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Model order reduction by balanced proper 
orthogonal decomposition and by rational 

interpolation 

Mark R. Opmeer∗ 

IEEE Transactions on Automatic Control, 
vol. 57 (2012) no. 2, pp 472-477 

Abstract 

We show that model order reduction by rational interpolation (also 
known as moment matching or rational Krylov) can be seen as the special 
case of balanced Proper Orthogonal Decomposition where all the snap­
shots are retained and particular numerical procedures are used to obtain 
the snapshots. 

Introduction 

Three popular methods for model order reduction are 

1. Balanced truncation and its variations, 

2. (Balanced) proper orthogonal decomposition (POD, also known as Karhunen– 
Loéve decomposition), 

3. Rational interpolation (also known as moment matching, [rational] Krylov 
and Padé approximation). 

It is well-known that balanced POD is an approximate version of balanced 
truncation (this is in fact already contained in the article [9] that introduced 
balanced truncation). Other approximate balanced truncation algorithms (such 
as the ADI method, low-rank Smith methods and approximating the Gramians 
by numerical quadrature of their frequency domain integral representation) have 
been connected to Krylov subspaces (see e.g. [8], [5], [10]). It is the objective 
of this note to point out a direct connection between balanced POD and model 
reduction by rational interpolation. 

∗Mark Opmeer is with the Department of Mathematical Sciences, University of Bath, UK, 
e-mail: (m.opmeer@maths.bath.ac.uk). 
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For the convenience of the reader and to establish notation, in Sections 2.1 
and 2.2 we very briefly review model order reduction by balanced POD and by 
rational interpolation. Section 3 contains the main results. We first (Section 3.1) 
consider the simplest case of interpolation at infinity and link this to balanced 
POD with snapshots obtained by forward Euler. We next (Section 3.2) consider 
the case of interpolation at a finite positive real point s0 and connect this to 
balanced POD with snapshots obtained by backward Euler with stepsize s

1 
0 
. We 

subsequently (Section 3.3) comment on interpolation at several distinct points. 
In principle the backward Euler connection extends to complex interpolation 
points if we allow for complex stepsizes. However, a slightly more satisfactory 
connection is obtained for complex interpolation points by considering multi­
stage implicit numerical methods instead of backward Euler to generate the 
POD snapshots (Section 3.4). For simplicity of exposition, Sections 2 and 3 
deal only with SISO systems. We comment on MIMO systems in Section 3.5. 
Finally, in Section 4 we consider two very simple examples that illustrate the 
connections made. 

A very short review of model order reduction 

Given the dynamical system 

ẋ(t) = Ax(t) + Bu(t), x(0) = x 0 , y(t) = Cx(t) + Du(t), 

with state space Rn, input space R and output space R and a pair of operators 
S : Rn Rk and T : Rk Rn with ST = I a reduced order system → → 

ẋr(t) = Arxr(t) + Brur(t), xr(0) = xr
0 , yr(t) = Crxr(t) + Drur(t), 

with state space Rk, input space R and output space R is obtained by setting � � � � 
Ar 

Cr 

Br 

Dr 
:= 

SAT 
CT 

SB 
D 

. 

Thus the reduced order system is obtained by a Petrov–Galerkin projection. 
Note that the condition ST = I implies that (TS)2 = T (ST )S = TS so that 
TS : Rn Rn is indeed a projection. → 

Remark 1. For future reference note that if Q : Rk Rk is a similarity trans­→
formation and if we define S̃ = QS and T̃ = TQ−1 , then the pair S̃, T̃ is 
another Petrov–Galerkin pair whose reduced order system is related to the one 
obtained from the pair S, T by the similarity transformation Q. In particular, 
these reduced order systems have the same transfer function. 

2.1 Model order reduction by balanced POD 

Model order reduction by balanced POD is a Petrov–Galerkin projection method 
where the Petrov–Galerkin operators are defined as follows ([11], [12]): 
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1. Approximate the solution of 

ẇ(t) = Aw(t), w(0) = B, (1) 

Nat time instances {ti}i=1, which gives the vector BN := [ŵ(ti)]Ni=1 ∈ RN . 

