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Abstract. We report on the fusion of photons from two independent photonic
crystal fiber sources into polarization entangled states using a fiber-based
polarizing beamsplitter. We achieve fidelities of up to F = 0.74 ± 0.01 with
respect to the maximally entangled Bell state |φ+〉 using a low pump power
of 5.3 mW with a success rate of 3.2 fourfold detections per second. By
increasing the pump power we find that success rates of up to 111.6 fourfold
detections per second can be achieved, with entanglement still present in the
fused state. We characterize the fusion operation by providing a full quantum
process reconstruction. Here a model is developed to describe the generation of
entanglement, including the main causes of imperfection, and we show that this
model fits well with the experimental results. Our work shows how non-ideal
settings limit the success of the fusion, providing useful information about the
practical requirements for an operation that may be used to build large entangled
states in bulk and on-chip quantum photonic waveguides.
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1. Introduction

The controlled generation of quantum entanglement is an essential process for performing a
wide range of tasks in the field of quantum information [1]. Quantum communication protocols
such as teleportation [2], key distribution [3] and dense coding [4] all require the generation
of entangled states. Entanglement is also generated during quantum computation [5] and in the
simulation of many-body quantum systems [6]. So far, small-sized entangled states have been
generated in a wide range of physical setups, with photonic systems representing one of the most
promising due to their speed and flexibility. In recent years, much attention has been focused on
generating multi-qubit entangled states such as cluster [7, 8], graph [9] and Dicke [10] states,
as well as those with more unusual structures and correlations [11] in a probabilistic fashion.
Schemes that allow for the deterministic generation of smaller two-qubit entangled states have
also been realized [12–14], although low generation rates make these approaches challenging at
present for building larger multi-qubit entangled states. Photonic setups that generate states
probabilistically, although inherently non-scalable, provide a readily available test bed for
probing the unique properties of quantum systems. Current experiments are, however, limited
to entangled states of ten qubits or less [15]. Improving photon generation rates using new
types of sources and understanding better the practical requirements for generating high-quality
entanglement between these sources may open up access to even larger entangled states with
more complex structures. This would enable the testing of quantum protocols and probing
physical phenomena that only more sizable quantum systems are able to support.

In this work we report the first experiment to fuse photons from two independent
photonic crystal fiber (PCF) sources into polarization entangled states. The fusion operation
we demonstrate could be used to generate larger multi-qubit entangled states, such as cluster
and graph states for use in future quantum photonic technologies [16], including quantum
communication and computation. We also introduce a novel method to characterize the fusion
process that could be applied to a variety of different setups, including bulk, waveguide and
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on-chip photonic systems. While the fusion process is probabilistic in our experiment, we
comment on how it may be made deterministic in the long term for the purposes of building
large scalable entangled quantum systems. Our PCF sources have a very high photon generation
rate compared to commonly used nonlinear crystal sources [17]. Moreover, they make use
of a zero-slope section of the phase-matching curve to produce photons in an intrinsically
pure state, enabling good-quality quantum interference without the need for spectral filtering
(with inherent loss), resulting in high count rates [17, 18]. We detect 90 000 coincidences per
second from photon pairs produced with a pump laser power of 10.5 mW. In this context, we
investigate the fusion of photons from two independent sources in detail and provide a full
quantum process reconstruction. We do this by developing a theoretical model to describe the
entangling operation that includes the main causes of imperfection between the photons being
fused. We find that our model fits well with the experimental results. Our work shows how
non-ideal settings limit the success of the fusion operation and provide detailed information
about the practical requirements for using it to generate large multi-qubit entangled states in
bulk [17, 18] and on-chip quantum photonic settings [19–23]. The fusion is performed with a
fiber polarizing beamsplitter (FPBS), which is better suited than the bulk optics equivalent for
integration into more complex schemes and scaling up to generate larger entangled states, where
space constraints and coupling stability become important considerations. As it is waveguide-
based, it is also interferometrically stable and well suited to the generation of resource states
that are to be transmitted and received over fiber networks, for use in distributed quantum
communication and networking protocols.

2. Experimental setup

Our setup for fusing photons from two independent PCF sources is depicted in figure 1.
A Ti:sapphire laser emits 8 nm pulses at a wavelength of 724 nm with a repetition rate of
80 MHz, which are then filtered to 1 nm. The pulses are split at a 50:50 beamsplitter (BS)
and rotated to horizontal polarization by half-wave plates (HWPs) in both arms, then passed
through polarizing beamplitters (PBSs) and launched into the two PCFs. The fibers each produce
a pair of photons (signal and idler) polarized orthogonally to the pump via four-wave mixing
with non-degenerate wavelengths of 625 nm for the signals and 860 nm for the idlers. While
these wavelengths can be tuned by changing the wavelength of the pump pulse, the photons
are only emitted in an intrinsically pure state at this section of the phase-matching curve
[17, 18]. A 90◦ twist in the fiber ensures that these photons exit the PCFs horizontally polarized,
with an aspheric lens directing them into the PBSs, which transmit them. The PBS helps to
filter out the pump pulses, which exit the fiber vertically polarized, and unpolarized background
such as Raman scattering. An isolator (ISO) at the output of the laser, which allows only one-
way transmission, blocks any reflected pulses from entering back into the laser. The photon
pairs are then separated into different paths using dichroic mirrors (DMs). The separated idler
photons pass through a long- and short-pass filter tilted to give a tunable transmission window
of 4 nm full-width at half-maximum (FWHM), which transmits the idler while removing as
much Raman background as possible. They are then collected in single-mode fibers followed by
additional PBSs which remove background from reflected light in the PCFs. Multi-mode fibers
are used to couple the idler to the detectors, where detections at D3 and D4 are used to herald
the generation of the signal photons. The signal photons are rotated to diagonal polarization
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Figure 1. (a) Experimental setup. (b) Fusion operation used on two linear cluster
states to make a new linear cluster state with an attached qubit (qubit 1) that can
be used for subsequent fusions after a Hadamard operation is applied, or used
for decoherence protection [24]. (c) Fusion operation used on two linear cluster
states to make a new two-dimensional cluster state.

by HWPs and pass through a 40 nm FWHM bandpass filter. This bandwidth is large compared
to the signal photon because the intrinsically pure state phase-matching makes narrow filtering
unnecessary, and the filter only needs to remove any remaining light from the bright pump
beam. They are then collected into single-mode fibers to guarantee optimal spatial overlap on
the FPBS. Fiber polarization controllers (PCs) compensate for the effects on the polarization of
strain-induced birefringence in the fibers. A quarter wave plate (QWP)–HWP–QWP chain on
mode 2′ compensates for any unwanted phase from the FPBS. Multi-mode fibers are used to
couple the photons to the detectors. The detection of a photon at detector D1a (or D1b) with
detector D2a (or D2b) together with detections at detectors D3 and D4 is used in a fourfold
coincidence circuit to register a successful fusion. Here, the use of two detectors on each signal
mode enables active filtering of higher-order photon emissions from four-wave mixing in the
PCFs.

