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1. Abstract 

Efficient control and characterisation of the physico-chemical properties of 

active pharmaceutical ingredients (APIs) and excipients for orally inhaled drug 

products (OIDPs) are critical to successful product development. Control and 

reduction of risk requires the introduction of a material science based 

approach to product development and the use of advanced analytical tools in 

understanding how the solid-state properties of the input materials influence 

structure and product functionality. The key issues to be addressed, at a 

microscopic scale, are understanding how the critical quality attributes of input 

materials influence surface, interfacial and particulate interactions within 

OIDPs. This review offers an in-depth discussion on the use of advanced 

microscopy techniques in characterising of the solid-state properties of 

particulate materials for OIDPs. The review covers the fundamental principles 

of the techniques, instrumentation types, data interpretation and specific 

applications in relation to the product development of OIDPs. 

Keywords: Raman chemical imaging, dry powder inhalers, metered dose 

inhalers, atomic force microscopy, microscopy, chemical imaging, 

tomography, interferometry 
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2. Introduction 

Material scientists have an ever-increasing array of analytical tools and 

techniques available at their disposal to study the physical and chemical 

properties of active pharmaceutical ingredients (APIs) and excipients. These 

tools are being widely applied in the pharmaceutical industry to support 

product development of therapeutic medicines. Whilst the solid oral dosage 

tablet still forms the mainstay of drug delivery, more complex medicines, such 

as those based on inhalation therapies, are being developed. These complex 

medicines generally require the use of bespoke tools and techniques for 

material characterisation. This is particularly the case for particulate-based 

medicaments such as orally inhaled drug products (OIDPs), where an 

understanding of the role of the surface and interfacial properties of APIs and 

excipients are key to successful product development. 

This understanding is critically important for the development of suspension 

based pressurised metered dose inhaler (MDI) and dry powder inhaler (DPI) 

formulations. These portable delivery systems require the manufacture of a 

product which are stable enough to withstand the manufacturing process and 

provide a long shelf life, while allowing the drug to be effectively and 

reproducibly dispersed for delivery to the lung. The development of 

formulations, which exhibit such properties, presents considerable challenges 

to formulators and manufacturers. 
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The pressurised metered dose inhaler (MDI) is the most dominant and 

recognised drug delivery vehicle for lung therapy [1]. This dosage form 

contains the active pharmaceutical ingredient (API) dissolved or suspended in 

the propellant or a mixture of propellants/solvents (e.g. ethanol) [2]. Owing to 

the low solubility of many inhaled drug substances in the propellant 

(HFA134a), most MDIs are formulated as suspensions. Upon actuation of the 

dose from a MDI, the patient must co-ordinate their breathing to transport the 

aerosol into the lungs [3]. 

In contrast, passive dry powder inhalers (DPIs) are breath-actuated devices 

and do not require propellants to aid the aerosolization of the APIs. 

Formulations for DPIs are typically prepared as homogenous adhesive 

interactive mixtures, comprising of micronized drug particles and a coarse 

excipient carrier [4]. The coarse carrier, traditionally lactose monohydrate [5], 

is employed within DPI formulations to improve flow properties and metering 

of the highly cohesive API particles [6]. The entrainment and subsequent 

aerosolization of the formulation is achieved using the patient’s inspiratory 

force, which is required to elutriate the micronized API from the surface of the 

carrier particle for delivery to the lower airways of the respiratory tract [7]. DPI 

formulations are also produced as agglomerated systems consisting of pure 

micronised API or mixtures of API and excipients. 

In suspension MDI formulations, the interfacial properties of the API particles 

in suspension will be dominated by the van der Waals and electrostatic 

double layer forces [8]. For carrier based DPI formulations, the interactive 
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forces between API and excipient are dominated by a composite of van der 

Waals, electrostatic and capillary forces [9]. The preferential surface 

interactions of the API particles with excipients and other components of the 

container closure system of these drug product adds further complexity to 

suspension MDI and DPI dosage forms. These surface interactions may lead 

to particle agglomeration, segregation or adhesion of API to the inner walls of 

a device, which will contribute to inconsistent drug delivery and emitted 

particle size distribution [10] [11] [12]. Hence, the United States 

Pharmacopeia (USP) requires that the particle size distribution of the fine 

particle mass is characterised [13]. Additionally, the guidance suggests that 

appropriate characterisation of the particle size distribution of the API and any 

excipients should be considered [14]. 

The use of appropriate tools for the characterisation and control of medicines 

and their components is a vital part of the pharmaceutical development 

process. Validated analytical methods are used for the formal release of 

excipients and medicines but additional tools may also be utilised to 

understand various aspects of the medicine, especially during early phase 

product development. This is particularly the case for analytical methods 

based on microscopy. 

Excipients, APIs and formulated drug products are routinely evaluated by an 

‘appearance’ test. Whilst this is the lowest level of scrutiny for the evaluation 

of a material, the test is contained in excipient and product monographs and 

provides useful information about a material concerning for example, colour 
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and particulate appearance and also in detecting any contamination. Prior to 

the development of particle sizing methodologies such as inertial impactors 

and laser light diffraction, APIs, excipients and formulations were routinely 

monitored using optical microscopy. Whilst this method of examination is 

relatively crude, subjective and does not provide relevant information 

regarding the aerodynamic behaviour of drug particles, current United States 

of America (USA) Food and Drug Administration (FDA) chemistry 

manufacturing, and control (CMC) guidance believe this approach should be 

retained for release and stability testing of OIDPs [14]. The primary reason is 

that visual microscopic analysis of formulations enables identification of 

agglomerates within the formulation, which are likely to affect formulation 

aerodynamic particle size and therefore therapeutic efficacy [13]. Hence, the 

use of basic optical microscopy is still regarded as a relevant and appropriate 

methodology for probing MDI and DPI formulations to maintain control of drug 

product performance and stability. Whilst changes in MDI and DPI 

aerodynamic particle size are related to the surface properties and interfacial 

interactions of the API and other components of the drug product [10], there 

remains only a limited understanding of the relationships between material 

properties, particle size and drug product performance. Therefore any tool, 

including those based on microscopy, should be utilised to investigate such 

relationships. 

The term ‘microscopy’ was typically applied to methods that involve 

visualising a material not possible with the naked eye. The three key 

microscopy techniques widely employed in the characterisation of OIDPs are 
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optical microscopy, scanning electron microscopy (SEM) and scanning probe 

microscopy (SPM). Optical and electron microscopy techniques utilise light 

and electrons, respectively, to irradiate the sample of interest. In the case of 

optical microscopy this is achieved by wide-field irradiation of the sample of 

interest with light [15]. In contrast, techniques such as confocal laser scanning 

microscopy (CLSM) and scanning electron microscopy (SEM) utilise a fine 

beam of the energy source to scan over the sample [16] [17]. These 

techniques have enabled in-depth investigation of the surface 

physicochemical properties of pharmaceutical materials and dosage forms. 