2. Approximate the solution of 

ż(t) = A∗z(t), z(0) = C∗, (2) 

at time instances {ti}Ni=1, which gives the vector CN := [ẑ(ti)]Ni=1 ∈ RN . 

3. Form the empirical Hankel operator HN : RN RN as→ 

HN := C∗ 
N BN . 

4. Compute the Singular Value Decomposition of the empirical Hankel op­
erator 

HN = UΣV ∗,


where without loss of generality we can assume that the diagonal elements

of Σ are ordered in a decreasing manner. We have U, Σ, V : RN RN .
→ 

5. Decompose 

Σr 0 
Σ = , U = [Ur, Ue], V = [Vr, Ve],0 Σe 

where Σr : Rk Rk , Vr : Rk RN and Ur : Rk RN . We may assume → → →
without loss of generality that Σr > 0. 

6. Form the operators


S := Σ−
r 
1/2U∗ 

N , T := BN Vr r .
r C∗ Σ−1/2 

7. Form the reduced order system 

Ar Br SAT SB 
:= . 

Cr Dr CT D 

Remark 2. Note that S and T indeed form a Petrov–Galerkin pair since 

ST = Σ−
r 
1/2 

N BN V ∗ 
rUrC∗ 

r Σ
−1/2 

= Σ−
r 
1/2Ur 

∗HN VrΣ
−1/2 
r 

= Σ−
r 
1/2Ur 

∗UΣV ∗VrΣ
−
r 
1/2 = I, 

where we have used that 

I 0 V ∗ V ∗Vr V ∗Ve 

0 I 
= V ∗V = 

Ve

r 
∗ [Vr, Ve] = 

Ve

r 
∗Vr Ve

r 
∗Ve 

, 

which shows that V ∗Vr = [ I 
0 ] and we have used that similarly Ur 

∗U = [I, 0]. 
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Remark 3. Note that the time instances {ti}N at which snapshots are taken i=1 
are user specified. The user also has to choose numerical methods to simulate 
the ODEs in steps 1 and 2. In the literature usually not much information is 
provided about these choices, especially the latter choice (of numerical method). 
When we consider the connection with model order reduction by rational in­
terpolation we see that these choices are in fact crucial (mainly of course when 
relatively few snapshots are generated). 

2.2 Model order reduction by rational interpolation 

Model order reduction by rational interpolation is a Petrov–Galerkin projection 
method where the Petrov–Galerkin operators are defined as follows ([2, Chapter 
11.3]): 

1. Form the partial generalized controllability operators 

RN (s) := [(sI − A)−1B, . . . , (sI − A)−N B], 

RN (∞) := [B, AB, . . . , AN−1B], 

and the partial generalized observability operators ⎤⎡⎤⎡ C 
C(sI − A)−1 

. . 
⎢⎢⎢⎣ 

⎥⎥⎥⎦ 

CA 
. . . 

⎢⎣ 
⎥⎦ON (s) := , ON (∞) := . . 

C(sI − A)−N 
CAN−1 

2. Form the operators 

⎤⎡ 
V := [Rk1 (s1), . . . , Rkm 

⎣Ok1 (sm+1) 
W := 

(sm)], (3) 

(4)⎦. . . , 
Okm (s2m) 

where si ∈ C ∪ {∞} (i = 1, . . . , 2m) are not eigenvalues of A and ki ∈ N 
(i = 1, . . . ,m). 

3. Assuming that WV is invertible define Z := (WV )−1W . 

4. Form the reduced order system 

Ar Br ZAV ZB 
:= . 

Cr Dr CV D 

The reduced order system has the following property (G is the transfer func­
tion of the full order system and Gr the transfer function of the reduced order 
system): 

G(n)(si) = G(n)(si), n = 0, . . . , ki − 1,r 
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where G(n)(∞) must be interpreted as the n-th derivative at zero of G̃(z) := 
G(1/z). 