3. Fusion operation

The FPBS depicted in figure 1 transmits horizontal polarized photons (H) and reflects vertical
polarized photons (V). Ideally it can be described by a unitary operation with respect to
the reduced two-photon basis Tp := {|H H〉 , |H V 〉 , |V H〉 , |V V 〉 , |(H V )0〉 , |0(H V )〉}, where
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|(H V )0〉 (|0(H V )〉) represents two photons of different polarizations in the first (second)
mode and the vacuum, |0〉 ≡ |vac〉, in the second (first). In the case where we ‘monitor’
the number of photons present in the output ports, i.e. we gain information about the
photon number but not the polarization, then the FPBS is described by the non-unitary
trace-preserving channel E(ρ)=

∑1
i=0 Ê iρ Ê†

i , with
∑1

i=0 Ê†
i Ê i = 1. Here the Kraus operator

Ê0 = |H H〉〈H H | + |V V 〉〈V V | + |H V 〉〈0(H V )| + |V H〉〈(H V )0| describes an operation into
the ‘coincidence basis’, or subspace of the Hilbert space with states having a single photon
in each output mode Cb := {|H H〉, |H V 〉, |V H〉, |V V 〉}, where Cb ⊂ Tp. The second Kraus
operator Ê1 = |0(H V )〉〈H V | + |(H V )0〉〈V H | describes an operation out of the subspace
defined by the coincidence basis Cb and into a subspace of the basis Tp with states having two
photons in one of the output modes. As all operations are limited to the two-photon subspace
defined by Tp, both Ê0 and Ê1 do not contain any basis states outside this subspace, such as
|(H H)0〉. Furthermore, for input states restricted to the coincidence basis, one can drop the last
two terms from Ê0 and by monitoring the output of the FPBS in the coincidence basis alone,
allowing these states to be transmitted, and by rejecting all other cases, one can also drop the
Ê1 operator to give the non-unitary non-trace-preserving channel EF(ρ)= Ê0ρ Ê†

0. This channel
describes the combined action of the FPBS and monitoring in the coincidence basis with the
Kraus operator

Ê0 = |H H〉〈H H | + |V V 〉〈V V |. (1)

This is a parity check operation [25, 26] in the sense that only states where both of the photons
have the same polarization (even parity) are allowed to be transmitted. This operation can be
used as a fundamental component in a variety of quantum protocols, such as quantum error
correction [1], entanglement purification [26] and filtering [27, 28]. It also forms part of an
efficient method to generate cluster state resources that can be used to carry out quantum
computation [29]. Indeed, the parity check is used in Type-I fusion for efficiently building
one-dimensional [30] and two-dimensional cluster states [30, 31] and can also be considered
as a basic fusion operation; if successful, it matches Type-I fusion, but without the loss of any
photons involved [8, 32]. In our experiment, however, in order to ‘monitor’ the output photon
number in the coincidence basis we detect the photons by destroying them. Thus our parity
check, or fusion operation, is a post-selected version and not scalable in its current form, unlike
Type-I fusion [30]. This is due to an exponential decrease in the total success probability when
using many of these operations. It should be noted that active monitoring in the coincidence
basis without destroying the photons can be achieved in principle using a non-demolition-type
measurement of the photon number [33], making this approach scalable using the techniques
of [30]. However, such measurements require the photons to pass through media with a large
nonlinear response at the single-photon level, which is technically challenging at present and
beyond the scope of this paper [34].

Ideally, the FPBS channel EF from equation (1) takes two photons in the state ρin = |in〉〈in|,
with |in〉 = |+〉 |+〉 and |+〉 =

1
√

2
(|H〉 + |V 〉), and fuses them into the maximally entangled state

|φ+〉 = (1/
√

2)[|H H〉 + |V V 〉], equivalent to a two-qubit cluster state under a local Hadamard
rotation on the first qubit. The above fusion operation occurs with success probability p0 =

Tr(Ê0ρin Ê†
0)= 1/2 due to the non-trace-preserving nature of the channel. Note that regardless

of the success probability of a given input state ρin being transmitted into the coincidence basis,
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the channel EF always acts with unit probability. Either a coincidence is measured and the input
state is transmitted into the coincidence basis or no coincidence is measured and the input state
is not transmitted into the coincidence basis. Moreover, if both photons represent the end qubits
of two separate linear cluster states, as shown in figure 1(b), then after passing through the
channel EF the cluster states are fused together; here the two linear cluster states involved are
joined with one of the photons representing the middle qubit between the edges bonding to
the two clusters and the other photon representing a qubit directly attached to it [9]. If failure
occurs one tries again with the next qubits in both clusters [30]. Two-dimensional cluster states
can also be formed using the channel EF, as shown in figure 1(c), or in a scalable way based on
the techniques of [30] and [31].

4. Fusion interference

In order to check that our FPBS is implementing the correct fusion operation EF and coherently
interfering two input photons in the required spatio-temporal manner, we set the input state of
the two signal photons to |in〉 = |+〉 |+〉 and modify a time delay δτ between the input photon
pulses using a translation stage, as shown in figure 1. This allows us to maximize the coincidence
probability temporally, with the FPBS single-mode input fibers ensuring good spatial overlap.
At the detectors we measure the coincidence probability for the |+〉 |+〉 state population, which
for the expected entangled state |φ+〉 would give 1/2. However, the state |φ+〉 is produced from
the fusion process acting on the input state |in〉 with a probability 1/2, so we expect the total
coincidence probability to be 1/4. On the other hand, for an incoherent interference of the two
photons, i.e. when δτ is larger than the mutual coherence time of the incoming photons τc,
but less than our detector coincidence time-window τcoinc, the probability for a coincidence is
1/8 upon considering all possible outcomes of the non-interfering photons. Thus, as we modify
the time delay δτ in our setup, we look for an ‘antidip’ or peak in the coincidence probability
(the number of coincidences). This is a Hong–Ou–Mandel-type interference effect [35] and a
rigorous time-dependent derivation of the quantum interference phenomenon leading to this
antidip in the coincidence probability is outlined in appendix A. Here one finds that the
probability for a coincidence at a set time delay of δτ is given by

Pcoinc(δτ )=
1
8(e

−(δτ/σt )
2
+ 1), (2)

where σt is the pulse duration of the signal photon, defined as 2
√

2 ln 2/1ω, and 1ω is the
FWHM of the signal’s spectral intensity. In our experiment σt ' 1 ps and 1ω corresponds to
1λ' 0.5 nm. For complete temporal overlap δτ = 0 and for coherent interference we expect a
coincidence probability of 1/4. On the other hand, for large δτ , |δτ | � τc, where τc ∼ σt , and
with the coincidence time-window larger τcoinc � |δτ | we have incoherent interference and the
coincidence probability drops to 1/8 as mentioned above.

