ(1) = 0, Λ�(1) = 0, Φ(1) = Λ(1). 
1 + γ 

The parameters η, ξ and R can be solved for by satisfying the constraints defined by 

Eq. (63) through the shooting method. 

The numerical procedure is implemented in the Mathematica 8 (© Wolfram Research, 

Inc.) environment [19]. The Runge–Kutta solver is available through the built–in function 

NDSolve by setting the option 

Method -> {"ExplicitRungeKutta", "DifferenceOrder" -> 6} 

The shooting method is implemented by the built–in function FindRoot that allows one 

to solve numerically the constraints Eq. (63). The overall numerical procedure requires 

the assignment of the input data (a, H, γ). Thus, we obtain a neutral stability curve R(a) 

for every pair (H, γ). The absolute minimum of R(a) is for the critical values (ac, Rc). 
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6 Discussion of the results 

6.1 Neutral stability 

Neutral stability curves in the (a, R)−plane are displayed in Figs. 2–6, for H = 100, 10, 

1, 0.1, and in the limit H 0 respectively. For a fixed H, the neutral stability curves → 

correspond to different values of γ. In Figs. 2–6, the left hand frame is for the higher values 

of γ, and the dashed line is the neutral stability curve for the local thermal equilibrium 

(either H → ∞ or γ → ∞). As shown in Section 4.1.1, for the case of local thermal 

equilibrium, the neutral stability condition is independent of γ. The right hand frames 

of Figs. 2–6 are for the lower values of γ, and the dashed line denotes the horizontal line 

R = 12. These figures clearly show that, in every case, the limit of R for a 0 is 12, → 

as proved analytically in Section 4.2. However, the shape of the neutral stability curves 

displays a strong dependence on γ. These figures show that, for a prescribed H, the 

neutral stability function R(a) displays the monotonic increasing trend typical of the local 

thermal equilibrium only if γ is sufficiently high. If γ drops below a threshold value, which 

is dependent on H and which is given by Eq. (57), then the monotonically increasing 

behaviour of the neutral curve is lost and R decreases with a at first, reaches a minimum, 

and then starts increasing. Stated differently, for a prescribed H, there exists a threshold 

value of γ, denoted as γth, such that the critical value of R is Rc = 12, with ac = 0, when 

γ > γth. On the contrary, when γ < γth, the critical value of R is smaller than 12 and 

the critical wave number is nonzero. Values of γth are reported in Table 1 versus H. This 

table shows that γth is a monotonically decreasing function of H that ranges from 0, in 

the limit H → ∞, to 1.27500 = 51/40, in the limit H 0. This is confirmed in Fig. 7 which → 

shows the variation of the threshold value of γ against H as calculated from Eq. (57). Also 

shown are the large and small–H asymptotic behaviours, as given by Eqs. (59) and (61). 

It is worth noting that Figs. 2–5 illustrate how, for large values of γ, the local thermal 

equilibrium is approached either for small or large values of H. This feature is consistent 

with what has been pointed out in Section 4.1.1 with respect to the limit γ → ∞ for a 

finite H. We mention that the limiting case H 0, illustrated in Fig. 6, corresponds to a → 

regime where there is no heat transfer between the solid and the fluid phase. This regime 

is the condition farthest from the local thermal equilibrium. However, Fig. 6 shows that 

the departure of the neutral stability curve from that of local thermal equilibrium is not 

so marked, provided that γ is sufficiently high, say γ > 10. A comparison between Fig. 5 
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and Fig. 6 shows that the neutral stability curves with H = 0.1 and with H 0 display → 

only very slight differences, thus showing that with H = 0.1 we attain a condition very 

close to the complete thermal decoupling between the phases, i.e. to the limiting case 

H 0.→ 

Plots of Rc against γ and ac against γ are displayed in Figs. 8 and 9 for different values of 

H. These figures show clearly that the critical conditions for the onset of the instability 

are the same as for local thermal equilibrium, i.e. ac = 0 and Rc = 0, when γ > γth. For 

lower values of γ, we gather from these figures that Rc is an increasing function of γ, while 

ac is a decreasing function of γ. In particular, we expect from Fig. 8 that Rc 0 when → 

γ 0, for every value of H.→ 

6.2 The limiting case γ 0→ 

Physically, the limit γ 0 means a condition where the solid phase is much more con→ 

ducting than the fluid phase, on assuming that the porosity is kept fixed. 