If si = sm+i and ki = 1 or if m = 1 and s1 = s2 = ∞, then the reduced 
order system in fact has the stronger property: 

G(n)(si) = G(n)(si), n = 0, . . . , 2ki − 1,r 

see [2, Section 11.3.1]. 

Remark 4. Note that the interpolation points {si}2m and their multiplicities kii=1 
are user specified. It is known that generically any reduced order system can be 
obtained by the above procedure for appropriate choices of interpolation points 
[4], [2, Chapter 11.3.2]. Therefore, these choices are crucial. 

3 Rational interpolation as balanced POD 

We will show that model order reduction by rational interpolation is in fact 
model order reduction by balanced POD where the number of snapshots taken 
is equal to the dimension of the reduced order system, the numerical method 
(and the stepsize) used to obtain the snapshots is connected to the choice of 
interpolation points and actually no singular value decomposition is performed 
(all the snapshots are retained). 

3.1 Interpolation at infinity 

If we approximate the solution of the primal problem (1) using forward Euler 
with stepsize h then 

ŵ(hi) = (I + hA)iB. 

So the resulting vector of snapshots is 

BN = [B, (I + hA)B, . . . , (I + hA)N −1B]. 

Similarly applying forward Euler with stepsize h to the dual problem (2) results 
in the vector of snapshots 

CN = [C∗, (I + hA∗)C∗, . . . , (I + hA∗)N −1C∗]. 

Using the upper triangular matrix M defined by 

Mij =	
j − 1 

hi−1 i = 1 . . . , N, j = i, . . . , N, 
i − 1 

these vectors of snapshots can be written in terms of the partial controllability 
and observability operators as 

BN = RN (∞)M, CN = ON (∞)∗M. 
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It follows that the empirical Hankel operator satisfies 

HN = M∗ON (∞)RN (∞)M. (5) 

Using the above we have that (since no reduction is performed) the POD Petrov– 
Galerkin operators are given by 

S = Σ−1/2U∗M∗ON (∞), T = RN (∞)MV Σ−1/2 . 

We now use Remark 1 with Q = MV Σ−1/2 to obtain the equivalent Petrov– 
Galerkin pair (using (5) in the third equality) 

S̃ = MV Σ−1U∗M∗ON (∞) = MH−1M∗ON (∞) = (ON (∞)RN (∞))
−1 

N ON (∞), 

T̃ = RN (∞). 

This we recognize as the Petrov–Galerkin pair corresponding to interpolation 
at infinity. 

Recapitulating: taking snapshots at {hi}N−1 using forward Euler with step-i=0 
size h and forming the POD reduced order system on the basis of all of these 
snapshots (so no reduction based on the singular value decomposition) gives the 
same reduced order system as interpolating the transfer function and its first 
2N − 1 derivatives at infinity using the method described in Section 2.2. 

3.2 Interpolation at a finite point 

If we approximate the solution of the primal problem (1) using backward Euler 
with stepsize h then 

ŵ(hi) = (I − hA)−iB. 

If we ignore the zero-th iterate ŵ(0), then the resulting vector of snapshots is 

BN = [(I − hA)−1B, . . . , (I − hA)−N B]. 

Similarly applying backward Euler with stepsize h to the dual problem (2) 
results in the vector of snapshots 

CN = [(I − hA∗)−1C∗, . . . , (I − hA∗)−N C∗]. 

Using the diagonal matrix M̃ defined by 

M̃ii = h−i , i = 1 . . . , N, 

these vectors of snapshots can be written in terms of the partial generalized 
controllability and observability operators as 

BN = RN (1/h) ˜ CN = ON (1/h)
∗M. M, ˜

It follows that the empirical Hankel operator satisfies 

HN = M̃∗ON (1/h)RN (1/h) ˜ (6)M. 

6 



Completely analogously to the forward Euler case we then have 

S̃ = (ON (1/h)RN (1/h))
−1 ON (1/h), 

T̃ = RN (1/h). 