Additionally, methods based on scanning probe microscopy (SPM), which 

involve the interaction of a scanning probe with the sample of interest, have 

enabled greater understanding of the effect of physical, chemistry and 

mechanical properties of surface and their role on interfacial adhesion and 

cohesion in metered dose inhalers (MDIs) and dry powder inhalers (DPIs) [18] 

[19] [20] [21] [22][23]. The utilisation of these advanced microscopy 

techniques in the development of OIDPs may enable the identification of 

critical quality attributes of raw materials, which affect the functionality of 

these dosage forms. 

The use of advanced microscopic based techniques in studying microscopic 

behaviour of particles and surfaces and their influence on the macroscopic 

behaviour of OIDPs has been widely implemented during product 

development and in manufacturing. The ultimate aim in the use of these 

techniques is to help reduce product failures and to limit the need of 

conventional end-of-line testing in enabling intelligence based manufacturing. 
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This is critical for the development of MDIs and DPIs, where the impact of 

input variability must be reduced through changes to process controls. The 

aim of this review is to provide an overview of these advanced microscopy 

techniques, with a particular emphasis on their application in investigating API 

and excipients for the development of OIDPs. 
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3. Imaging Techniques in OIDP Development 

The use of microscopy in the development of inhaled products is a key 

requirement in the USA FDA CMC guidance for the development of OIDPs 

[14]. The visualisation of raw materials and final formulations can be 

performed from the macroscale down to the nanoscale, depending on the 

energy source deployed. The application of microscopy to investigate surface 

properties of raw materials and the structure of the processed formulation has 

provided useful information during pharmaceutical development of inhaled 

products. A number of advanced techniques have also been employed. These 

techniques allow the analysis of individual particles and bulk particle 

properties. All of the techniques can be considered as destructive and range 

from applying stress, such as heat, vacuum etc, to the study of static 

individual particles. The following sections will describe some of these 

techniques and their application in the development of OIDPs. 

3.1 Optical Microscopy 

The use of traditional light microscopes requires the operator to visually 

discriminate between particles on the basis of their ‘appearance’ [24]. 

However, this approach is both operator dependent and labour intensive, and 

the results tend to be relatively subjective with low statistical significance, and 

are limited by the number of particles (sample mass) that can be evaluated 
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[25]. However, the use of upright and inverse microscopes with optical beam 

paths for incident and transmitted light, in combination with motorized sample 

stages and image analysis, have enabled automated investigations of large 

numbers of samples and large sample areas [26]. 

3.1.1 Bright-field and cross-polarised microscopy 

Many OIDP manufacturers have adopted the use of light microscopy to 

characterize and control foreign particles in OIDP dosage forms. These 

particles are contaminants in the formulation, and manufacturers are required 

by USP 788 to ensure the highest levels of product purity [27]. One of the 

methods, described in USP 788, is microscopic particle counting by light 

obscuration to measure and analyse micron-range foreign particles in 

pharmaceutical product manufacturing. Light obscuration analysis is useful for 

particle counting but not for characterization. In light obscuration, a sample 

dose is suspended in a liquid and exposed to a laser. Particles passing 

through the laser will scatter or absorb the light leading to a change in voltage 

in the detector. The amount of voltage needed to return the detector to its 

original voltage increases with increasing particle size. Particles can thus be 

counted in specific size ranges [28]. This approach has been demonstrated by 

Niemann et al., which has shown this method meets International 

Pharmaceutical Aerosol Consortium on Regulation and Science (IPAC-RS) 

standards for the detection of foreign particles [29]. 
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Reliable and accurate measurement of the particle shape and size of an API, 

excipient and final formulation is critical in the development of an OIDP. 

Traditionally the naked eye and simple bright-field light microscopes have 

been employed for the qualitative assessment of particle shape and 

measurement of particle size. In the development of different carrier particles 

of lactose for DPIs, Larhrib et al. measured the elongation ratio of commercial 

lactose and engineered crystals of lactose produced using the addition of 

surfactants into the crystallization medium [30]. They used an optical 

microscope to calculate volume weighted median diameter of the lactose 

crystals. In addition, the minimum Feret diameter (mF) and maximum Feret 

diameter (MF) were also calculated, from which the elongation ratio was 

measured using equation 1. 

Elongation Ratio = 
MF (Eq. 1) 
mF 

These measurements were related to the flow properties, content uniformity 

and in vitro aerosolization performance of formulations containing lactose with 

different elongation ratio. It was found that increasing the elongation ratio of 

the carrier or drug improved the deposition profiles of salbutamol sulphate, 

suggesting that the more elongated particles would be more aerodynamic and 

favoured deep lung penetration [30]. 

This technique has also been utilised to characterise lactose crystals 

produced from different ethanol/butanol co-solvent mixtures [31]. In these 

investigations, a small amount of powder was dispersed on to a microscope 
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slide, from which the surface volume mean diameter, Feret diameters, 

roundness, and elongation ratios of a hundred particles were calculated using 

image analysis software. The elongation ratio was calculated in the same way 

as Lahrib et al. using Eq. 1, however, the roundness of the particles was 

calculated using equation 2: 

Roundness = 
(perimeter)2 

(Eq. 2) 
4πArea 

Kaialy et al., found that the crystallised lactose particles were less elongated 

and more irregular in shape with rougher surfaces than commercial samples. 

These data where then related to the better content uniformity and 

aerosolization performance of formulation blends produced using crystallised 

lactose when compared to those produced using commercial grade lactose. A 

similar approach was utilised by Kaialy et al., to investigate the effect of 

crystallising mannitol from different binary mixtures of acetone/water on the in 

vitro aerosolisation performance of carried based DPI formulations produced 

with different mannitol crystals and salbutamol sulphate. Their investigations 

found that the aerosolisation performance of the formulations containing the 

engineered mannitol had better aerosolization performance than that of the 

commercial mannitol formulations [32]. It was concluded that the improvement 

in the DPI performance could be attributed to the presence of elongated 

carrier particles with smooth surfaces since these are believed to have less 

adhesive forces between carrier and the drug resulting in easier detachment 

of the drug during the inhalation. 
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In addition to simple bright-field microscopy, the use of polarized light as an 

illumination technique provides valuable insight into pharmaceutical material 

properties [33]. Polarized light microscopy is performed using a polarizing 

element below the sample to produce plane polarized light and an analyser 

that enables total distinction of the background, which allows detection of any 

birefringence. Polarized light microscopy can distinguish between isotropic 

and anisotropic materials. Isotropic materials (e.g. gases, liquids, unstressed 

glasses) demonstrate the same optical properties in all directions. Anisotropic 

materials, in contrast, have optical properties that vary with the orientation of 

incident light with the crystallographic axes. They exhibit a range of refractive 

indices depending both on the propagation direction of light through the 

substance and on the vibrational plane coordinates [34]. Consequently, 

polarized light is very effective in investigating particle shape, particle size and 

in combination with image analysis the particle size distribution. Moreover, the 

detection of birefringence enables investigation of crystal growth and 

crystallinity of pharmaceutical materials [35]. 