In figure 2(a) we show the expected number of coincidences Ncoinc(δτ ) obtained from
equation (2). Here, Ncoinc(δτ )= Nav Pcoinc(δτ ), where we have multiplied Pcoinc(δτ ) by the
average number of counts in our experiment when |δτ | � σt in order to scale it correctly.
We have Nav = 401. The function Ncoinc(δτ ) is plotted as the solid upper curve. In the lower
dotted curve we include a possible frequency mismatch between the central frequencies of the
two signal photons, ω0

1 and ω0
2, corresponding to 1λm = 0.06 nm coming from the spectral

resolution of our spectrometer. This is calculated by carrying out the necessary integration over
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Figure 2. Coincidences and tomographic reconstruction of the density matrix for
the fused state resulting from the input state |+〉 |+〉. (a) Fourfold coincidences
measured as a function of the delay time δτ (divided by the signal pulse duration
σt ) between the heralded signal photons, clearly showing the expected antidip
around zero delay. Using a relatively low pump power of 5.3 mW per fiber in
this case, we obtain 23 000 pair coincidences s−1 per fiber and a maximum of
1.25 fourfold coincidences s−1. The top curve is the ideal theoretical dependence
and the dashed line includes a possible frequency mismatch corresponding to
1λm = 0.06 nm for the signal photons. The lower solid line is a best fit of the
data to the function Nav(p0 e−(δτ/σt )

2
+ 1)/8, finding p0 = 0.61, and Nav is the

average number of counts in our experiment when δτ � σt . (b) Experimental
real part of the density matrix. (c) Experimental imaginary part. (d) Ideal real
part for |φ+〉. (e) Ideal imaginary part for |φ+〉.

the coincidence time-window for a spectral–temporal-dependent version of equation (2) derived
in appendix A as equation (A.8).

The data points from our experiment are also shown in figure 2(a), along with a best fit
to the curve defined by N exp

coinc(δτ )= Nav Pfit
coinc(δτ ), where Pfit

coinc(δτ )= (p0 e−(δτ/σt )
2
+ 1)/8, with

p0 = 0.61, giving an antidip visibility of 61%. Here, the visibility is defined as the percentage
ratio of (Nmax − Nmin)/Nmin. In our experiment we have τcoinc = 3 ns, τrep = 12.5 ns and δτ is
varied using a translation stage on the pump beam before entering one of the PCFs, as shown in
figure 1(a). The errors are calculated using a Monte Carlo procedure with Poissonian fluctations
in the count statistics [37]. The main causes of deviation from the ideal case are the spectral
mixedness of the signal photons from our sources [18], leading to broadening of the coincidence
profile [36], and spatial mismatch between the interfering signal photons at the FPBS. We
discuss later how these effects can be incorporated into our theoretical model. Note that photon
loss, in general, affects the overall number of coincidences regardless of the time delay δτ ,
leaving the visibility of the antidip unaffected.

In figures 2(b) and (c) we show a tomographic reconstruction of the experimentally fused
entangled state of the two signal photons at δτ = 0. This is obtained by measuring the qubits in
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Table 1. Properties of the fused state as the pump power is increased.

Power (mW) Fourfold rate (s−1) Pairs per pulse Fφ+ C P

5.3 3.2 0.037 0.740 ± 0.007 0.550 ± 0.014 0.63 ± 0.01
7.9 9.8 0.064 0.677 ± 0.006 0.392 ± 0.012 0.520 ± 0.007
10.5 36.4 0.103 0.606 ± 0.007 0.265 ± 0.015 0.448 ± 0.008
13.2 77.8 0.160 0.554 ± 0.006 0.15 ± 0.01 0.392 ± 0.005
14.8 111.6 0.193 0.520 ± 0.004 0.07 ± 0.01 0.359 ± 0.003

all combinations of the bases {|H/V 〉, |+/−〉, |R/L〉} [37]. Ideally, this state is the maximally
entangled state |φ+〉 shown in figures 2(d) and (e). At 3.2 fourfold coincidences per second
our experimental state has a fidelity of Fφ+ = 0.74 ± 0.01 with respect to |φ+〉, entanglement
quantified by the concurrence of C = 0.55 ± 0.01 and a purity of P = 0.63 ± 0.01. Some
background can be seen to be present in the state from the non-zero |H V 〉 and |V H〉 terms
in figure 2(b), which we attribute to higher-order photon emission, other background processes
such as Raman scattering and imperfect polarization operations in our measurements. The
background also gives rise to several non-zero terms in figure 2(c). In appendix B we analyze
the effects of higher-order photon emission from the four-wave mixing process and find that
at this count rate we expect the fidelity to be limited to Fφ+ = 0.80. By increasing the pump
power to 14.8 mW we achieve a fourfold coincidence rate of 111.6 s−1 with a fidelity of Fφ+ =

0.520 ± 0.004, a non-zero concurrence of C = 0.07 ± 0.01 and a purity of P = 0.359 ± 0.003.
In table 1 we show how various parameters change as the pump power is increased and higher-
order emission becomes increasingly significant. These generation rates and corresponding state
properties show the potential of using PCFs for the controlled generation of larger multi-qubit
entangled states for carrying out quantum protocols and investigating quantum phenomena with
desired state qualities and success rates.

Spatial–temporal mode mismatch, loss and higher-order photon emission are sources
of error leading to the deviation of our experimental data from the ideal case in both the
coincidence probability and state tomography. While an explicit analysis of all factors leading
to these effects is beyond the scope of this paper, we will show how it is possible to develop
a theoretical model to describe the non-ideal fusion operation generating entangled states and
connect it to the experimental antidip coincidence probability curve shown in figure 2(a).