This we recognize as the Petrov–Galerkin pair corresponding to interpolation 
at s0 = h 

1 . 
Recapitulating: taking snapshots at {hi}N using backward Euler with step-i=1 

size h and forming the balanced POD reduced order system on the basis of all 
of these snapshots (so no reduction based on the singular value decomposition) 
gives the same reduced order system as interpolating the transfer function and 
its first N − 1 derivatives at s0 = 1 using the method described in Section 2.2. h 

3.3 Interpolation at multiple points 

If we approximate the solution of the primal problem (1) using forward Euler 
N1 −1with stepsize h1 to obtain {ŵ1(h1i)}i=0 and using backward Euler with step-

sizes hj (j = 2, . . . ,m) to obtain {ŵj (hj i)} Nj and collect these in a vector BN ,i=1 
then similarly as before 

BN = V M̂B , 

where V is the matrix formed from partial generalized controllability matrices 
as in (3) and M̂B is an invertible operator depending on the stepsizes hj (j = 
1, . . . ,m). 

If we approximate the solution of the dual problem (2) using forward Euler 
with stepsize hm+1 to obtain {ẑ1(hm+1i)} Nm+1 −1 

and using backward Euler i=0 
Njwith stepsizes hj (j = m + 2, . . . , 2m) to obtain {ẑj (hj i)}i=1 and collect these 

in a vector CN , then similarly as before 

CN = W ∗M̂C , 

where W is the matrix formed from partial generalized observability matrices 
as in (4) and M̂C is an invertible operator depending on the stepsizes hj (j = 
m + 1, . . . , 2m). 

Entirely analogously to before (noting that Q := M̂B V Σ−1/2), it follows that 
the POD reduced order system formed on the basis of all of these snapshots (so 
no reduction based on the singular value decomposition) is the same reduced 
order system as the one obtained by interpolation of the transfer function at 
s1 = sm+1 = ∞ and the points sj = h

1 
j 
(j = 2, . . . ,m, j = m + 1, . . . , 2m) with 

the relevant multiplicities using the method described in Section 2.2. 

3.4 Interpolation at complex points 

If we allow for complex stepsizes, then an interpretation of model reduction by 
interpolation at complex points in terms of backward Euler balanced POD can 
be obtained exactly as above. However, a more convincing (though still not 
very satisfactory) correspondence can be obtained by considering multi-stage 
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implicit methods. We indicate below how the choice of interpolation points 
is related to the poles of what in the numerical ODE literature is called the 
stability function of the numerical method. We consider a typical example that 
can easily be adapted to similar situations. We first note that the stability 
function for forward Euler is φ(z) = 1 + z, which has a single pole at infinity, 

1and the stability function for backward Euler is φ(z) = 1−z , which has a single 
pole at a real point (z = 1 in fact). The connection with the positioning of the 
interpolation points in the complex plane should be apparent. 

The typical example that we consider is Hammer–Hollingsworth [7] (see also 
[3]). With stepsize h this results in the approximate solution 

ŵ(hi) = (12I + 6hA + h2A2)i(12I − 6hA + h2A2)−iB, 

and similarly for the dual system. This is not quite enough to make the con­
nection with rational interpolation, so we also consider an adapted version of 
Hammer–Hollingsworth with stepsize h (we note that this adapted version is 
not a very good numerical method), which results in 

ŵ(hi) = (−12I + 6hA + h2A2)i(12I − 6hA + h2A2)−iB, 

and similarly for the dual system. We now form the POD snapshot vectors by 
taking the zero-th iterate and first iterate of Hammer–Hollingsworth and the 
first iterate of the adapted Hammer–Hollingsworth: 

B = [B, (12I+6hA+h2A2)(12I−6hA+h2A2)−1B, (−12I+6hA+h2A2)i(12I−6hA+h2A2)−iB]. 

It is easy to see that the range of B is the same as that of 

B̃ = [B, (I − hz0A)−1B, (I − hz̄0A)−1B], 

where z0 = 3 + i
√
3 and similarly for the dual system. It follows that balanced 

POD with these snapshots corresponds to the following multi-point rational in­
terpolation: interpolation of G�(∞) and of G(s0) and G(s̄0) with s0 = 

h(3+
1 
i
√
3) 
. 

