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Abstract 

We state and prove two sharp results on the structure of normal subgroups 
consisting of right 3-Engel elements. First we prove that if H is a 3-torsion-free 
such subgroup of a group G and x ∈ G, then [H,4 �x�G] = {1}. When H is 
additionally {2,5}-torsion-free, we prove that [H,8 G] = {1}. 

1 Introduction 

Recall that an element a of a group G is a right 3-Engel element if it satisfies the com
mutator identity [a, g, g, g] = 1 for every g ∈ G. Let R3(G) be the set of right 3-Engel 
elements of a group G. R3(G) need not be a subgroup of G. However, in certain classes 
of groups it does form a subgroup, for example when G is a group such that γ5(G) has 
no element of order 2 [1]. We are interested in the structure of subgroups contained in 
R3(G). We call such a subgroup a right 3-Engel subgroup. 

When G = R3(G), G is a 3-Engel group. Kappe and Kappe [6] have shown that 
every 3-Engel group is Fitting, with Fitting degree at most 2. That is, the normal 
closure of any element is nilpotent, with nilpotency class at most 2. M. Newell has 
shown that in any group G the normal closure of an element of R3(G) is nilpotent of 
class at most 3 [7]. We prove the following related theorem. 

Theorem 1. Let H be a 3-torsion-free normal right 3-Engel subgroup of a group G. 
Let x ∈ G. Then [H,4 �x�G] = {1}. 

It is necessary to exclude the prime 3 here. To see this, let r ∈ N be arbitrary. Let 
F = �x1, x2, . . . , xr� be the relatively free group of rank r and nilpotency class 2 and let 
M = F/F 3 . Consider G = C3 wr M = �ag� � M . Letting H = �ag�, h, k ∈ H 

g∈M g∈M 

and g ∈ M we have that 

[h, kg, kg, kg] = [h, g, g, g] = h(−1+g)3 
= h−1+g3 

= 1. 
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Hence H is a normal right 3-Engel subgroup of G. Also,


[a 1 , [x1, x2], [x1, x3], . . . , [x1, xr]] = a(−1+[x1,x2])···(−1+[x1,xr ]),


which is non-trivial as, for example, the �a1� part is. As [x1, xi] ∈ �x1�G, for each i, we 
have [H,r �x1�G] =� {1} for any positive integer r. 

We use Theorem 1 to prove the following theorem. 

Theorem 2. Let H be a {2,3,5}-torsion-free normal right 3-Engel subgroup of a group 
G. Then [H,8 G] = {1}. 

The primes 2 and 5 are exceptional for 3-Engel groups and hence are exceptional for 
right 3-Engel subgroups too and need to be excluded. Let H be a normal upper central 
right n-Engel subgroup of a group G. In [3] it was shown that there exist positive 
integers c = c(n), e = e(n) and f = f(n), only depending on n, such that He ≤ Zc(G) 
and [H,c G]f = {1}. Theorem 2 shows that we can take c(3) = 8 and that the best 
possible values for e(3) and f(3) have prime divisors 2, 3 and 5. In fact c(3) = 8 is best 
possible and we will outline the construction for this. The detailed calculations can be 
found in [2] (Section 6.5 and Appendix A). 

Remark 1. From the proofs of these two theorems one sees that in fact one only needs 
[H,4 �x�G] to be 3-torsion-free or [H,8 G] to be {2, 3, 5}-torsion-free respectively, instead 
of H. 

2 Proof of Theorem 1 

Let H be a normal right 3-Engel subgroup of a group G and let h ∈ H, x, a, b, c ∈ G. It 
suffices to show that when H is 3-torsion-free, commutators with an h entry and four 
x entries are trivial. For this we will show that each of 