5. Fusion process tomography

Ideally, our fusion operation should act as the non-trace-preserving channel EF(ρ)= Ê0ρ Ê†
0,

with Ê0 defined in equation (1). However, as the experimental fusion is not ideal, we must
find a more appropriate channel description. Assuming that polarization changes from input to
output states are negligible (see figure 3(a)), we can write the experimental fusion operation
as [28]

Eexp
F (ρ)=

∑
n,m

χF
n,m Ênρ Ê†

m, (3)
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Figure 3. Input and output states in the probing of the fusion operation.
(a) Experimental coincidences for the Z → Z basis. (b) Ideal probability
for the Z → Z basis. The fidelity FZ→Z is given by the ratio of correctly
transmitted photon pairs to the total number of transmitted pairs by the fusion
operation for input basis Z and output basis Z . Similarly for FX→X and FX→Y .
(c) Experimental coincidences for the X → X basis. (d) Ideal probability for
the X → X basis. (e) Experimental coincidences for the X → Y basis. (f) Ideal
probability for the X → Y basis. In all plots, each of the fourfold coincidence
points was taken in 621s.

where the operators Ên are given as

Ê0 = |H H〉〈H H | + |V V 〉〈V V |,

Ê zz = |H H〉〈H H | − |V V 〉〈V V |,

Ê xy = |H V 〉〈H V | + |V H〉〈V H |,

Ê xx = |H V 〉〈H V | − |V H〉〈V H |,

(4)

which form an orthogonal operator set with respect to the Hilbert–Schmidt inner product. Ê0

is the ideal operation which occurs with probability χF
0,0, the operator Êzz describes a phase

flip error with probability χF
zz,zz, the operator Êxy describes leakage of odd-parity states (|H V 〉

and |V H〉) through the fusion device with probability χF
xy,xy and, finally, the operator Êxx

describes leakage and a phase flip with probability χF
xx,xx . Thus we have n,m ∈ {0, zz, xy, xx}

and
∑

n χ
F
n,n = 1. We can also define the basis fidelity [38] for input basis states i and output
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basis states j as

Fi→ j =
1

2

∑
`,k

〈 j`| E
exp
F (|ik〉〈ik|) | j`〉 , (5)

where for FZ→Z we have {|H H〉, |H V 〉, |V H〉, |V V 〉} → {|H H〉, |V V 〉}, for FX→X we
have {|++〉 , |−−〉} → {|++〉 , |−−〉} and {|+−〉 , |−+〉} → {|+−〉 , |−+〉}, for FX→Y we have
{|++〉 , |−−〉} → {|L R〉 , |RL〉} and {|+−〉 , |−+〉} → {|L L〉 , |R R〉}. Substituting the above i
and j basis states into equation (5) and using the orthogonality of the Ên operators appearing
in Eexp

F of equation (3), the basis fidelities are found to be equivalent to the elements of the χ
matrix as follows [28]:

FZ→Z = χF
0,0 +χF

zz,zz,

FX→X = χF
0,0 +χF

xx,xx ,

FX→Y = χF
0,0 +χF

xy,xy.

(6)

From these we then have the relation for the process fidelity of the fusion operation, F exp
P ≡ χF

0,0,
describing the probability for successful fusion as

F exp
P =

1
2(FZ→Z + FX→X + FX→Y − 1), (7)

where we have used
∑

n χ
F
n,n = 1. The basis fidelities can be found from our experiment using

the relation

Fi→ j =

∑
`,k N out

ik , j`∑
ik

Tik

, (8)

as described in appendix C. Here, N out
ik , j` is the number of times the output state is measured to

be | j`〉 when the input state |ik〉 is sent through the device and Tik =
∑

i p
N out

i p,ik
. Equation (8)

essentially means that we can define the basis fidelities Fi→ j to be the ratio of the total number
of transmitted output states in the correct basis to the total number of transmitted states. In
figure 3 we show the experimentally measured number of transmitted states (coincidences) for
the input and output basis defined by the fidelities FZ→Z , FX→X and FX→Y . We find FZ→Z =

0.958 ± 0.001 from the data shown in figure 3(a), with the ideal transmission coincidence
probabilities for Z → Z shown in figure 3(b). From the data corresponding to figure 3(c),
we find FX→X = 0.768 ± 0.001. The ideal transmission coincidence probabilities for X → X
are shown in figure 3(d). Finally, from the data corresponding to figure 3(e) we find FX→Y =

0.759 ± 0.001, with the ideal transmission coincidence probabilities for X → Y shown in
figure 3(f). From these three fidelities we then find, using equation (7), a process fidelity of
our fusion operation of F exp

P = 0.743 ± 0.001.
The entanglement capability of our fusion operation can be defined as the maximum

entanglement that can be generated from it using input product states. We can quantify this
in terms of the concurrence C and we have the lower bound for the entanglement capability of
the fusion operation, quantified by the concurrence as CE > 2F exp

P − 1, as shown in appendix D.
Based on the above process fidelity of our experiment, we have CE > 0.485 ± 0.002. Note that
both F exp

P and CE are consistent with the fidelity and concurrence calculated directly from the
reconstructed density matrix of the last section for the rate of 6.62 events per second at δτ = 0.
A small deviation is due to the assumption of no polarization change from input to output states
in the model used to describe the experimental fusion process Eexp

F .
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6. Non-ideal temporal setting

So far we have considered our fusion operation at the maximum visibility δτ = 0. In the
ideal case of δτ = 0, we have that the state |+〉1 |+〉2 is transformed into the entangled state
|φ+〉1′2′ with probability 1/2. However, for |δτ | � τc we obtain the incoherent mixture ρ =
1
2(|H H〉〈H H | + |V V 〉〈V V |)1′2′ with probability 1/2. Here, the photon in mode 1′ is detected
before the photon in mode 2′ (or vice versa) and even though the time period |δτ | is outside
the coherence time of the individual photons τc, the larger coincidence window τcoinc means
that we still register the state as being a valid output state from the fusion process. This loss of
coherence in the output state suggests that the process might be described by a phase damping
channel acting on the output photons. This can be incorporated into the fusion channel by
writing the total action of the fusion as ET(ρin)= EPD(EF(ρin)), where EPD is a phase damping
channel, the form of which we derive next. The same channel might also describe other
forms of decoherence, such as that resulting from imperfect spatial-mode overlap or spectral
distinguishability between the interfering photons. These parameters are challenging to set
in an experiment, so it is useful to understand how the fusion operation performs under such
conditions. By developing a model that describes the effect of non-ideal control, we may then
quantify the requirements for a given level of performance of the fusion.