We note that the stability function of Hammer–Hollingsworth is 

φ(z) = 
−12 + 6z + z2 

12 − 6z + z2 
, 

1which has simple poles at 3 ± i
√
3, i.e. the reciprocals of 

3±i
√
3 
, which explains 

the placing of the resulting interpolation points. 
Interpolation in other pairs of complex conjugate points than those where 

one is on the line through 
(3+

1 
i
√
3) 

can be achieved by considering other two-

stage implicit Runge–Kutta methods (we note that again these will generally 
not be very good methods). Interpolation at more than one pair of complex 
points can be achieved by combining the above with the idea in Section 3.3. 

Remark 5. As remarked above, the position of the interpolation points in the 
complex plane is related to the stability function of the numerical method. 
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Implicit methods have stability functions with finite poles, explicit methods 
have stability functions with poles at infinity. A popular implicit Runge–Kutta 
method is Crank-Nicolson, which has stability function 

1 + z/2 2 
φ(z) = 

1 − z/2
= −1 + 

1 − z/2 
. 

It is easy to see that balanced POD with snapshots obtained by Crank-Nicolson 
with stepsize 2h and balanced POD with snapshots obtained by backward Euler 
with stepsize h gives the same result provided that the zero-th iterate is included 
in both cases. Note that we excluded the zero-th iterate in the backward Euler 
case when making the connection with interpolation at h 

1 . Including the zero­
th iterate means that we not only interpolate moments at h 

1 , but also one at 
infinity (this follows as in Section 3.3). 

3.5 MIMO systems 

Balanced POD for MIMO systems simply uses all of the columns of the B matrix 
subsequently as w(0) for the primal system (and similarly for C∗ for the dual 
system) and collects all the resulting snapshots for the different columns into 
the rows of a matrix BN (respectively CN ). The procedure than carries on as 
in the SISO case with forming the empirical Hankel operator HN := C∗ andN BN 

so on ([11], [12]). Note that if the number of inputs is not equal to the number 
of outputs, then HN is not square. 

Model order reduction by rational interpolation in the MIMO case is typi­
cally done by tangential interpolation ([6], [1]), i.e. for each interpolation point 
si (i = 1, . . . ,m) there is a vector in the input space ui such that the inter­
polation condition is G(si)ui = Gr(si)ui and for each interpolation point si 
(i = m +1, . . . , 2m) there is a vector in the output space yi such that the inter­
polation condition is G(si)

∗yi = Gr(si)
∗yi. Similar interpolation conditions can 

be put on the derivatives. The vectors ui and yi are user specified. To obtain 
such a reduced order model, in the algorithm described in Section 2.2 one sim­
ply replaces B when it occurs in combination with si by Bui and C∗ when it 
occurs in combination with si by C∗yi (see [1]). Note that in this formulation, 
the resulting matrix WV (which is the interpolation equivalent of the empirical 
Hankel operator HN in balanced POD) is forced to be square. 

It is now easy to see that tangential interpolation corresponds to balanced 
POD (with the choice of step-size and numerical method as explained in the 
SISO case) where not all columns of B and C∗ are used for obtaining the snap­
shots, but only some linear combinations of them (namely Bui and C∗yi). Of 
course when, for a fixed si, {ui} forms a basis for the input space and {yi}
forms a basis for the output space (this corresponds to matrix interpolation 
rather than ‘pure’ tangential interpolation), then in fact all columns are used 
(but note that this choice of vectors is only allowed in the interpolation frame­
work if the number of inputs equals the number of outputs). 
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4 Examples 

We illustrate the results by two very simple examples. They are not chosen 
to illustrate the model reduction procedures themselves (which are each amply 
illustrated in the literature), but only their connection. We first consider a SISO 
system and then a MISO system. 

4.1 A SISO example 

As the full-order model, we consider a standard (piecewise linear) finite element 
approximation of the following heat equation 

∂w ∂2w 
∂t 

= 
∂x2 

, t > 0, x ∈ (0, 1), 

∂w 
w(0, x) = 0, (t, 0) = u(t), w(t, 1) = 0, y(t) = −w(t, 0). 