[h, x, x, b, x, x], [h, x, a, x, b, x, x], [h, x, a, x, x, c, x], [h, x, x, b, x, c, x], [h, x, a, x, b, x, c, x] 

is trivial modulo commutators of higher multiweight with at least two h entries. It 
will then follow, by replacing h by an arbitrary commutator with first entry h, and 
replacing a, b and c by arbitrary products and expanding, that an arbitrary commuta
tor of multiweight (1,4,1,. . . ,1) in h, x, a1, . . . , an, for arbitrary a1, . . . , an ∈ G, can be 
written as a product of commutators of multiweight at least (2,4,1,. . . ,1). Replacing 
a1 by h shows that commutators of multiweight (2,4,1,. . . ,1) in h, x, a2, . . . , an can be 
written as a product of commutators of multiweight at least (3,4,1,. . . ,1). Similarly, 
replacing both a1 and a2 by h shows that commutators of multiweight (3,4,1,. . . ,1) 
in h, x, a3, . . . , an can be written as a product of commutators of multiweight at least 
(4,4,1,. . . ,1). Thus commutators with an h entry and four x entries are trivial modulo 
commutators with at least four h and four x entries. By the result of Newell [7], any 
commutator with four h entries is trivial and hence this will prove the theorem. 
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Thus it suffices to prove that [h, x, a, x, b, x, c, x] = 1 modulo commutators of mul
tiweight at least (2,4,1,1,1) in h, x, a, b, c. We may therefore assume that commutators 
with at least two h entries and four x entries are trivial. 

We start with some identities for normal right 3-Engel subgroups, which will be 
useful throughout. We consider commutators with an entry set {h, x, y}, where y ∈ G. 
We prove the identities modulo commutators of certain multiweights in h, x, y. For the 
first two identities we do not require that H is 3-torsion-free. 

Lemma 1. Modulo commutators of multiweight at least (2,1,1) in h, x, y, 
(i) [h, x, x, y][h, x, y, x][h, y, x, x][h, x, y, y][h, y, x, y][h, y, y, x][h, y, x, y, x] 
[h, x, x, y, y]−1 = 1. 
(ii) [h, y, x, y, x]−1[h, y, y, x, x]−1[h, x, y, x, y][h, x, x, y, y] = 1. 

Proof. We work in the endomorphism ring of �h�G, which we may assume is abelian 
as we are working modulo commutators of multiweight at least (2,1,1) in h, x, y. For 
g ∈ G we define Rg : �h�G �→ �h�G by Rg(k) = [k, g]. For h1, h2 ∈ �h�G, [h1h2, g] = 
[h1, g][h2, g] and thus Rg is an endomorphism. We also have 

Rxy = Rx + Ry + RxRy = Rx + (1 + Rx)Ry = Rx(1 + Ry) + Ry. 

Thus, since R3 
x = R3 

y = 0, 

(1 − Rx + R2 
x)Rxy = Rx − Rx 

2 + Ry, 

Rxy(1 − Ry + R2) = Rx + Ry − R2 .y y

Hence, 

0 = (1 − Rx + Rx
2 )Rxy

3 (1 − Ry + Ry
2)


= (Rx − R2 + Ry)(Rx + Ry + RxRy)(Rx + Ry − R2)
x y

= (Rx + Ry)
3 − Rx

2 Ry(Rx + Ry) + (Rx + Ry)RxRy(Rx + Ry) − (Rx + Ry)RxR
2 
y 

= (Rx + Ry)
3 + RyRxRyRx − Rx

2 R2 
y. 

Expanding and applying to h gives (i). Swapping the roles of x and y in (i) and 
multipling by the inverse of (i) gives (ii). 

From now on we exclude the prime 3. We use Lemma 1(i) to give us some more 
identities, this time modulo commutators of multiweight at least (2,3,1) in h, x, y. 

Lemma 2. Suppose that H is 3-torsion-free. Then, modulo commutators of multi-
weight at least (2,3,1) in h, x, y, 
(i) [h, x, x, y, x, x] = 1. 
(ii) [h, x, x, y, x][h, x, y, x, x] = 1. 
(iii) [h, x, y, x, y, x] = 1. 
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Proof. From Lemma 1(i) we may assume that 

[h, x, x, y][h, x, y, x][h, y, x, x][h, x, y, y][h, y, x, y][h, y, y, x]


[h, y, x, y, x][h, x, x, y, y]−1 uv = 1, (1)


where u is a product of commutators of multiweight at least (2,1,1) in h, x, y with one 
entry of x and v is a product of commutators of multiweight at least (2,2,1) in h, x, y. 
Let n ∈ N. Now, 

[h, xn] = [h, x]n[h, x, x](
n 
2).