For a single qubit, a phase damping channel with an arbitrary time-dependent dephasing
function f (δτ ) ∈ [0, 1] can be described by the channel E(ρ)=

∑1
i=0 K̂ iρ K̂ †

i , with the Kraus
operators

K̂ 0 =
1

√
2

[(1 + f (δτ ))]1/21,

K̂ 1 =
1

√
2

[(1 − f (δτ ))]1/2σz,

which satisfy K̂ †
0 K̂ 0 + K̂ †

1 K̂ 1 = 1. Usually, the function f (δτ )= e−0δτ is considered, where 0
represents some decay rate and δτ is a positive exposure time. Here we wish to determine the
form of f (δτ ) for our fusion operation initially using δτ as the temporal parameter. Considering
two qubits subject to such a type of arbitrary phase damping, we have the overall channel
EPD(ρ)=

∑3
i=0 K̂ iρ K̂ †

i , where

K̂ 0 = α21 ⊗ 1,

K̂ 1 = αβ1 ⊗ σz,

K̂ 2 = αβσz ⊗ 1,

K̂ 3 = β2σz ⊗ σz,

(9)

with α = [(1 + f (δτ ))/2]1/2 and β = [(1 − f (δτ ))/2]1/2. We can now write the total channel
ET(ρ)= EPD(EF(ρ)) describing the non-ideal fusion and phase damping due to δτ 6= 0 in the
{Ên} basis as

ET(ρ)=

∑
`,n,m

χF
n,m K̂ ` Ênρ Ê†

m K̂ †
` =

∑
n,m

χT
n,m Ênρ Ê†

m. (10)

The second equality is possible because 1 and σz do not change the polarization, so that we can
rewrite the combined operators more conveniently in terms of only Ê0, Êzz, Êxx , Êxy , and the
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elements of a new matrix χT using the identities 1 ⊗ 1 ≡ Ê0 + Êxy , 1 ⊗ σz ≡ Ê zz − Êxx , σz ⊗

1 ≡ Ê zz + Êxx and σz ⊗ σz ≡ Ê0 − Êxy . In particular, we have that the total success probability
for the fusion operation is given by FT

P = χT
0,0 = (α4 +β4)χF

0,0 + (2α2β2)χF
zz,zz. Substituting in

for α and β, with f (δτ ) arbitrary, we have

FT
P =

1
2(χ

F
0,0 +χF

zz,zz)+ 1
2 f (δτ )2(χF

0,0 −χF
zz,zz). (11)

Similarly, we have

χT
zz,zz =

1
2(χ

F
0,0 +χF

zz,zz)−
1
2 f (δτ )2(χF

0,0 −χF
zz,zz),

χT
xx,xx =

1
2(χ

F
xx,xx +χF

xy,xy)+ 1
2 f (δτ )2(χF

xx,xx −χF
xy,xy),

χT
xy,xy =

1
2(χ

F
xx,xx +χF

xy,xy)−
1
2 f (δτ )2(χF

xx,xx −χF
xy,xy).

(12)

We can find the expected form of the phase damping function f (δτ ) by considering the
coincidence probability Pcoinc given in equation (2) for the case of ideal fusion. Here, the fusion
operation acts on the state |+〉 |+〉 and produces the state

ρ =
1
2

[
|H H〉〈H H | + |H H〉〈V V | + |V V 〉〈H H | + |V V 〉〈V V |

]
, (13)

with probability 1/2. After phase damping we then end up with the state ρ ′
= EPD(ρ) given by

ρ ′
=

1
2

[
|H H〉〈H H | + f (δτ )2|H H〉〈V V | + f (δτ )2|V V 〉〈H H | + |V V 〉〈V V |

]
. (14)

Measuring the population of ρ ′ in the state |+〉 |+〉 gives (1 + f (δτ )2)/4. By including the factor
of 1/2 due to the probabilistic nature of the fusion producing the state in equation (13), we have
that Pcoinc = (1 + f (δτ )2)/8. Using equation (2) we are able to then make the correspondence
f (δτ )= e−(δτ/σt )

2/2. In figure 4(a) we show the expected dependence of the total process fidelity
FT

P and entanglement capability with the time delay δτ in the case of our experimental fusion
at δτ = 0. The data give a close match to the expected dependence. For definiteness we choose
positive δτ with the temporal dependence being symmetric. In both of these we have used the
phase damping function f (δτ )= e−(δτ/σt )

2/2.
In figure 4(b), we show the χT matrix elements for the total process of fusion and phase

damping, as defined in equations (11) and (12). The solid lines correspond to the expected
dependence of the ideal fusion with phase damping and the dotted lines correspond to the
expected dependence of our experimental fusion at δτ = 0 with phase damping applied. In both,
the phase damping function is f (δτ )= e−(δτ/σt )

2/2. Again, the data closely match the f (δτ )
model. Note that for ideal fusion, the elements χT

xx,xx and χT
xy,xy are zero always, regardless of

the amount of phase damping. However, figure 4(b) shows that this is not the case for non-ideal
fusion, as in our experiment. Note also from figure 4(b) that in the case of our experimental
fusion at δτ = 0, the effects of imperfections such as spectral mixedness and spatial mismatch
can be almost entirely described in terms of an ideal fusion operation (solid lines) that has been
phase damped. Indeed, at δτ/σt ' 1 in figure 4(b), one can see that the phase-damped ideal
fusion matches the non-damped experimental fusion at δτ = 0. Thus to a good approximation
(χT

xx,xx and χT
xy,xy negligible), we can model our experimental fusion operation at δτ = 0 as

being a phase damped ideal fusion operation. For δτ > 0 an additional phase damped channel
with the function f (δτ ) is then applied to each qubit.
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Figure 4. The total process fidelity, entanglement capability and elements of the
process matrix. (a) The total process fidelity FT

P and entanglement capability
CE dependence on the time delay δτ . The solid (dotted) line shows the decay
expected from the theoretical phase damping model with the experimental fusion
values taken at zero time delay for FT

P (CE). The experimental values are plotted
as triangles (circles), with errors negligible on the scale of the graph. (b) The
elements of the total process matrix χT as they depend on the time delay δτ .
The upper (lower) solid line corresponds to the element χT

0,0 (χT
zz,zz) from the

theoretical model with perfect fusion. The upper (lower) dashed line corresponds
to the element χT

0,0 (χT
zz,zz) from the experimental data at δτ = 0 extrapolated

using the function f (δτ ). The lower lines show the elements χT
xx,xx and χT

xy,xy .
For ideal fusion these are zero regardless of the time delay. The experimental
values are plotted as circles, triangles, squares and diamonds for 00, zz, xx and
yy, respectively, with errors negligible on the scale of the graph. Note that all
diagonal χT elements sum to one regardless of the time delay δτ .