∂x 
The four-dimensional finite element approximation that we will take as our full-
order system has transfer function 

13.86s3 + 2565s2 + 109452s + 875615 
G(s) = , 

s4 + 281.1s3 + 21092s2 + 401324s + 875615 

and realization ⎤⎡ 
−70.27 89.07 −23.75 5.94 −13.86 
44.54 −82.14 47.51 −11.88 3.71 

47.51 41.57 
A B 
C D 

= 

⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎦ 
.−11.88 

2.97 
−70.27 
41.57 

−0.99 
0.25−11.88 

0 
−58.39 

0−1 0 0 

The two-dimensional approximation obtained from this by forward Euler has 
transfer function 

13.86s + 1292 
GFE (s) = , 

s2 + 189.2s + 4379 

and it can be checked that this indeed matches the first four moments at infinity. 
The realization obtain using forward Euler (in this case with h = 2) is ⎤⎡ 

−158.8 −21.2 −3.04 
−21.2 −30.4 2.15 
−3.04 2.15 

⎣ ⎦ , 
0 

and the realization obtained by interpolation at infinity is ⎤⎡ 
0 −4379 1 
1 −189.2 0 

−1329 

⎣ ⎦ , 
13.86 0 

10 



� � 

� � 

� � � � � � � � 

and it can be seen that these are indeed related by the similarity transformation 

Q = MV Σ−1/2 =
0.0011 0.4664 

. 
0.0023 0.0032 

The two-dimensional approximation obtained from the full-order model by 
backward Euler with step size one has transfer function 

9.228s + 101.4 
GBE (s) = , 

s2 + 43.03s + 101.4 

(k)
and it can be checked that indeed Gk)(1) = GBE (1) for k = 0, 1, 2, 3. The 
realization obtain using backward Euler is ⎡ ⎤ 

−3.30 −5.46 −1.81 ⎣ −5.46 −39.73 −2.44 ⎦ , 
−1.81 −2.44 0 

and the realization obtained by interpolation at one is ⎡ ⎤ ⎣ 
−44 
145 
0.76 

−1 
1 

0.17 

45 
−145 

0 

⎦ , 

and it can be seen that these are indeed related by the similarity transformation 

˜ ˜ −2.24 −16.79 
Q = MV Σ−1/2 = . −0.63 60.05 

The three-dimensional approximation obtained from the full-order model by 
adapted Hammer-Hollingsworth as described above (which must have an odd 
order) with step size one has transfer function 

13.86s2 + 1138s + 10525 
GHH (s) = , 

s3 + 178s2 + 4645s + 10526 

and it can be checked that indeed 

1 1 1 1 
G = GHH and G = GHH , 

3 + i
√
3 3 + i

√
3 3 − i

√
3 3 − i

√
3 

and that the first two moments at infinity are matched. Similarly as above, the 
respective realizations (adapted Hammer-Hollingsworth and interpolation) are 
seen to be similar. 

We now consider an illustration of Remark 5. The two-dimensional approx­
imation obtained from the full-order model by backward Euler with step size 
one where also the zero-th iterate is used in balanced POD has transfer function 

13.86s + 335.7 
GBE0(s) = , (7) 

s2 + 102.2s + 338.4 
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and it can be checked that indeed Gk)(1) = G1
(k)

(1) for k = 0, 1 and that the 
first two moments at infinity are matched. The two-dimensional approximation 
obtained from the full-order model by Crank-Nicolson with step size two where 
also the zero-th iterate is used in balanced POD has transfer function (7). The 
two-dimensional approximation obtained from the full-order model by Crank-
Nicolson with step size two where the zero-th iterate is not used in balanced 
POD however has transfer function 

13.84s + 430.5 
GCN (s) = , 

s2 + 124.9s + 510.8

and this does not have any obvious interpolation properties. 
For comparison with what from a numerical ODE perspective seems a more 

sensible thing to do, the two-dimensional approximation obtained from the full-
order model by Hammer-Hollingsworth (not the adapted version) with step size 
one where the zero-th iterate is not used in balanced POD has transfer function 

12.97s + 902.2 
GHH1 = , 

s2 + 162.8s + 3128 

and if we do include the zero-th iterate, then the transfer function is 

13.86s + 407.6 
GHH0 = . 

s2 + 125.3s + 452.1 

Again, these functions do not have obvious interpolation properties. 