n n( ) (n n[h, x, x, y, x] [h, x, y, x, x] 2

Hence replacing x by xn in (1) gives 

2
2 2 n) ([h, x, x, y, x, x] 2

2)[h, y, x, y]n[h, y, x, x, y](
n)[h, y, y, x]n 

)
1 =[h, x, x, y]n [h, x, y, x]n

2

[h, x, y, y]n[h, x, x, y, y](
n 
2

n n( ) (nn[h, y, y, x, x] [h, y, x, y, x] [h, y, x, x, y, x]2

2 
[h, y, x, x]n

2 n) (n[h, y, x, y, x, x] 2

)

)


2n n( ([h, y, x, x, y, x, x] 2

where is a product of commutators of multiweight at least (2,2,1) in h, x, y Notew . 
that by the well known Hall-Petrescu identity, 

2
2 2)
 [h, x, x, y, y]−n n n (2)
u v w
 ,


[h, x, y, y]n[h, y, x, y]n[h, y, y, x]n u n = ([h, x, y, y][h, y, x, y][h, y, y, x]u)n a
n(2),


n n n n n( ) ( ) ( ) ( ) (2− n[h, x, x, y, y] [h, y, x, x, y] [h, y, y, x, x] [h, y, x, y, x] [h, y, x, x, y, x] 2

n n n n n( ) ( ) ( ) ( ) (2 2 2 n n1 =[h, x, x, y] [h, x, y, x] [h, y, x, x] [h, x, x, y, x] [h, x, y, x, x] 2

2

2

2

2

2

2

where a is a product of commutators of multiweight at least (2,2,1) in h, x, y. Multi

2

plying (2) by (1) raised to the power of −n and using the above gives 

2 )


)


2 2 

n n n( ) ( ) (( 2) ( 2) ( 2)− − −n n n1 =[h, x, x, y, x] [h, x, y, x, x] [h, y, x, x, y, x] 2

n n n n n( ) ( ( ( (2n[h, y, x, y, x, x] [h, x, x, y, x, x] [h, y, x, x, y, x, x] 222

2

2

2

2

where t is a product of commutators of multiweight at least (2,2,1) in h, x, y. Setting 
n = 2 gives 

1 =[h, x, x, y]2[h, x, y, x]2[h, y, x, x]2[h, x, x, y, x]2[h, x, y, x, x]2[h, x, x, y, y]−1 

[h, y, x, x, y][h, y, y, x, x][h, y, x, y, x]2[h, y, x, x, y, x]2[h, y, x, y, x, x]2 

[h, x, x, y, x, x][h, y, x, x, y, x, x]v 2t. (3) 

Multiplying this to the power of − n by the previous equation gives 2 

)
 )
 )
 )
t
v
 ,


)


2 2n n n n n( ) ( ( ) ( (( 2)− − −n[h, y, x, y, x, x] [h, x, x, y, x, x] [h, y, x, x, y, x, x] 22222

Setting n = 3 gives 

1 =[h, x, x, y, x]3[h, x, y, x, x]3[h, y, x, x, y, x]3 

[h, y, x, y, x, x]3[h, x, x, y, x, x]6[h, y, x, x, y, x, x]6 . (4) 

4 

)
 )
 ).
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Replacing h by [h, y, y] and commuting by x gives [h, y, y, x, x, y, x, x] = 1, as H is 3
torsion-free. Replacing h by [h, y, y] in (4) gives [h, y, y, x, x, y, x][h, y, y, x, y, x, x] = 1. 
Replacing h by [h, y] in (4) gives 

1 = [h, y, x, x, y, x]3[h, y, x, y, x, x]3[h, y, x, x, y, x, x]6 . 

Hence (4) becomes 

1 = [h, x, x, y, x]3[h, x, y, x, x]3[h, x, x, y, x, x]6 . 

Commuting by x gives (i) and (ii). Replacing y by y2 in (ii) gives 

1 = [h, x, x, y, y, x][h, x, y, y, x, x]. 

Commuting (1) by x and replacing h by [h, x] gives, using (i) and the above, 

1 = [h, x, y, x, y, x][h, x, y, x, y, x, x]. 

Commuting by x gives 1 = [h, x, y, x, y, x, x] and hence we have (iii). 

We now work again modulo commutators of multiweight at least (2,1,1) in h, x, y 
and find three more identities. 