7. Summary

In this paper we have reported an experimental demonstration of the fusion of photons from
two independent PCF sources into polarization entangled states. We introduced and carried out
a novel method to characterize the fusion operation via quantum process reconstruction. To do
this we developed a theoretical model to describe the entangling process which included the
main imperfections. We then showed that our model fitted well with the experimental results.
This paper highlights the need for accurate control of spatial and temporal properties for the
success of photonic fusion and provides detailed information about the practical requirements
and limitations of an operation that may be used in emerging quantum photonic technologies.
Future work will aim to optimize our fusion operation and use it to generate larger high-quality
multi-qubit entangled states, including the use of additional degrees of freedom such as path
and frequency encoding, for carrying out computations and communication protocols.
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Appendix A. Derivation of fusion interference antidip

Starting from the initial state |H〉1 |H〉2 for the signal photons in modes 1 and 2, produced from
the PCF sources as shown in figure 1, and finishing with the measurement of the coincidence
probability for the state |H〉1a |H〉2a at the detectors D1a and D2a, we have the probability
density for a photon to be detected in mode 1a at time t0 and another in mode 2a at time t0 + τ
given by

Pcoinc(t0, τ )= 12〈H H |Ê−

H1a
(t0)Ê

−

H2a
(t0 + τ)Ê+

H2a
(t0 + τ)Ê+

H1a
(t0) |H H〉12 (A.1)

where the scalar photon-unit time-dependent electric field operators are defined as

Ê+
i (t)=

1
√

2π

∫
dω e−iωt âi(ω),

Ê−

i (t)=
1

√
2π

∫
dω eiωt â†

i (ω)

(A.2)

with â†
i (ω) and âi(ω) being the photon creation and annihilation operators, respectively, which

obey the bosonic commutation relation [âi(ω), â†
j (ω

′)] = δi jδ(ω−ω′). The initial state |H H〉12

is written as

|H H〉12 =

∫
dω1

∫
dω2 φ1(ω1)φ2(ω2)â

†
H1
(ω1)â

†
H2
(ω2) |0〉 , (A.3)

where φi(ωi) is the spectral amplitude of a single-photon pulse in mode i , normalized so that∫
dωφ∗

i (ωi)φi(ωi)= 1. The initial state |H〉1 |H〉2 is rotated into the required input state |in〉 =

|+〉1 |+〉2 of the FPBS by HWPs that produce the transformations â†
H1
(ω1)→ (1/

√
2)[â†

H1
(ω1)+

â†
V1
(ω1)] and â†

H2
(ω2)→ (1/

√
2)[â†

H2
(ω2)+ â†

V2
(ω2)]. The action of the FPBS, combined with

the HWP–QWP–HWP chain on mode 2 (for phase correction), produces the transformations

â†
H1
(ω1)→ â†

H2′
(ω1),

â†
V1
(ω1)→ iâ†

V1′
(ω1),

â†
H2
(ω2)→ â†

H1′
(ω2),

â†
V2
(ω2)→ −iâ†

V2′
(ω2).

(A.4)

Next, the HWP and QWP on each mode produce the transformations

â†
H1′
(ωi)→ (1/

√
2)[â†

H1′
(ωi)+ â†

V1′
(ωi)],

â†
V1′
(ωi) → (1/

√
2)[â†

H1′
(ωi)− â†

V1′
(ωi)],

â†
H2′
(ωi)→ (1/

√
2)[â†

H2′
(ωi)+ â†

V2′
(ωi)],

â†
V2′
(ωi) → (1/

√
2)[â†

H2′
(ωi)− â†

V2′
(ωi)].

The PBSs that follow produce the transformations

â†
H1′
(ωi)→ â†

H1a
(ωi),

â†
V1′
(ωi) → iâ†

V1b
(ωi),

â†
H2′
(ωi)→ â†

H2a
(ωi),

â†
V2′
(ωi) → − iâ†

V2b
(ωi).
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Thus, only horizontally polarized photons will be detected at detectors D1a and D2a. These
last operations (the HWP, QWP and PBS) together with the detections in modes 1a and 2a are
equivalent to measuring the coincidence probability for the state |+〉1′ |+〉2′ in the output of the
fusion. Therefore Pcoinc(t0, τ ) in equation (A.1) represents the coincidence probability density
for the state |+〉1′ |+〉2′ .

Substituting all the above transforms into equation (A.3), then substituting this into
equation (A.1) with the definitions given in equation (A.2) and carrying out the necessary
integrations [36], one finds

Pcoinc(t0, τ )=
1
16 |ζ1(t0 + τ)ζ2(t0)+ ζ1(t0)ζ2(t0 + τ)|2, (A.5)

where ζi(t)=
1

√
2π

∫
dωiφi(ωi)e−iωi t is the spatio-temporal modefunction for mode i . Choosing

Gaussian single-photon pulses for each of the input modes, with a time delay of δτ between the
peaks of the pulses, we have

ζ1(t)= (2/π)1/4 e−(t−δτ/2)2−iω0
1t , (A.6)

ζ2(t)= (2/π)1/4 e−(t+δτ/2)2−iω0
2t . (A.7)

Here, ω0
i is the central carrier frequency for mode i expressed in units of 1/σt and the times

t and δτ are expressed in units of σt (σt is the pulse duration of the signal photon, defined
as 2

√
2 ln 2/1ω, and 1ω is the full-width at half-maximum of the signal’s spectral intensity).

Substituting these expressions into equation (A.5) and integrating over all possible detection
times t0, i.e.

∫
∞

−∞
dt0, one finds the probability density for a coincidence at a time duration τ

with a set delay of δτ given by

Pcoinc(τ, δτ )=
e−δτ 2

−τ 2

√
64π

(cos[τ(ω0
1 −ω0

2)] + cosh[2δτ τ ]). (A.8)

Setting the central carrier frequencies the same for the moment, ω0
1 = ω0

2, we then integrate
equation (A.8) with respect to τ over the coincidence window. Here, the integration is∫ τcoinc/2

−τcoinc/2
dτ , allowing for either signal photon to be detected first. For τrep > τcoinc � |δτ |, where

τrep is the time between the pump pulses (and therefore possible signal photons produced from
four-wave mixing in the PCFs), one finds the coincidence probability

Pcoinc(δτ )=
1
8(e

−(δτ/σt )
2
+ 1), (A.9)

where we have now included σt explicitly. Although we have neglected a time-dependent
evaluation of the idler photons in the above analysis, they can also be included. Indeed, it is
straightforward to check that such a calculation does not change the result of equation (A.9),
given that the idler photons are assumed to be in a product state with the signal photons.