Price and Young have utilised an environmentally controlled optical 

microscope to further explore the effects of moisture on the metastable nature 

of amorphous lactose [36]. They were able to observe that at 75% RH not all 

of the amorphous lactose particles underwent a re-crystallization event, which 

was suggested by a number of bulk analytical techniques such as isothermal 

microcalorimetery. Upon increasing the humidity to 94% RH, they were able 

to observe by optical microscopy that the increased partial water vapour 

pressure was shown to induce primary nucleation and crystal growth of these 
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remaining particles. They were also showed the formation of Newton ring’s 

surrounding these crystals, which was formed by a thin film covering the 

crystals. 

The deliquescence behaviour of spray dried unfractionated heparin (UFH) 

with and without leucine was also investigated using a similar environmentally 

controlled optical microscope [37]. In this study, optical microscopy images 

showed that at low humidity, spray dried UFH was agglomerated whereas co 

spray dried UFH with leucine appeared as a finely dispersed white powder 

(Fig. 1A and B). On exposure to 90 % RH, the spray-dried UFH material 

began to deliquesce progressively over 15 min, as shown by the growth of 

transparent regions (Fig. 1A’). In contrast, at the same time-point the sample 

of co-spray-dried UFH with leucine remained as a finely dispersed powder 

(Fig. 1B and B’). 

3.1.2 Hot-stage microscopy 

In combination with a hot-stage, temperature-dependent phase 

transformations can be observed by optical microscopy [38]. Not only melting 

points but also eventual solid-state transformations can be followed. The hot 

stage microscope is a polarizing microscope with a compartment that is 

temperature controlled by a computer. A material of interest can be mounted 

on a microscope slide and placed into the chamber of the hot stage. By 

varying the temperature, the melting point of the material of interest can be 

determined [39]. 
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Chan and Gonda successfully utilised hot-stage microscopy to demonstrate 

phase-transformation of recombinant DNase (rhDNase)-lactose co spray-

dried materials [40]. They were able to show that after exposure of the 

material to high relative humidity the presence of birefringence in localised 

areas of agglomerates was observed at 161 °C, which suggested re-

crystallisation of the material. This was further obviated by the disappearance 

of birefringence at temperatures ranging between 200 and 210 °C, which was 

related to the melting of the lactose component of the co spray-dried material. 

In order to gain insight into the formation mechanisms of spray-dried mannitol 

particles, Littringer et al. have utilised hot stage microscopy [41]. In their 

investigations, they collected droplets of aqueous mannitol solutions on a 

glass slide which were then placed on a hot stage, preheated to 60 °C or 120 

°C. They showed that the re-crystallization process began at 60 °C, at which 

point the material formed small acicular crystals that grew in a radial manner 

from several emerging nucleation centres. Droplets placed on the hot stage at 

120 °C shrunk quickly due to the fast evaporation of water but most of them 

were observed to remain liquid and did not recrystallize, indicating that the 

nucleation rate is low at these conditions. They also showed that a highly 

supersaturated viscous solution, recrystallization occurred instantly in the 

presence of seed crystals or when the temperature of the hot stage was 

lowered by 10 °C to 20 °C. The hot stage microscopy experiments showed, 

that the differences in surface topography of the spray-dried particles at lab 

scale are based on two different crystallization processes. At low 
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temperatures, fine needles crystallize from the supersaturated solution 

resulting in smooth surfaces. In contrast, at high temperatures (around 120 

°C) the mannitol solution dried quickly to a highly supersaturated, viscous 

liquid since the solvent evaporation rate is high and the nucleation of 

crystalline mannitol is limited by lack of molecular mobility. This metastable 

supersaturated, viscous liquid crystallizes to coarse crystals when sufficient 

seeds are present, resulting in particles or spheres with rough surfaces. 

3.1.3 Confocal laser scanning microscopy (CLSM) 

Confocal microscopy is an imaging technique employed to obtain high-

resolution images and three-dimensional re-constructions. This is achieved by 

using a spatial pinhole to eliminate out-of-focus light in samples that are wider 

than the focal plane [42]. The key feature of confocal microscopy is its ability 

to produce high-resolution images of thick specimens at various depths. 

Images are taken point-by-point and reconstructed with a computer, rather 

than projected through an eyepiece [43]. 

An image is formed using CLSM when a laser beam passes a light source 

aperture, which is then focused by an objective lens into a small focal volume 

within a fluorescent specimen. A mixture of emitted fluorescent light as well as 

reflected laser light from the illuminated spot is then recollected by the 

objective lens. A beam splitter separates the light mixture by allowing only the 

laser light to pass through into the detection apparatus. After passing a 

pinhole the fluorescent light is detected by a photodiode that transforms the 
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light into an electrical signal that is recorded by a computer. The detector 

aperture obstructs the light that is not coming from the focal point, and most of 

the returning light is blocked by the pinhole. This results in sharper images 

compared to conventional fluoresence microscopy techniques and permits 

one to obtain images of various z axis planes (z-stacks) of the sample. As the 

laser scans over the plane of interest a whole image is obtained pixel by pixel 

and line by line. However, the brightness of a resulting image pixel 

corresponds to the relative intensity of detected fluorescent light. As CLSM 

depends on fluorescence, a sample is usually treated with fluorescent dyes to 

make samples visible. 

The interior structure of particles of spray dried bovine serum albumin (BSA) 

has been previously investigated using CLSM. In this study, spray dried 

powders were fixed to a glass coverslip and CLSM was used to detect voids 

in the particle by continuous sectioning along the z-axis of the powder sample 

[44]. The CLSM images revealed that the spray dried samples were non-

porous. In another study, Maas et al., successfully used CLSM to quantify the 

surface roughness of spray dried mannitol particles [45]. Operating a laser at 

408 nm and with a lateral resolution of 120 nm, they were able to detect 

surface roughness down to 10 nm. The development of this approach may 

provide a simple quantitative technique to evaluate the surface roughness of 

respirable particles. 
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3.2 Microscopy based on the use high energy electron beams 

3.2.1 Scanning electron microscopy 

Scanning electron microscopy (SEM) is used to characterize particle 

morphology and shape. SEM achieves extremely high resolutions down to a 

few nanometers and has a very flexible field of view, making it a very powerful 

tool [46]. This form of microscopy also provides higher magnification and 

depth of focus compared to optical microscopy and is suitable for particles of 

sizes 0.1-1000 µm [47]. SEM is routinely used to investigate particle 

morphology and shape and structures of DPI formulations [48] [49]. Whilst 

these data remain largely qualitative, they do provide important information 

regarding the visual appearance of the dosage form that relates to product 

functionality. 