Lemma 3. Suppose that H is 3-torsion-free. Then, modulo commutators of multi-
weight at least (2,1,1) in h, x, y, 
(i) [h, y, x, x, y][h, y, x, y, x][h, y, y, x, x] = 1. 
(ii) [h, x, x, y]2[h, x, y, x]2[h, y, x, x]2[h, x, x, y, y]−1[h, y, x, y, x] = 1. 
(iii) [h, y, x, x, y][h, x, y, y, x]−1 = 1. 

Proof. Replacing h by [h, y] in Lemma 1(i) and using Lemma 2(ii) gives 

1 = [h, y, x, x, y][h, y, x, y, x][h, y, y, x, x][h, y, x, x, y, y]−1[h, y, y, x, y, x]. 

Replacing h by [h, y] in Lemma 1(ii) and using Lemma 2(iii) gives 

1 = [h, y, y, x, y, x]−1[h, y, x, x, y, y] 

and hence (i) follows. For (ii) we use (3) from the proof of Lemma 2. Recall that v 
and t were products of commutators of multiweight at least (2,2,1) in h, x, y. Hence, 
also using Lemma 2(i) and (ii), (3) becomes 

1 =[h, x, x, y]2[h, x, y, x]2[h, y, x, x]2 

[h, x, x, y, y]−1[h, y, x, x, y][h, y, y, x, x][h, y, x, y, x]2 . 

Multiplying by the inverse of (i) gives (ii). 

Commuting Lemma 1(i) by x and using Lemma 2(ii) gives 

1 = [h, x, y, y, x][h, y, x, y, x][h, y, y, x, x][h, x, x, y, y, x]−1[h, y, x, y, x, x]. 

Multiplying by Lemma 1(ii) commuted by x, and using Lemma 2(iii), gives 

1 = [h, x, y, y, x][h, y, x, y, x][h, y, y, x, x]. 

Together with (i) this gives (iii). 
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From now on H is always assumed to be 3-torsion-free. Recall that we are also as
suming that commutators with at least two h entries and four x entries are trivial. We 
use the identities above to show that [h, x, a, x, b, x, c, x] = 1. The commutators that 
arise in the following calculations from the fact that the identities only hold modulo cer
tain multiweights will contain at least two h entries and four x entries and hence cancel. 

First note that by commuting Lemma 2(ii) by x we have 1 = [h, x, x, y, x, x]. Hence, 
by replacing y by an arbitrary product of elements from G, left normed commutators 
with first entry h and two pairs of consecutive x entries are trivial. Let k = [h, x, x]. 
Note that [k, x] = [k, . . . , x, x] = 1. Using these we now show that [k, b, x, c, x] = 1. 

Lemma 3(iii) gives [k, b, x, c, c, x] = 1 and Lemma 3(i) gives [k, c, x, c, x] = 1 and 
[k, b, x, c, x, c] = 1. We now use these to show that [k, b, x, c, x, b] = 1. First, 

1 =[k, b, x, bc, x, bc] 

=[k, b, x, c, x, b][k, b, x, c, x, b, c][k, b, x, b, c, x, c][k, b, x, b, c, x, b][k, b, x, b, c, x, b, c] 

=[k, b, x, c, x, b][k, b, x, c, x, b, c][k, b, b, x, c, x, c]−1[k, b, x, b, c, x, b][k, b, x, b, c, x, b, c] 

=[k, b, x, c, x, b][k, b, x, c, x, b, c][k, b, x, b, c, x, b][k, b, x, b, c, x, b, c], (5) 

where the third equality follows from Lemma 1(i). Thus f = [f, c]−1 , where f = 
[k, b, x, c, x, b][k, b, x, b, c, x, b]. Since f is a right 3-Engel element, it follows that f = 1. 
Hence, 

1 =[k, b, x, c, x, b][k, b, x, b, c, x, b] 

=[k, b, x, c, x, b][k, b, b, x, c, x, b]−1, by Lemma 1(i), 

=[k, b, x, c, x, b][k, b, x, c, x, b, b], by Lemma 2(ii). 

Commuting by b gives [k, b, x, c, x, b, b] = 1 and hence we have [k, b, x, c, x, b] = 1. Note 
that replacing b by cb gives [k, c, b, x, c, x, b] = 1. 