The eigenvalue problem Eqs. (27)–(30) can be formulated so that it is well–posed when 

γ 0. We define the modified Darcy–Rayleigh number as → 

1 + γ 
R� = R. (64)

γ 

Then, on taking γ 0 with a finite R�, Eqs. (27)–(30) yield → 

� 2 � R� �Ψ�� − a Ψ+ a Θ = 0, (65) 

� 2 �Φ�� − a Φ = 0, (66) 

� 2 � � �Θ�� − a Θ+ H Φ − Θ� + a Ψ = 0, (67) 

z = 0, 1 : Ψ = 0, Φ� = 0, Θ = Φ�. (68) 

Eq. (66) with the boundary conditions on Φ expressed by Eq. (68) admits, for an arbitrary 

a, the unique solution Φ = 0. Then the system Eqs. (65)–(68) can be reduced to 

� 2 � � Θ = 0,Ψ�� − a Ψ+ aR � (69) 

� 2 � �Θ�� − a + H Θ+ a Ψ = 0, (70) 

z = 0, 1 : Ψ = 0, Θ = 0. (71) 

Eqs. (69)–(71) can be solved analytically with 

Ψ(z) = sin(π z), Θ(z) = A sin(π z), (72) 
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where A is an integration constant. We obtain
� � � � 
π2 + a2 π2 + a2 + H 

R� = 
2 . (73) 

a

By seeking the minimum of R� versus a, we get the critical values 

ac = 
√
π 
� 
H + π2

�1/4 
, R�c = H + 2π 

� 
π + 

� 
H + π2 

� 
. (74) 

Interestingly enough, Eq. (74) yields the well–known critical values ac = π and R�c = 4 π2 , 

when H 0. These values are those obtained for the Darcy–Bénard problem with → 

Dirichlet boundary conditions under the assumption of local thermal equilibrium [3]. 

Eqs. (73) and (74), together with Eq. (64), provide a useful approximate solution to be 

employed when γ � 1. In particular one may justify rigorously, on the basis of Eqs. (64) 

and (74), that Rc 0 with γ 0 for every value of H, i.e. the behaviour guessed when → → 

we commented on Fig. 8.


Fig. 10 displays the neutral stability curves, R�(a), with γ � 1 and different values of


H. The continuous lines are for the limiting case γ 0, and have been obtained by the → 

analytical solution Eq. (73). The dashed lines are for γ = 0.001, and have been obtained 

by the numerical solution described in Section 5. The agreement is definitely satisfactory 

and represents an argument to assess that Eq. (73) can be safely employed when γ is small, 

both for small and for large values of H. We see that the agreement between the results 

for γ = 0.001 and γ 0 is almost perfect when H is small while, for larger values of H,→ 

there is a slight discrepancy with smaller wave numbers. 

The comparison between the numerical and the analytical solutions for γ = 0.001 and 

γ 0, respectively, is displayed also in Fig. 11, where the critical values R�c and ac are→ 

plotted versus H. Again, we conclude that the agreement is very good, except for a slight 

discrepancy in the plots of ac versus H when H is approximately greater than 80. 

7 Conclusions 

The onset of convection in a plane horizontal porous layer subjected to a uniform upward 

heat flux has been investigated. We have considered cases where local thermal non– 

equilibrium exists between the solid and the fluid phases as modelled by an inter–phase 

heat transfer coefficient. The stationary basic solution has a zero velocity field, and dis

plays local thermal equilibrium between the phases, with a linear temperature distribution 

in the vertical direction. 
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We studied the linear stability of the basic state by solving the momentum and energy 

disturbance equations formulated in terms of a streamfunction, and of the temperature 

perturbations of the solid and fluid phases. The disturbance equations for the normal 

modes produced a system of three ordinary differential equations. The governing pa

rameters are (R, H, γ), namely the Darcy–Rayleigh number, the inter–phase heat transfer 

parameter, and the conductivity ratio between the phases, as well as the wave number a of 

the normal mode. We solved numerically this system of ODEs as an eigenvalue problem, 

for prescribed values of (H, γ). 