As inhaled API particles are typically less than 5 µm, SEM has the resolution 

to extensively investigate the physical properties of these materials. As such, 

SEM has been utilised to investigate the morphology of API particles 

produced using different particle engineering strategies such as spray-drying 

[50], spray-freeze drying [51], supercritical fluid engineering [52], solution 

atomisation and crystallisation by sonication (SAX) [53], and controlled 

precipitation [54]. The morphology of API particles is known to affect the 

performance of OIDPs [55], and therefore, ability to investigate this property 

by SEM is a critical in the development of inhaled products. This is highlighted 

in Fig.2, which shows an array of different morphologies of budesonide 

particles engineering via the SAX technology. 
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In addition, to characterising the API particles of in DPI dosage forms, there is 

an increasing use of SEM to investigate lactose carrier and final formulation 

structure [56]. Many studies have investigated the carrier particle shape and 

roughness using SEM and the relationship between shape/roughness, 

formulation flowability and in vitro aerosolisation performance [57] [58] [59] 

[60] [61] [62]. Ferrari et al investigated the surface morphology of lactose 

monohydrate following modification by a wet-smoothing process [63]. Their 

investigations utilised SEM to measure the rugosity of the lactose by fractal 

descriptors. The fractal descriptor of the roughness of the lactose materials 

was calculated by means of gray level distribution analysis measured over the 

lactose particle images, which was performed with the IMAGE 1.4 program 

(Wayne Rasband, National Institutes of Health, Bethesda, MD) using the 

algorithm called the box counting method. In this process, the SEM image 

analysis is conducted in a fixed area selected on a flat base. By scanning on 

the selected area of the image, the variability of gray level as a function of the 

position is obtained. In this way, Ferrari et al. were able to demonstrate that 

the process of smoothing allowed the preparation of lactose particles with 

different degrees of surface roughness for the control of flow and packing 

properties and particle-particle interactions. 

In addition, studies have also used SEM to investigate the role of mechanical 

processing on the shape and morphology of carrier lactose materials [64,65]. 

An example of an SEM micrograph of an adhesive DPI mixture of lactose 

(SV003, DMV-Fonterra, Netherlands) and budesonide is shown in Fig. 3. The 
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image shows the surface of the lactose, from which the surface topology of 

the carrier can be distinguished. Furthermore, the images shows the presence 

of particles of budesonide adhered to the surface of the lactose. In this way, 

SEM can be used to investigate the effect of mechanical processing on the 

size, shape and morphology of carrier particles, which may subsequently 

affect fine particle delivery. Similarly, the shape and morphology of different 

sugar carrier materials have been investigated using SEM, and has been 

related to powder flow properties and final drug product performance [66]. 

The use of as a ternary agents such as fine lactose particles in dry powder 

inhalers (DPI) has been widely documented, and is known to modify the 

performance and stability of DPI drug products [67]. SEM has been routinely 

utilised to investigate the affect of these ternary agents on formulation 

microstructure of carrier-based DPI formulations. For example, Adi et al., 

utilised SEM to investigate the effect of fine lactose particles on adhesive 

mixtures of lactose with salmeterol xinafoate [68]. Their examination of these 

mixtures by SEM demonstrated agglomeration in mixtures containing the drug 

and fine lactose particles. They were also able to identify by SEM that the 

drug adhered on the surface of the fine lactose formed agglomerates 

approximately 17 and 30 µm in size. Adi et al. also showed that carried-based 

formulations produced with 3.0 and 7.9 µm fine lactose particles 

demonstrated different packing structures, which was related to different 

agglomeration behaviour and accounted for the difference in dispersion 

behaviour. 
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3.2.2 Advanced scanning electron microscopy techniques 

An advance on SEM technology has been the development of the 

environmental SEM (ESEM). The ESEM eliminates the need for many of the 

sample preparation treatments related to conventional SEM. In addition, 

samples are imaged in a partial pressure of gas, and therefore, are not 

directly under high vacuum [69]. High energy electron beams enter the 

sample and generate secondary electrons as in a SEM. Furthermore, sample 

do not need to be coated during ESEM investigations [70]. This has enabled 

the investigation of materials in their native state. Recently, Watling et al., 

have utilised ESEM to investigate the effect of different storage humidity 

conditions on the properties of lactose [71]. ESEM investigations were able to 

identify that upon storage at high humidity the particle surface became much 

smoother, and that the fine particle lactose may form solid bridges, which 

results in the coarsening of the bulk powder. 

3.2.3 Focused ion beam-scanning electon microscopy (FIB-SEM) 

The focused ion beam-scanning electron microscope (FIB-SEM) might be a 

suitable microscope to study inhaled pharmaceutical samples. This 

microscope has been mostly used on non-biological samples [72], although 

recently the FIB-SEM has also been used to study biological samples [73] 

[74]. 
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The FIB-SEM combines a scanning electron microscope with a focused ion 

beam. At relative low magnifications the SEM mode can be used to image a 

large area of a sample. In addition, in scanning mode the system can navigate 

to zoom in and out of the areas of interest. The FIB can subsequently be used 

to remove small volumes of material, a process called sputtering or milling, 

ranging from tens of cubic nanometres up to thousands of cubic micrometres 

at the areas of interest. The sidewalls of the milled trenches reveal a cross-

section of the sample and can be visualized in the SEM mode. This enables 

the elucidation of 3D information of the architecture of the sample. 

Heng et al., have utilised FIB-SEM to investigate the porosity of a number of 

spray dried powders, which consisted of bovine serum albumin (BSA), 

mannitol and disodium cromoglycate [75]. They conducted FIB milling of the 

samples using a focused ion-beam/scanning electron microscope dual beam 

system (Quanta 200 3D, FEI, USA). As each material had different 

mechanical properties the milling parameters of each material were altered 

using parameters such as the accelerating voltage, beam current and mill 

depth. Their investigations found that as the surface corrugation of spray dried 

BSA particles increased their porosity decreased. In addition, FIB-SEM 

studies suggested that spray-dried mannitol particles were porous, whereas 

FIB-SEM analysis of particles of spray dried disodium cromoglycate 

suggested the material had a porosity rate of 0 – 10 %. This study highlighted 

the novel used of FIB-SEM for investigating the internal structure of respirable 

particles, which may provide useful information regarding aerodynamic 

properties of particles. 
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3.2.4 Transmission electron microscopy 

Transmission electron microscopy (TEM) is a related technology to SEM, but 

is rarely employed, mainly due to the demanding sample preparation and 

limited sample contrast. However, TEM provides the highest resolution of the 

electron based microscopies. Chew and Chan have demonstrated this in their 

investigations of spray-dried mannitol [76]. They utilized freeze-fracture to 

examine the interior of individual particles of spray-dried mannitol. A replica of 

the fracture surface was made in carbon, which was then viewed in the TEM. 

They were able to conclude that the spray-dried particles of mannitol were not 

hollow, which was contrary to the findings by the same group when they used 

FIB-SEM to evaluate the porosity of spray dried mannitol [75]. These findings 

suggest that when examining particle porosity by electron microscopy it is 

important to use complimentary techniques to enable through evaluation of 

the material of interest. 

3.3 Microscopy based on the use of a scanning probe 

3.3.1 Atomic Force Microscopy (AFM) 

Scanning probe microscopy (SPM) is the name given to a range of 

techniques, which involves the formation of images and acquisition of surface 

properties data from a range of physical, optical and chemical interactions 

between a sharp proximal probe and a surface, one of which is atomic force 
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microscopy (AFM) [77]. In 1986, the AFM was invented by Binnig et al., which 

allowed surfacing imaging of insulating materials at a nanoscale [78]. The 

AFM quickly become a routine tool for surface microscopy, offering many 

advantages, such as minimal sample preparation, and overcoming the need 

for high vacuum conditions required for high-energy electron beam 

microscopes [79]. 