We now use this to prove that [k, b, x, c, x] = 1. We expand [k, bc, bc, x][k, bc, x, bc] = 
1, which holds by Lemma 1(i). This gives 

1 =[k, b, c, x][k, c, b, x][k, b, x, c][k, c, x, b][k, b, b, c, x][k, c, b, c, x][k, b, c, b, x][k, b, c, c, x] 

[k, b, x, b, c][k, c, x, b, c][k, b, c, x, b][k, b, c, x, c][k, b, c, b, c, x][k, b, c, x, b, c] 

=[k, b, c, x][k, c, b, x][k, b, x, c][k, c, x, b][k, c, b, b, x]−1[k, c, c, b, x]−1[k, b, x, b, c] 

[k, c, x, b, c][k, b, c, x, b][k, b, c, x, c][k, c, c, b, b, x][k, b, c, x, b, c], by Lemma 1(i). 

Replacing c by xc gives, using the identities found in showing that [k, b, x, c, x, b] = 1, 

1 =[k, b, x, c, x][k, c, x, b, x]−1[k, c, x, c, b, x]−1[k, c, x, b, x][k, c, x, c, b, b, x][k, b, c, x, b, x] 

=[k, b, x, c, x][k, c, c, x, b, x][k, c, c, x, b, b, x]−1[k, b, c, x, b, x], by Lemma 1(i), 

=[k, b, x, c, x][k, c, c, x, b, x][k, b, c, x, b, x]. (6) 
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Replacing b by b−1 and using Lemma 2(ii) we get 

1 =[k, b, x, c, x]−1[k, b, b, x, c, x][k, c, c, x, b, x]−1[k, b, c, x, b, x]. 

Multiplying by (6) gives 

1 =[k, b, b, x, c, x][k, b, c, x, b, x]2 . (7) 

Instead replacing c by bc in (6) we have 

1 =[k, b, x, b, c, x][k, b, c, x, b, x][k, b, c, c, x, b, x][k, c, b, c, x, b, x][k, b, b, c, x, b, x] 

[k, b, c, b, c, x, b, x][k, b, b, c, x, b, x] 

=[k, b, x, b, c, x][k, b, c, x, b, x], by Lemma 1(i) and Lemma 2(ii) 

=[k, b, b, x, c, x]−1[k, b, c, x, b, x]. 

Multiplying by (7) gives 1 = [k, b, c, x, b, x]3 and as H is 3-torsion-free we have 1 = 
[k, b, c, x, b, x] = [k, b, b, x, c, x]. Thus (6) gives the desired result of 1 = [k, b, x, c, x]. 

It follows by Lemma 2(ii) that 

[h, x, x, b, x, c, x] = [h, x, b, x, x, c, x] = [h, x, b, x, c, x, x] = 1. 

Letting l = [h, x, a, x] it follows that [l, x, . . . , x] = [l, . . . , x, x] = 1. The above calcula
tions, with l in place of k, then show that [l, b, x, c, x] = 1, which completes the proof 
of Theorem 1. 

3 Theorem 1 is best possible 

We now show that Theorem 1 cannot be improved by giving an example satisfying the 
conditions of Theorem 1, but with [H,3 �x�G] =� {1}. 

Let G = �h, x, y� be the relatively free group on these 3 generators, such that any 
commutator with at least two entries of h, two entries of y or four entries of x is trivial 
and [h, x, x, x] = [h, y, x, x, x] = [h, x, x, y][h, x, y, x][h, y, x, x] = 1. Define H = �h�G . It 
is important that there are no relations between left normed commutators in H with 
first entry h and entry set {h, x, y}, other than those which follow directly from those 
stated above in the definition of G. This follows from a lemma of M. Hall (Lemma 
11.2.1 in [5]), which gives a bijection between the set of basic commutators (with an 
arbitrary ordering) of a particular weight with exactly one h entry and the set of left 
normed commutators in H with first entry h and entry set {h, x, y} of the same weight. 
These sets have the same spans modulo higher multiweights, and hence are linearly 
independent modulo higher multiweights, as the first is by a theorem of M. Hall [4]. 

One can then check from the relations above that H is 3-torsion-free. We claim 
that H is a right 3-Engel subgroup of G in which [h, x, y, x, x] = 1. The latter claim is 
clear, since [h, x, y, x, x] and [h, x, x, y, x] only ever occur together and with the same 
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power from the relations imposed on G. To show that H is a right 3-Engel subgroup 
of G, one needs only check that 

a a1 = [h, xa y b[x, y]c , x y b[x, y]c , x y b[x, y]c], ∀a, b, c ∈ Z. 