Appendix B. Higher-order emission analysis

The state generated by four-wave mixing in one source can be written as [39]

|ψ〉 =N (|0, 0〉s,i +α |H, H〉s,i +α2
|2H, 2H〉s,i + O(α3)), (B.1)

where N is a normalization constant and |α|
2
= n is the mean number of signal–idler pairs

generated in a pulse. When the idler detector registers a click, the heralded density matrix of the
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signal mode becomes

ρs = Tri

(
5

1/2
click|ψ〉〈ψ |5

1/2
click

Tr(5click|ψ〉〈ψ |)

)
, (B.2)

where the action of the detector is described by the positive operator-valued measure
{5click,5no-click = 1 −5click}, with 5click =

∑
∞

n=0(1 − (1 − η)n) |nH〉i 〈nH | and η is the
lumped detector efficiency of registering a click given that a single photon is input into the
mode it monitors. From equation (B.2) we have

ρs =N (η1 |H〉 〈H | + nη2 |2H〉 〈2H | + O(n2)), (B.3)

where ηn = 1 − (1 − η)n. We now write the heralded state of the two sources to first-order in n
as

ρ12 =N (|H, H〉12 〈H, H | + 2nγ |H, 2H〉12 〈H, 2H | + 2nγ |2H, H〉12 〈2H, H |), (B.4)

where γ = η2/2η1. The signal photons from ρ12 are first rotated from horizontal to diagonal
polarization and then input to the FPBS. Using the transformations given in equation (A.4) of
appendix A, we can write the output from the FPBS by making the following substitution in
equation (B.4):

|nH,m H〉12 →
(â†

H2′
+ iâ†

V1′
)n(â†

H1′
− iâ†

V2′
)m

2(n+m)/2
√

n!m!
, (B.5)

where we have now switched from the Schrödinger to the Heisenberg picture. By removing
the terms which do not lead to a possible coincidence of detection clicks between the two
signal modes, then performing the polarization rotations used in analyzing each measurement
basis {|H/V 〉 , |+/−〉 , |R/L〉} and switching back into the Schrödinger picture to determine
the contribution to the coincidence counts of the O(n) terms in equation (B.4), we can evaluate
the effects of higher-order emissions in our data. For instance, we find that the visibility of the
antidip in figure 2, up to O(n), is limited to

p0 =
1 − 4nγ + 6nγ 2

1 + 6nγ + 3nγ 2
. (B.6)

In addition, for the lowest power in table 1 where n = 0.037, taking η = 0.1 and considering up
to O(n) terms, the expected fidelity of the output state with respect to |φ+〉 is Fφ+ = 0.80. This
assumes that the fusion process is ideal, and so represents an upper bound.

Appendix C. Derivation of basis fidelities

The basis fidelities can be found from our experiment by noting the relation

〈 j`| E
exp
F (|ik〉〈ik|) | j`〉 =

N out
ik , j`

N in
ik

, (C.1)

where N in
ik

is the number of times input state |ik〉 is sent through the device and N out
ik , j` is the

number of times the output state is measured to be | j`〉 when input state |ik〉 is sent through the
device. We then have that

Fi→ j =
1

2

∑
`,k

N out
ik , j`

N in
ik

. (C.2)
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Keeping the value of N in
ik

constant over the experiment for all possible input states |ik〉, i.e. N in
ik

=

N in, and noting that Tr(Eexp
F (1/4))= 1/2 for any experimental process matrix χ appearing in

equation (3), we have that N in
=
∑

ik
Tik/2, where Tik =

∑
i p

N out
i p,ik

. In other words, for a given
input basis i , the total number of transmitted states over that basis is equal to half the total
number of input states (in this case 2N in). Therefore we have

Fi→ j =

∑
`,k N out

ik , j`∑
ik

Tik

. (C.3)

Appendix D. Relation of concurrence to fusion operation fidelity

The concurrence, C , for a two-qubit state ρ12 can be written as [40]

C(ρ12)= max

{
0,− min

A∈Sl(2,C)
Tr((|A〉〈A|)T2ρ12)

}
, (D.1)

where |A〉 denotes the unnormalized state (A ⊗ 1) |I 〉, with |I 〉 =
∑

i |i i〉 and A is any matrix
with det(A)= 1. In equation (D.1) any choice for the state |A〉 provides a lower bound on the
concurrence, thus choosing |A〉 =

√
2
∣∣ψ−

〉
, we have that (|A〉〈A|)T2 = 1 − 2|φ+

〉〈φ+
|, and we

can rewrite equation (D.1) as

C(ρ12)>max{0, 2Fφ+ − 1}, (D.2)

where Fφ+ = Tr(|φ+
〉〈φ+

|ρ12) is the fidelity of the state ρ12 with respect to |φ+〉. If we consider
the state ρ12 to be an output state from a channel E acting on two input product states, then
C(ρ12) provides a lower bound on the entanglement capacity of that channel. Choosing the
input product state to be ρin = |+〉〈+| ⊗ |+〉〈+| and the channel to be our experimental fusion
operation Eexp

F , we have that ρ12 = Eexp
F (ρin)= F exp

P |φ+
〉〈φ+

| + (1 − F exp
P )ρ ′. Thus, Fφ+ = F exp

P
and we have the lower bound for the entanglement capability of the fusion operation, quantified
by the concurrence as CE > 2F exp

P − 1.
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[14] Hübel H et al 2010 Nature 466 601
[15] Gao W-B et al 2010 Nature Phys. 6 331

Yao X-C et al 2011 arXiv:1105.6318
[16] O’Brien J L, Furusawa A and Vuckovic J 2009 Nat. Photonics 3 687
[17] Halder M et al 2009 Opt. Express 17 4670
[18] Clark A et al 2011 arXiv:1102.4415
[19] Politi A et al 2008 Science 320 646
[20] Sansoni L et al 2010 Phys. Rev. Lett. 105 200503
[21] Tame M S and Kim M S 2010 Phys. Rev. A 82 030305
[22] Wang Q, Farrell G and Semenova Y 2006 IEEE Sel. Top. Quantum Electron. 12 1349