The numerical solution, carried out by the Runge–Kutta method and by the shooting 

method, yields R as a function of a along the neutral stability curve and, on seeking the 

minimum of this curve, the critical values (ac, Rc). The limiting case H → ∞ has been 

studied for the regime of local thermal equilibrium. We proved that the same solution is 

obtained on keeping H finite and letting γ → ∞. The latter limit means a fluid phase much 

more conductive than the solid phase. The opposite limit, γ 0, has been investigated → 

as well, and an analytical solution was found in this special case.


We proved analytically that the limiting value of R(a) at neutral stability when a 0 is 12,
→ 

for every choice of (H, γ). Nield [14] pointed out that R 12 when a 0 under conditions → → 

of local thermal equilibrium, for a porous layer with Neumann boundary conditions on the 

temperature field. We demonstrated that Nield’s result holds also when the assumption 

of local thermal equilibrium is relaxed. In the case of local thermal equilibrium, R = 12 is 

the critical value, since the neutral stability curve R(a) is monotonically increasing. When 

local thermal non–equilibrium conditions prevail, this behaviour is observed only when γ 

is larger than a threshold value which depends on H. If γ is smaller than the threshold 

value then Rc < 12 and ac > 0. 

The general behaviour is that the local thermal non–equilibrium has a destabilising effect; 

a behaviour already observed for the case of Dirichlet thermal boundary conditions by 

Banu and Rees [9]. 

The uniform heat flux condition at the boundaries has been formulated here by adopting 

the so–called Model A [15]. This model is based on the energy balance at the boundary 

of the porous medium, and on the assumption that the solid phase and the fluid phase 

temperatures coincide on the boundary, T s = T f. Without this additional condition the 

problem would have been underdetermined. The boundary condition T s = T f is justified 

as far as the boundary walls are highly conducting, but it is not clear which condition 
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should be used otherwise. We mention that several possibilities have been stated by 

different authors, and a comparison between them was carried out by Alazmi and Vafai 

[20]. We cannot make an a priori assessment of what might happen if Model A is replaced 

by another model of the uniform heat flux boundary conditions. But it is certain that 

even the basic solution is affected by an altered form of the uniform heat flux condition at 

the boundaries. These authors think that deeper insights into this aspect of the stability 

problem investigated here may be an interesting opportunity for future research. 
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H γth 

∞ 0 

500 0.0241359 

100 0.104646 

50 0.182481 

10 0.505054 

5 0.687453 

1 1.05528 

0.5 1.14979 

0.1 1.24663 

0.05 1.26057 

0.01 1.27207 

0 1.27500 

Table 1: Values of γth 

21




porous
medium

Figure 1: Drawing of the porous layer
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Figure 2: Neutral stability curves for H = 100
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Figure 3: Neutral stability curves for H = 10
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Figure 4: Neutral stability curves for H = 1
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Figure 5: Neutral stability curves for H = 0.1
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Figure 6: Neutral stability curves in the limit H 0→ 
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Figure 7: Variation of γth with H as given by Eq. (57). Also shown are the large and 

small–H asymptotic behaviours, as given by Eqs. (59) and (61). 
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Figure 8: Plots of Rc versus γ for assigned values of H 
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Figure 9: Plots of ac versus γ for assigned values of H 
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Figure 10: Neutral stability curves, R� versus a, for γ � 1 and different values of H: com

parison between the numerical solution with γ = 0.001 (dashed lines) and the analytical 

solution, Eq. (73), in the limit γ 0 (continuous lines) → 
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Figure 11: Plots of R�c versus H (left hand frame) and of ac versus H (right hand frame), 

for γ � 1: comparison between the numerical solution with γ = 0.001 (dashed lines) and 

the analytical solution, Eq. (74), in the limit γ 0 (continuous lines) → 
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