In simple terms, the AFM utilises a sharp, pyramidal tip mounted on a spring-

like cantilever, which is brought into close contact to the surface of interest, 

where the intermolecular forces acting between the tip and the surface cause 

the cantilever to bend [80]. Topographical images of the surface are obtained 

by recording the cantilever deflection, as detected by a laser beam, which is 

positioned at the free end of the cantilever, as the sample is rastered back 

and forth beneath the probe [23]. The AFM can be operated in vacuum, air or 

in a liquid environment. 

Given the importance of interfacial forces on the blending dynamics and 

aerosolisation behavior of DPI formulations and suspension properties of APIs 

in MDIs, it is not surprising that the colloidal probe technique has been widely 

applied in the area of inhalation [81] [82] [83] [84] [85]. In this approach, a 

single micronised particle is attached to the apex of a cantilever as shown in 

Fig. 4. In this way, the particle is able to interact with the substrate and from 

which the force of adhesion maybe calculated. Force-distance curves can be 

generated singly, but in order to obtain a statistically relevant set of data in a 

single operation, force-volume mode can be employed. In this mode, the AFM 
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raster scans the substrate under the colloidal probe to produce a series of 

force-distance curves, each from a well-defined interval in the x and y 

direction, and a low-resolution topographical image. These data can be 

processed to calculate the force of adhesion from each individual force curve, 

which can be displayed as a force volume map, showing variation in adhesion 

over the surface (Fig. 5). In this way, the effect of environmental properties 

such as humidity on the cohesion and adhesion properties of inhaled APIs 

and lactose have been investigated [18] [86]. Furthermore, the adhesion of 

lactose fines to pharmaceutical surfaces has also been investigated to 

develop an understanding of the role of fine lactose on DPI formulation [87]. 

Investigations into the surface interfacial properties of inhaled APIs have been 

carried out using a wet cell AFM system, in which the medium utilised had 

similar properties to HFA134a, but was liquid at atmospheric pressure [88] 

[89-91]. In this way, the surface interfacial properties of API materials were 

investigated and related to their behaviour in MDI suspension systems [92]. 

The intrinsic roughness and irregular morphology of processed excipient and 

APIs in OIDP formulations, has severely limited the general use of colloid 

probe microscopy [93]. Most studies produced high variability in colloid probe 

adhesion measurements between formulation components, because it led to 

significant variation in the contact area between the colloidal probe and 

substrate, to which adhesion is directly proportional [94]. 
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A number of experimental approaches have been developed to overcome this 

limitation. One such technique employs a grid of extremely sharp spikes over 

which the colloidal probe is scanned, resulting in reconstructed image of the 

interacting probe from which the morphology and the contact radius of the 

particle can be calculated [95]. It is then possible to normalise adhesion 

measurements by the radius of contact and so calculate the work of adhesion 

between the substrate and particle. This approach has been utilised to 

investigate adhesive properties of API materials processed by different 

technologies and to calculate the surface energy of API and excipient 

materials employed in MDI and DPI formulations [96] [21]. 

Another technique that overcomes the limitation of contact area and which 

has been used to explain the influence of interfacial chemistry of APIs on 

interfacial interactions within DPI systems is the cohesive-adhesive balance 

(CAB) technique [97,98]. The CAB approach employs specially grown 

molecularly smooth crystals as substrates to ensure that the contact area 

between a given colloidal probe and various substrates is uniform and 

constant. 

A number of colloidal probes of each material under investigation are 

prepared and the interactive forces between each probe and a crystalline 

substrate of each material under investigation measured. These data are 

used to produce a CAB graph, by plotting the mean cohesive force for each 

probe (the adhesive force between a probe and a substrate of the same 

material) against the mean adhesive force between that probe and a 
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substrate of another material. When data for a number of probes of the same 

material interacting with the same substrate are plotted on the same axes, a 

straight line is formed allowing linear regression analysis of these data. 

Although the contact area of each probe may vary significantly, the contact 

area of an individual probe is the same for both the cohesive and adhesive 

measurements and thus the ratio between cohesion and adhesion remains 

consistent between different probes. This ratio (known as the CAB ratio) can 

be measured from the analysis of the gradient of the CAB graph. 

The CAB approach to colloid probe AFM has demonstrated that the cohesion 

of budesonide is 1.19 times greater than its adhesion to lactose [99] [100] and 

the adhesion of fluticasone propionate to lactose is 4.55 times greater than 

the cohesion of fluticasone propionate [101]. In this way, the CAB procedure 

is able to produce data that are independent of the contact area between the 

colloidal probe and substrate and are, therefore, a quantitative analysis of the 

influence of interfacial chemistry on API-lactose interactions. The approach 

has been shown to predict the behaviour and possibly the in vitro 

performance of simple powder formulations (with and without force control 

agents) of binary DPI systems [102] [66] . 

3.2.2 AFM Tapping-Mode® and Phase Imaging 

One of the earliest AFM operating modes for imaging substrate surfaces was 

in the contact mode. In contact mode imaging, the tip and sample are placed 

in contact and the tip is rastered across the surface resulting in a 
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topographical image of the surface [103]. One of the key disadvantages of the 

contact mode is that the dragging motion of tip combined with adhesive and 

lateral forces, can cause substantial damage to both the tip and sample [79]. 

This may be problematic when imaging relatively soft pharmaceutical 

materials. To alleviate this problem, non-contact or intermittent modes, such 

as TappingMode®, have been developed. In this mode, rather than 

encountering repulsive forces, the cantilever is oscillated and changes in 

phase or amplitude are measured whilst scanning. Therefore, attractive forces 

between the tip and the surface are measured, which are significantly smaller 

than the force applied on samples in the contact mode operation [104]. This 

approach has enabled the measurement of surface rugosity of different APIs 

and excipient materials such as lactose [61], erythritol [105] and trehalose 

[106]. The roughness of imaged areas are quantified using the mean (Ra) and 

root mean squared roughness (Rq) of the variations in the height of the 

asperities of the imaged topographical surface, as calculated by the AFM 

software using equations 3 and 4. 

(Eq. 3) 

(Eq. 4) 
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where np is the number of points in the image and yi is the distance of the 

asperities i from the central line. In this way, it has been possible to calculate 

the roughness of lactose prepared by different surface modification 

processes, and the effect of materials with different roughness has been 

related to the performance of DPI formulations [63] [107]. 