4.2 A MISO example 

As the full-order model, we consider a standard (piecewise linear) finite element 
approximation of the following heat equation with two inputs (in comparison to 
the previous section, there is an additional point control) and one output 

∂w ∂2w 
∂t 

= 
∂x2 

+ u2(t)δ2/3(x), t > 0, x ∈ (0, 1), 

∂w 
w(0, x) = 0, (t, 0) = u1(t), w(t, 1) = 0, y(t) = −w(t, 0). 

∂x 
The finite element approximation with a finite-element space of dimension four 
that we will take as our full-order system has transfer function G = [G1, G2] 
with G1 the full order transfer function from Section 4.1 and 

0.9897s3 − 142.5s2 + 437808 
G2(s) = . 

s4 + 281.1s3 + 21092s2 + 401324s + 875615 

Balanced POD with snapshots obtained by backward Euler with stepsize h = 1 
gives the four-dimensional approximation (here –contrary to the rest of this 
note– a singular value decomposition is performed, but it just omits the zero 
singular values which arise because the empirical Hankel matrix is not square) 

GBE (s) = 
8.115s + 81.64 

, 
−1.046s + 40.82 

. 
s2 + 35.36s + 81.64 s2 + 35.36s + 81.64 
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This cannot be obtained by tangential interpolation as described above, since the 
number of inputs (two) is not equal to the number of outputs (one). However, 
as can be checked G(1) = GBE (1) and G�(1) = G� (1).BE 

If we consider tangential interpolation with s1 = s2 = 1, u1 = [ 10 ], u2 = [ 01 ], 
s3 = 1, y1 = 1, s4 = 10, y2 = 1 then we obtain 

GTI (s) = 
8.526s + 83.38 

, 
−0.9746s + 41.70 

, 
s2 + 36.53s + 83.27 s2 + 36.53s + 83.27 

and we see that G(1) = GTI (1), G�(1) = G� (1) and G(10) = GTI (10). TheTI 
realization obtained is ⎡ ⎤ 

−23.36 7.56 24.36 −7.56 ⎣ 29.68 −13.17 −29.68 14.17 ⎦ . 
0.76 0.34 0 0 

The same transfer function is obtained by applying backward Euler balanced 
POD (as always in this note: without reduction based on the singular value 
decomposition) with the following choices of snapshots. Stepsize h = 1 with 
the initial conditions Bu1 and Bu2 for the primal system and initial condition 
C∗ for the dual system. Stepsize h = 1 with initial condition C∗ for the dual 10 
system. This gives the realization ⎡ ⎤ 

−3.83 15.72 −3.98 −0.84 ⎣ 2.67 −32.7 3.37 −1.42 ⎦ . 
−1.04 1.3 0 0 

It can be checked that these two realizations are indeed related by the similarity 
transformation � � 

Q̂ = M̂B V Σ−1/2 = 
−1.07 5.96 

. −0.66 −9.60 

Conclusion 

As is known, model order reduction by balanced POD with a large number of 
snapshots approximates model order reduction by balanced truncation. In this 
paper we have shown that on the other hand model order reduction by balanced 
POD with the number of snapshots equal to the dimension of the reduced or­
der model and assuming that the snapshots are obtained by certain numerical 
methods is the same as model order reduction by rational interpolation (the 
interpolation points depending on the numerical method used to generate the 
snapshots). 

It is interesting to note that interpolation at infinity corresponds to an 
explicit method whereas interpolation at finite points corresponds to implicit 
methods. It is well-known that implicit methods are better for stiff equations 
(e.g. those arising from spatial discretization of partial differential equations) 
and this –together with the connection made here between balanced POD and 

13 



rational interpolation– seems to explain the observation often made that in­
terpolation at finite points is better for certain problems than interpolation at 
infinity. 
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