Wang Q and Farrell G 2007 J. Opt. Soc. Am. A 24 3303
[23] Crespi A et al 2011 Nature Commun. 2 566
[24] Prevedel R et al 2007 Phys. Rev. Lett. 99 250503

Tame M S, Paternostro M and Kim M S 2007 New J. Phys. 9 201
[25] Pittman T B, Jacobs B C and Franson J D 2001 Phys. Rev. A 64 062311
[26] Pan J-W, Simon C, Brukner C and Zeilinger A 2001 Nature 410 1067

Pan J-W, Gasparoni S, Ursin R, Weihs G and Zeilinger A 2003 Nature 423 417
[27] Hofmann H F and Takeuchi S 2002 Phys. Rev. Lett. 88 147901
[28] Okamoto R et al 2009 Science 323 483
[29] Raussendorf R and Briegel H J 2001 Phys. Rev. Lett. 86 5188

Raussendorf R, Browne D E and Briegel H J 2003 Phys. Rev. A 68 022312
[30] Browne D E and Rudolph T 2005 Phys. Rev. Lett. 95 010501
[31] Weinstein Y S 2011 arXiv:1102.1916
[32] Bodiya T P and Duan L-M 2006 Phys. Rev. Lett. 97 143601
[33] Imoto N, Haus H A and Yamamoto Y 1985 Phys. Rev. A 32 2287

Yeh P 1986 J. Opt. Soc. Am. B 3 747
Bachor H-A et al 1988 Phys. Rev. A 38 180

[34] Guerlin C et al 2007 Nature 448 889

New Journal of Physics 14 (2012) 023021 (http://www.njp.org/)

http://dx.doi.org/10.1038/nature03347
http://dx.doi.org/10.1103/PhysRevLett.95.210502
http://dx.doi.org/10.1103/PhysRevLett.99.120503
http://dx.doi.org/10.1103/PhysRevLett.98.180502
http://dx.doi.org/10.1103/PhysRevLett.100.210501
http://dx.doi.org/10.1103/PhysRevLett.103.160401
http://dx.doi.org/10.1103/PhysRevLett.103.240504
http://dx.doi.org/10.1103/PhysRevA.73.022330
http://dx.doi.org/10.1038/nphys507
http://arxiv.org/abs/1105.5211 
http://dx.doi.org/10.1103/PhysRevLett.98.063604
http://dx.doi.org/10.1103/PhysRevLett.103.020503
http://dx.doi.org/10.1103/PhysRevLett.103.020504
http://dx.doi.org/10.1103/PhysRevLett.103.150501
http://dx.doi.org/10.1103/PhysRevLett.102.030502
http://dx.doi.org/10.1088/1367-2630/11/8/083010
http://dx.doi.org/10.1103/PhysRevLett.105.130501
http://dx.doi.org/10.1103/PhysRevA.84.020304
http://arxiv.org/abs/1105.3598 
http://dx.doi.org/10.1038/nphoton.2010.123
http://dx.doi.org/10.1038/nphoton.2010.156
http://dx.doi.org/10.1038/nature09175
http://dx.doi.org/10.1038/nphys1603
http://arxiv.org/abs/1105.6318 
http://dx.doi.org/10.1038/nphoton.2009.229
http://dx.doi.org/10.1364/OE.17.004670
http://arxiv.org/abs/1102.4415
http://dx.doi.org/10.1126/science.1155441
http://dx.doi.org/10.1103/PhysRevLett.105.200503
http://dx.doi.org/10.1103/PhysRevA.82.030305
http://dx.doi.org/10.1109/JSTQE.2006.883156
http://dx.doi.org/10.1364/JOSAA.24.003303
http://dx.doi.org/10.1038/ncomms1570
http://dx.doi.org/10.1103/PhysRevLett.99.250503
http://dx.doi.org/10.1088/1367-2630/9/6/201
http://dx.doi.org/10.1103/PhysRevA.64.062311
http://dx.doi.org/10.1038/35074041
http://dx.doi.org/10.1038/nature01623
http://dx.doi.org/10.1103/PhysRevLett.88.147901
http://dx.doi.org/10.1126/science.1167182
http://dx.doi.org/10.1103/PhysRevLett.86.5188
http://dx.doi.org/10.1103/PhysRevA.68.022312
http://dx.doi.org/10.1103/PhysRevLett.95.010501
http://arxiv.org/abs/1102.1916
http://dx.doi.org/10.1103/PhysRevLett.97.143601
http://dx.doi.org/10.1103/PhysRevA.32.2287
http://dx.doi.org/10.1364/JOSAB.3.000747
http://dx.doi.org/10.1103/PhysRevA.38.180
http://dx.doi.org/10.1038/nature06057
http://www.njp.org/


19

[35] Hong C K, Ou Z Y and Mandel L 1987 Phys. Rev. Lett. 59 2044
Ghosh R, Hong C K, Ou Z Y and Mandel L 1986 Phys. Rev. A 34 3962
Ghosh R and Mandel L 1987 Phys. Rev. Lett. 59 1903

[36] Legero T et al 2003 Appl. Phys. B 77 797
[37] James D F V et al 2001 Phys. Rev. A 64 052312
[38] Hofmann H F 2005 Phys. Rev. Lett. 94 160504
[39] Fulconis J, Alibart O, Wadsworth W J and Rarity J G 2007 New J. Phys. 9 276
[40] Verstraete F 2002 PhD Thesis Katholieke Universiteit Leuven

New Journal of Physics 14 (2012) 023021 (http://www.njp.org/)

http://dx.doi.org/10.1103/PhysRevLett.59.2044
http://dx.doi.org/10.1103/PhysRevA.34.3962
http://dx.doi.org/10.1103/PhysRevLett.59.1903
http://dx.doi.org/10.1007/s00340-003-1337-x
http://dx.doi.org/10.1103/PhysRevA.64.052312
http://dx.doi.org/10.1103/PhysRevLett.94.160504
http://dx.doi.org/10.1088/1367-2630/9/8/276
http://www.njp.org/

	1. Introduction
	2. Experimental setup
	3. Fusion operation
	4. Fusion interference
	5. Fusion process tomography
	6. Non-ideal temporal setting
	7. Summary
	Acknowledgments
	Appendix A.  Derivation of fusion interference antidip 
	Appendix B.  Higher-order emission analysis 
	Appendix C.  Derivation of basis fidelities 
	Appendix D.  Relation of concurrence to fusion operation fidelity 
	References