The TappingMode® operation also enables the measurement of a phase 

signal that can give information about stiffness/elasticity, viscoelasticity and 

adhesion of the surface of materials. This phase signal generates a Phase 

image, which is acquired simultaneously as the topography image. Previous 

investigations of pharmaceutical systems, using phase imaging, have 

elucidated polymorphic variations in cimetidine crystals [108] and investigated 

the internal chemical structure of starch granules [109]. Phase imaging has 

been used to characterise the crystalline disorder (amorphous content) on the 

surface of micronized APIs [104]. Young and Price utilised phase imaging to 

investigate amorphous to crystalline transitions on the surface of lactose 

materials [110]. An example of AFM phase imaging is shown in Fig. 6, which 

shows a topographical and phase image of surface of an individual 

micronized particle. The image shows the presence of discrete regions, which 

resemble “pits/craters” over the surface. These well-defined regions produce 

a significant phase shift response (>100°) upon interaction with the probing tip 

as shown by Fig. 6, which suggests significant variation in the surface 

physico-mechanical properties of the material. These regions are related to 

regions of processed induce surface structural disorder caused by the 
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mechanical damage during micronization. These highly energetic sites are 

known to influence the surface interfacial properties of materials and their 

stability of the particles in suspension MDIs and DPIs. 

3.2.3 White-Light Interferometry 

White light interferometry has been used for many years as a reliable non-

contact optical profiling system for measuring step heights and surface 

roughness [111]. The main disadvantage compared to AFM measurements is 

that the lateral resolution is limited to around 0.35µm [25]. However, white 

light interferometry is routinely utilised in the semiconductor industry for 

examining the surface roughness of semiconductor wafers [111]. 

The technique involves splitting an optical beam from the same source into 

two separate beams [25]. One of the beams is passed through, or reflected 

from, the object to be measured whilst the other beam (the reference) follows 

a known and constant optical path. A light source provides a beam, which is 

passed through a filter and reflected down to an objective lens. This combines 

the light beams reflected from the sample surface and the reference surface, 

which creates an interference pattern of light and dark fringes (an 

interferogram), which is magnified by the microscope optics and imaged by a 

CCD camera. As the objective lens is moved vertically between sample and 

beam splitter, a series of moving interference fringes which the camera will 

detect. The aim is to establish the point at which maximum constructive 

interference occurs [111]. Once this is achieved, provided the vertical 
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movement of the lens can be accurately tracked, it is possible to create a 3D 

map of the sample surface by measuring the position of the lens required to 

produce the brightest image at each point on the CCD array. Each pixel of the 

CCD array effectively acts as an individual interferometer and thus builds up a 

very accurate map of the surface. An example of white light interferometry for 

investigating the surface roughness of lactose is shown in Fig. 7. The surface 

roughness of ML001 (DMV-Fonterra, Netherlands) was investigated using a 

Veeco WYKO NT1100 (Veeco, Cambridge, UK). The surface topology of 

ML001 is shown in Fig. 7 and indicates that material has high surface 

rugosity. The Ra and Rq surface roughness measurements were 1.32 and 

2.20 µm, respectively. Surfaces with such high roughness are difficult to 

image using AFM, and therefore, white light interferometry maybe suitable for 

the measurement of the surface roughness of carrier lactose. 

Recently, Adi et al., have measured the surface roughness of the BSA and 

lactose particles by white-light interferometry [112]. Roughness values 

determined by interferometry were in good agreement with AFM-derived 

values. Their data suggested that the roughness of BSA particles ranged from 

18 – 110 nm. In addition, the roughness of commercial lactose was 

determined as 300 nm, but was smaller upon decantation of the lactose. They 

concluded that this approach was useful for rapid evaluation of surface 

morphology and roughness of particles used in DPI formulations. 

3.2.4 Micro-thermal analysis using scanning thermal microscopy 
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There has been growing interest in the physical transformation at the surfaces 

of pharmaceutical solids. The scanning thermal microscope (SThM) has been 

used to probe thermal properties of pharmaceutical materials at the sub-

microscopic scale. The SThM uses nanofabricated thermal probes, with a 

resistive heater at the tip, to achieve unprecedented high spatial and thermal 

resolution and sensitivity with a unique signal detection system [113]. The 

SThM technique maps the thermal properties of the sample surface by 

holding the probe temperature constant and measuring the power required to 

maintain this temperature, whilst the probe or sample is being rastered. As the 

probe encounters an area of the sample with high thermal conductivity more 

heat is lost from the tip of the probe to the sample and thus more power is 

required to maintain a constant temperature. In this way, the thermal 

conductivity of a sample surface can be mapped. 

Harding et al., have utilised SThM to discriminate between amorphous and 

crystalline indomethacin material on a sub-micron scale [114]. They were able 

to achieve submicron lateral spatial resolution and sub-100 nm depth 

penetration, which enabled discrimination between amorphous and crystalline 

material. Whilst there are limited examples of this technique in characterising 

inhaled APIs, this approach may enable greater understanding of the 

distribution of process induced surface disorder in micronized API. 

4. Chemical imaging 
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The combination of spectroscopy and microscopy has enhanced the ability to 

characterise the properties of pharmaceutical materials. Whist spectroscopic 

investigations yield chemical and physical information, microscopy provides 

both lateral and spatial resolution [115]. The development of these 

combination systems enables spatial focusing and rastering of the exciting 

radiation (e.g. Raman spectroscopy), or microscopy approaches that present 

physicochemical information from secondary signals. 

Chemical imaging probes intrinsic properties of a molecule or atom, often in a 

non-invasive way. Spatially resolved chemical information provides valuable 

data, which maybe represented in a colour-coded distribution map of a 

system. The utilisation of chemical imaging enables investigation of visual 

appearance and chemical/physical state of a material. Typically, chemical 

imaging of MDI and DPI drug products has been used to identify ingredients 

present within the formulation, in addition, to particle size, morphology and 

shape. Furthermore, content uniformity, sample homogeneity and spatial 

distribution of components of inhaled dosage forms have been investigated 

using chemical imaging [116]. 

4.1 Energy-dispersive X-ray spectroscopy (EDX) 

Energy-dispersive X-ray spectroscopy (EDX) is an analytical technique used 

in combination with SEM for the elemental analysis of a sample. The sampling 

depth of EDX is approximately 10 nm and is performed using X-rays emitted 

by the material in response to interacting with charged particles. As each 
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element has a unique atomic structure they produce characteristic X-rays, 

which allow an element's atomic structure to identified uniquely from one 

another [34]. SEM requires coating of the sample surface with a thin 

conducting layer of carbon, platinum or gold. Carbon is the coating material 

used for EDX, because it does not limit spectral resolution of EDX and does 

not disturb the emission of the X-ray signals of the sample. 

Modern SEMs allow a spatial resolution down to a few nanometres. For EDX 

this resolution is difficult to achieve, which is related to limited acquisition 

times. In addition, an EDX map consists of a much lower number of pixels 

than a typical SEM image. As most API and excipients are organic materials, 

and therefore contain carbon, oxygen and hydrogen atoms, discrimination of 

components by EDX is difficult because no intrinsic marker is present. Hence, 

for substantial spatial discrimination of ingredients by EDX mapping, the 

presence of at least one component including a different element, e.g. 

sulphur, phosphorous or chlorine is required. If such an element is present in 

the API or any of the excipients, the distribution within the material can be 

characterized. 