By expanding the right hand side one sees that this holds in G. This calculation is 
straightforward and can be found in [2] (Section 6.3). 

4 Proof of Theorem 2 

Let H be a {2, 3, 5}-torsion-free normal right 3-Engel subgroup of a group G. Let 
h ∈ H and g1, . . . , g8 ∈ G. It suffices to show that [h, g1, . . . , g8] = 1. Suppose that 
[h, g1, . . . , g8] ∈ H �. Independently setting gi = 1 for i ∈ {1, . . . , 8}, we see that 
[h, g1, . . . , g8] can be written as a product of commutators with multiweight at least 
(2, 1, 1, . . . , 1) in (h, g1, . . . , g8). Using [h, g1, . . . , g8] ∈ H � again, each of these commuta
tors can be written as a product of commutators with multiweight at least (3, 1, 1, . . . , 1) 
in (h, g1, . . . , g8) and each of these as a product of commutators with multiweight at 
least (4, 1, 1, . . . , 1) in (h, g1, . . . , g8). However, these commutators are trivial, by the 
result of Newell [7]. Hence we would have [h, g1, . . . , g8] = 1. Thus we may assume that 
H is abelian. 

We will use the linearised 3-Engel identity, which holds for all right 3-Engel elements 
h in a group G. If g1, g2, g3 ∈ G, then expanding 1 = [h, g1g2g3, g1g2g3, g1g2g3] gives, 
modulo higher multiweights, 

1 = [h, gσ(1), gσ(2), gσ(3)]. (8) 
σ∈S3 

We start by considering �h, x, y�, where x, y ∈ G. Here we only need assume that H 
is a {2, 3}-torsion-free normal right 3-Engel subgroup of G. We will exclude the prime 
5 later. For a set X and positive integer i we will use the notation [h,i X] to denote 
the set of left normed commutators with first entry h and i entries from X. 

Lemma 4. [H,6 �x, y�] = {1}. 

Proof. By Theorem 1, [H,7 �x, y�] = {1}. Let g ∈ [h,6 {x, y}], where g has three x and 
three y entries. It suffices to see that g = 1. Without loss of generality we may assume 
that the second entry is an x. Expanding 1 = [h, [x, y], [x, y], [x, y]] gives 

1 =[h, x, y, x, y, x, y][h, x, y, x, y, y, x]−1[h, x, y, y, x, x, y]−1[h, x, y, y, x, y, x] 

[h, y, x, x, y, x, y]−1[h, y, x, x, y, y, x][h, y, x, y, x, x, y][h, y, x, y, x, y, x]−1 . 

By Lemma 2(iii) and repeated use of Lemma 3(iii) this becomes 

1 =[h, x, y, x, y, y, x]−3[h, x, y, y, x, y, x]3 . 
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�

Hence by Lemma 2(ii), 1 = [h, x, y, y, x, y, x]6 and as H is {2, 3}-torsion-free, 1 = 
[h, x, y, y, x, y, x]. By Lemma 3(iii) and Lemma 2(ii) we have 

[h, x, y, y, x, x, y] = [h, x, y, x, y, y, x] = [h, x, y, y, x, y, x]−1 = 1. 

By Lemma 2(ii), Lemma 3(iii) and Lemma 1(ii) respectively, 

[h, x, x, y, x, y, y] =[h, x, x, y, y, x, y]−1 

=[h, x, y, x, x, y, y]−1 

=[h, x, y, x, y, x, y][h, x, y, y, x, y, x]−1 

=1. 

Thus g is trivial. 

We now introduce another element z ∈ G and consider �h, x, y, z�. We show that 
commutators in [h,6 {x, y, z}] with a triple entry are trivial, as long as [H,7 �x, y, z�] 
is. By Lemma 4 and Theorem 1, we need only consider commutators of multiweight 
(1,3,2,1) in h, x, y, z. We will then use this to show that indeed [H,7 �x, y, z�] = {1}. 

We first introduce some notation to make certain calculations easier to read. We 
write (a1; a2; . . . ; an) for an arbitrary commutator starting with h and containing entries 
a1, . . . , an in that order, with possibly other entries too. Within a calculation the 
remainder of the commutator is assumed to stay the same. 

Lemma 5. Suppose that [H,7 �x, y, z�] = {1}. Then any commutator of multiweight 
(1,3,2,1) in h, x, y, z is trivial. 

Proof. Consider such a commutator with first entry h. Suppose that the second entry is 
a = x. By Theorem 1, (ax; ax; ax; ax) = 1 and so, modulo commutators of multiweight 
(1,3,2,1) in h, x, y, z with first entry h and second entry x, 1 = (a; x; x; x)uv, where u 
consists of commutators with one x entry and v consists of commutators with two x 
entries. Replacing x by x−1 gives 1 = (a; x; x; x)−1u−1v. Hence, 1 = (a; x; x; x)2u2 . 
Replacing x by x2 now gives 1 = (a; x; x; x)16u4 . Hence, 1 = (a; x; x; x)12 and so, as H 
is {2,3}-torsion-free, we may assume that the second entry is an x. 

Next consider the y and z entries. Replacing these by yz we have that (yz; yz; yz) = 
1, by Lemma 4. Hence 

1 = (y; y; z)(y; z; y)(z; y; y)(y; z; z)(z; y; z)(z; z; y). 

Replacing y by y−1 and multiplying gives 

1 = (y; y; z)2(y; z; y)2(z; y; y)2 = (y; y; z)(y; z; y)(z; y; y). 

So we may assume that the z entry is not before the first y entry. 

Next we show that we may also assume that the third entry is x. Suppose not 
and that the last two x entries aren’t consecutive, else by Lemma 2(ii) we could move 
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one third. If the last two x’s are within 3 entries, then we can move them together 
by Lemma 3(ii). Hence it remains to consider the commutators [h, x, y, x, y, z, x] and 
[h, x, y, x, z, y, x]. But, by Lemma 3(ii), 

[h, x, y, x, y, z, x] = [h, x, x, y, y, z, x]−1[h, x, y, y, x, z, x]−1 

and by Lemma 3(iii) with y replaced by yz, 

[h, x, y, x, z, y, x] = [h, x, y, x, y, z, x]−1[h, x, y, y, x, x, z][h, x, y, z, x, x, y]. 

Hence we are left with the following commutators. 

g1 = [h, x, x, y, x, y, z], g2 = [h, x, x, y, x, z, y], g3 = [h, x, x, y, y, x, z], 

g4 = [h, x, x, y, y, z, x], g5 = [h, x, x, y, z, x, y], g6 = [h, x, x, y, z, y, x]. 

We find relations involving these to show that they are trivial. 

First notice that by Lemma 3(ii), g1g3 = 1 (α). Next note that the linearised 
3-Engel identity (8) gives g2g4g5g6 = 1 (β). By Lemma 3(ii), 

1 =[h, x, x, y, y, [x, z]][h, x, x, y, [x, z], y][h, x, x, [x, z], y, y] 

=g3g4
−1 g2g5

−1[h, x, x, z, x, y, y]−1 

=g3g4
−1 g2g5

−1[h, x, x, y, x, z, y][h, x, x, y, x, y, z] 

=g1g2
2 g3g4

−1 g5
−1 (γ). 

Also, 

1 =[h, x, x, y, y, x, z][h, x, x, y, y, z, x][h, x, z, y, y, x, x][h, z, x, y, y, x, x] 

=g3g4[h, x, x, z, y, y, x]
−1[h, z, x, x, y, y, x]−1 

=g3g4[h, x, z, x, y, y, x] 

=g3g4[h, x, z, y, x, x, y] 

=g3g4[h, x, x, z, y, x, y]
−1 

=g3
2 g4g5 (δ) 

and 

1 =[h, x, y, x, x, [y, z]][h, x, y, x, [y, z], x][h, x, y, [y, z], x, x] 

=[h, x, y, x, x, y, z][h, x, y, x, x, z, y]−1[h, x, y, x, y, z, x][h, x, y, x, z, y, x]−1 

[h, x, y, y, z, x, x][h, x, y, z, y, x, x]−1 

=[h, x, x, y, x, y, z]−1[h, x, x, y, x, z, y][h, x, y, x, y, z, x]2[h, x, y, y, x, x, z]−1 

[h, x, y, z, x, x, y]−1[h, x, x, y, y, z, x]−1[h, x, x, y, z, y, x] 