EDX has been utilised in the characterization of spray dried ipratropium 

bromide particles [117]. Corrigan et al., used EDX to show that following spray 

drying of ipratropium bromide from different ethanol solutions the material 

remained as a bromide salt. 
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4.2 Time-of-flight secondary ion mass spectroscopy (TOF-SIMS) 

Time-of-flight secondary ion mass spectroscopy (TOF-SIMS) is another 

method employed for chemical imaging. It uses a focused, pulsed primary ion 

beam to produce secondary molecular ions from the surface monolayer of a 

sample [118]. The ejected secondary ions are collected and their mass is 

determined by measuring the exact time at which they reach the detector. It is 

possible to measure the time-of-flight on a scale of nano-seconds, which 

produces high mass resolution down to 0.001 atomic mass units (amu) at a 

range of typically 0–10.000 amu [119]. The limit of detection can be as low as 

part, per billion although TOF-SIMS generally does not allow fully quantitative 

analysis. The ion beam can be scanned over a sample to produce maps at 

sub-micrometre resolution. TOF-SIMS is a highly surface sensitive method 

being able to detect molecules within a depth of a few angstroms, and is 

useful to determine the elemental, isotopic or molecular composition of the 

surface [120]. TOF-SIMS is ideal for probing flat surfaces, however, 

microscopically rough surfaces maybe imaged. The charging of materials due 

to irradiating ions may also limit analysis of certain materials by TOF-SIMS, 

particularly those that are poorly conducting. 

Blister packaging material used in DPIs have been characterised by ToF-

SIMS [121]. Bunker et al., investigated two configurations of blisters that 

consisted of either two strips of polymer coated metal foil and the other had a 

series of pockets punched in a line. The two sides are glued together to hold 

the individual doses of powder in place in the pockets. ToF-SIMS confirmed 
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that materials have different surface chemistry. Furthermore, ToF-SIMS was 

able to show spatial mapping of the PVC and tin chloride when the two strips 

were formed together. 

The ToF-SIMS has also been utilised in the mapping of lactose and lactose 

processed with magnesium stearate [122]. Zhou et al. found that spatial 

mapping of untreated lactose sample showed elements of carbon, hydrogen 

and oxygen, with no presence of magnesium. On processing lactose with 

magnesium stearate using mechanofusion, it was possible to detect 

magnesium at the surface of the powder materials. 

4.3 Raman microscopy 

Although automated image analysis offers significant practical advantage 

relative to manual microscopy, it shares the limitation of being unable to 

discriminate between API and excipient particles that are visually identical. 

Adding an additional analytical probe, for example, the addition of a Raman 

microprobe, can increase the potential of automated imaging. 

Raman spectroscopy is based on the inelastic scattering of monochromatic 

light when the frequency of photons changes upon interaction with a sample, 

within a given sample depth [123]. The photons of the laser light are absorbed 

by the sample and subsequently reemitted. The frequency of the re-emitted 

photons is shifted up or down in comparison with the original monochromatic 
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frequency, and is known as the Raman effect [43]. The Raman shift provides 

information about vibrational and rotational energies of molecular bonds. It 

was realized that Raman spectroscopy was a convenient probe of the 

vibrational energy levels within a molecule, which easily provides molecular 

fingerprints [124]. Another unique advantage of Raman spectroscopy is it can 

be used to selectively analyse components of a material by changing the 

excitation wavelength. In addition, Raman spectroscopy does not require 

invasive sample preparation and Raman spectra usually contain sharp bands 

that are characteristic of the specific molecular bonds in the sample [15]. The 

intensity of the bands in a Raman spectrum is proportional to the 

concentration of the corresponding molecules and, thus, can be used for 

quantitative analysis of the surfaces of materials [125]. The key to robust 

Raman microscopy analysis of pharmaceutical materials is related to the spot 

size of the laser and therefore the optical resolution, which is diffraction 

limited. The optical resolution must be optimised for improved image quality. 

There are an increasing number of publications that have utilised Raman 

microscopy to investigated inhaled pharmaceutical materials. For example, 

confocal Raman microscopy has been used by Ward et al., to identify and 

map surface amorphous domains on particles of sorbitol. They were able to 

use Raman mapping to distinguish crystalline and amorphous regions. The 

distinction was possible due to the shift in the vibrational bands, which were 

altered by the molecules physical environment. Confocal Raman microscopy 

revealed the distribution of amorphous sorbitol material within the thermally 

modified region. This type of experiment was not possible with AFM due to 
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the large vertical height differences across the sample. Using z-stacking, they 

were able to image the amorphous domain down to a depth of 20 nm. This 

profile qualitatively related to the heat transfer from the scanning thermal 

probe tip, which was used to generate the amorphous domain on the sorbitol 

surface. 

Steele et al., demonstrated the use of scanning Raman microscopy to map 

aerosol particulate deposits produced from MDI [126]. They aerosolized 

commercially available combination asthma therapy MDI containing 

salbutamol and beclometasone dipropionate into an Andersen cascade 

impactor (ACI), and analyzed the deposition plated by conventional in vitro 

quantitative analysis and scanning Raman microscopy. Raman maps, taken 

from Andersen cascade impactor plate stages 3 and 5 (>100 µm2 areas) 

showed good correlation with chemical analysis of the respective stages. 

Another study has utilized Raman microscopy to investigate the co-deposition 

of salmeterol and fluticasone propionate by a commercially available 

combination MDI [127]. This combination based therapy shows greater 

efficacy compared with monotherapy treatments with the individual 

components, due to synergistic interactions of the two classes of compounds 

at the receptor, molecular and cellular level [128]. In order to investigate, the 

co-deposition profile of the two APIs, the MDI was aerosolized into an ACI, 

and the APIs deposited on stage 4 were investigated by Raman microscopy. 

In this study, Theophilus et al., used the Jaccard coefficient to measure the 

co-association of the two drugs upon deposition in the ACI, which was 
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computed from the statistically threshold Raman images. Furthermore, the 

statistical validity of the co-deposition of the two drugs was determined using 

the bootstrapping technique. In this way, it was found significant co-

association of salmeterol and fluticasone propionate, leading to increased co-

deposition. A similar finding was also found by Rogueda et al., who found 

using Raman microscopy that the fluticasone and salmeterol agglomerated 

more extensively than budesonide and formoterol upon aerosolization into an 

ACI. In this study, AFM measurements also confirmed greater chemical 

affinity between fluticasone and salmeterol in comparison to budesonide and 

formoterol [92]. It was thought this occurrence provided greater opportunity for 

synergistic interaction between the two drugs in the airways upon 

aerosolization. 

Raman chemical imaging has much potential for the investigation of DPI 

formulations. Since DPI dosage forms are complex, the ability to chemically 

identify components of the formulation may enable greater investigation into 

the structure of the formulation. An example, of bright-field reflectance and 

Raman chemical image of fluticasone propionate and lactose, collected on 

stage 3 of a next generation impactor (NGI) following aerosolization of an 

Advair DPI (500/50) is shown in Fig. 8. These data were collected using a 

ChemImage Falcon II Raman imaging system (Pittsburgh, USA). In addition, 

the particle size of each component on stage 3 was determined. These data 

showed that lactose and fluticasone were delivered independent of each 

other. In addition, the volume-weighted median diameter of the API was larger 

than that of the lactose. 
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Recently, Sasic and Harding investigated combination DPI formulations using 

global illumination Raman chemical imaging [129]. In this study, two APIs 

were mixed with carrier lactose particles using a Diosna high shear mixer. 

Raman chemical imaging enabled imaging of APIs adhered to the surface of 

large particles of lactose or as agglomerates on the lactose surface. 

Furthermore, mechanical and light dispersion method for dispersing particles 

for imaging was investigated. The method of dispersion was found to have a 

profound effect on the API deposits because the mechanical dispersion leads 

to complete separation of lactose and API particles previously adhered to its 

surface. These results suggested a significant potential of this imaging 

technique for fast and reliable visualization of DPI formulations. 

Raman chemical imaging and scanning electron microscopy (Raman/SEM) 

have been used in a preliminary study to determine the size, morphology, 

elemental and molecular composition, and molecular structure of fine 

particulate matter in several test samples and one ambient air sample. Raman 

chemical imaging and SEM, respectively, provide a way to spatially 

characterize a sample based on its molecular and elemental makeup. When 

combined, Raman chemical imaging and SEM provide detailed spatial, 

elemental, and molecular information for particulate matter as small as 

250nm. Initial studies demonstrate the potential of Raman/SEM for molecular 

and elemental determination of organic and inorganic fine particulate matter 

[130]. This has been accomplished by analyzing samples with fine particulate 
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matter using each method independently. Since both techniques are 

nondestructive, particles of interest can be relocated between instruments. 

Scanning electron microscopy (SEM) is a useful tool to examine drug 

formulations. If low vacuum scanning electron microscopy is used then un-

coated sections can be imaged using backscattered electrons – these yield 

atomic number contrast, which is useful for distinguishing between phases 

that might appear similar optically. In combination with Raman spectroscopy 

can be used to analyse their chemistry. Renishaw’s SEM is a standard 

tungsten-filament model (JEOL JSM-6060LV) capable of low vacuum 

operation, and fitted with a dual-channel (VIS/NIR) SEM-SCA. 

This system has recently been utilised by Shur and Price in the investigation 

of the distribution of budesonide and formoterol within carrier based DPI 

formulations [130]. Their investigations suggested the presence of separate 

budesonide only and formoterol only agglomerates on the lactose surface, 

while there is little or no interaction of BUD to FFD and vice versa. This 

system shows great promise in the investigation of the formulation 

microstructure of carrier based DPI formulations. 

5. Application of Tomography Image Analysis 

It is of significant interest to determine the structural features of OIDP 

formulations. One drawback of some of the techniques is that their invasive 

nature can destroy the sample and prevent any further testing. Another is the 
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techniques' limited penetration and resolution. Thus, it is probably fair to say 

that the ideal experimental approach for the three-dimensional structural 

imaging of pharmaceutical dosage forms has not yet been realized. 

X-ray microtomography is a relatively new approach to imaging the internal 

structure of solid dosage forms. This technique has been widely used for the 

in vivo imaging of plants, insects, animals, and humans. X-ray 

microtomography is a non-destructive technique that has high penetration 

ability and provides a reasonable level of resolution (~5–20 µm) [131]. 

The X-ray microtomography utilises X-rays that are directed from a high-

power source toward a sample, and a detector on the opposite side of the 

sample measures the intensity of the transmitted X-rays. A two-dimensional 

"shadow" image is produced by accurately rastering the X-ray beam across 

the sample. The sample then is carefully moved (usually rotated) relative to 

the X-ray beam, and the process is repeated to produce additional two-

dimensional images from various view points [132]. Using a sophisticated 

Fourier transform algorithm, the two-dimensional images then are combined 

to generate a complete three-dimensional map of the sample. In very simple 

terms, X-ray microtomography can be thought of as creating a three-

dimensional map of the relative atomic density of the sample under 

evaluation. 

X-ray microtomography is being utilised to investigate pharmaceutical 

materials, however, there are limited examples in the literature with regards to 
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their application for characterizing OIDPs. This technique has, however, been 

utilised by valve manufactures to assess the crimping of valves to MDI cans 

and in assessing the leakage potential with certain valve and can 

combinations [133]. A study by Miller and Dey used X-ray microtomography to 

make non-destructive density measurements in compacted lactose powder 

samples [134]. In a recent study, X-ray microtomography has been utilised in 

the development of inhaler hardware during development [135]. The capability 

of this technique to form 3D constructions of the sample interest, may afford 

the opportunity to investigate the structure of DPI formulations in greater 

detail. 

6. Future Directions 

As the role of surface and interfacial properties of materials are critically 

important to the processing, structure and functionality of OIDPs, the 

identification and measurement of their critical quality attributes has become 

the key area for OIDP development. The need to implement a Quality by 

Design (QbD) approach during product development and manufacturing of 

OIDPs, will manoeuvre the chemistry, manufacturing and controls (CMC) of 

excipients and APIs towards a greater understanding of their impact on 

product quality. Identifying these parameters requires greater implementation 

of physical and chemical analyses at the microscopic level. With the 

continuing development of scanning microscopes and their coupling with 

spectroscopic techniques, greater understanding of these critical quality 
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attributes may enhance our control, handling and processing of particulate 

matter for the development of OIDPs. 
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Figures 

Figure 1. Light microscope images (30X magnification) of spray-dried UFH 

(1A) and co spray-dried UFH with leucine (1%, w/w) (1B) at 0% RH. Images 

of spray-dried UFH (1A’) and co spray-dried UFH with leucine (1%, w/w) (1B’) 

and after 15 min exposure to 90% RH. 
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Figure 2. Scanning electron micrographs of engineered particles of 

budesonide produced by SAX using (A) ethanol, (B) acetone and (C) 

dichloromethane as the carrier solvent. 
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Figure 3. Scanning electron micrograph of a carrier based DPI formulation 

containing lactose monohydrate (SV003) and micronized budesonide. 
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Figure 4. Colloid probe consisting of micronized salbutamol sulphate adhered 

to the apex of a V-shaped cantilever. 
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Figure 5. Representative force-volume images of ML001 (left) and SV003 

(right). The area of each image is 20 µm x 20 µm and each pixel represents a 

force-distance measurements. 
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Figure 6. Topography (left) and Phase-image (right) of a particle of micronized 

salbutamol sulphate generated by TappingMode AFM. 
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Figure 7. Surface of lactose particles of ML001 (milled lactose) using 

profilometry (A) by white light interferometry. (B) height image of the lactose 

particle. 
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Figure 8. Bright-field reflectance (left) and Raman chemical image (right) of 

images of particles of fluticasone and lactose collected on stage 3 of the NGI 

following aerosolization of the Advair 500/50 DPI. 
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