=g1
−1 g2[h, x, y, y, x, z, x]

−2[h, x, x, y, y, z, x]−2[h, x, x, y, y, x, z] 

[h, x, x, y, z, x, y]g4
−1 g6 

=g1
−1 g2[h, x, y, y, x, x, z]

2[h, x, y, y, z, x, x]2 g4
−2 g3g5g4

−1 g6 

=g1
−1 g2g3

−1 g4
−5 g5g6 (�). 
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Now, (α)(β)−1(�) implies 1 = g4
−6 and so g4 = 1. By the same argument, reversing 

the order of the entries except h in all commutators, we get 1 = [h, x, z, y, y, x, x] and 
so 1 = [h, x, x, z, y, y, x]−1 = g6. Then (α)−1(β)(γ) gives 1 = g2

3 and hence g2 = 1. 
Then (β) gives g5 = 1. (δ) then gives 1 = g3

2 and thus g3 = 1. Finally (α) gives g1 = 1, 
which completes the proof. 

Lemma 6. [H,7 �x, y, z�] = {1}. 

Proof. We may assume that [H,8 �x, y, z�] = {1}. Let h ∈ H and consider an arbitrary 
commutator in [h,7 {x, y, z}]. By Lemma 5 we may assume that there is no triple entry 
within six consecutive entries. Thus we need only consider commutators of multiweight 
(1,3,2,2) in h, x, y, z with second and eighth entries both x. 

Suppose that the third entry is y. Then by Lemma 5 we have 

1 = [h, xy, xy, . . . , xy, . . .], 

where the third xy is in place of the second x entry. Expanding this we have 

1 = [h, x, x, . . . , y, . . .][h, x, y, . . . , x, . . .]. 

Hence we may assume that the third entry is also x. Assuming without loss of generality 
that the fourth entry is a y, this leaves the following commutators. 

g1 = [h, x, x, y, y, z, z, x], g2 = [h, x, x, y, z, y, z, x], g3 = [h, x, x, y, z, z, y, x]. 

By Lemma 3(ii) on the last three entries, g1 = 1. Then using Lemma 3(ii) on the fifth 
to seventh entries, g2g3 = 1. Finally, 

1 = [h, x, x, y, z, z, [y, x]][h, x, x, y, z, [y, x], z][h, x, x, y, [y, x], z, z] = g3. 

Thus g2 = g3
−1 = 1 and the lemma is proved. 

In particular we have shown that commutators of multiweight (1,3,2,1) or higher in 
h, x, y, z are trivial. We now show that commutators in [H,7 G] with a triple entry are 
trivial as long as commutators of higher multiweight are. 

Lemma 7. Any commutator containing an element of H, a triple entry and four other 
entries is trivial if commutators of higher multiweight are. 

Proof. Consider commutators with first entry h ∈ H, a triple entry of x ∈ G and other 
entries a, b, c, d ∈ G. Suppose that higher multiweight commutators are trivial. As in 
the proof of Lemma 5, we may assume that the second entry is an x. Also, by Lemma 
3(ii) and Lemma 5, 

1 =[h, x, a, x, x, b][h, x, a, x, b, x][h, x, a, b, x, x] 

=[h, x, x, a, x, b]−1[h, x, a, x, b, x][h, x, x, a, b, x]−1 . 
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Replacing a and b by arbitrary products we see that we may assume that the third 
entry is also x. So it suffices to see that the following commutators are trivial. 

g1 = [h, x, x, a, x, b, c, d], g2 = [h, x, x, a, b, x, c, d] 

g3 = [h, x, x, a, b, c, x, d], g4 = [h, x, x, a, b, c, d, x]. 

Note that, by Lemma 5, g1, g2 and g3 are alternating in the entries a, b and c. 
Further, 

1 = [h, x, x, ad, x, [b, c], ad] = [h, x, x, ad, x, b, c, ad]2 , 

1 = [h, x, x, [a, b], x, cd, cd] = [h, x, x, a, b, x, cd, cd]2 , 

1 = [h, x, x, ad, [b, c], x, ad] = [h, x, x, ad, b, c, x, ad]2 . 

Hence, as H is 2-torsion-free, g1, g2 and g3 are alternating in the d entries as well. Now, 
again by Lemma 5, 

1 =[h, x, x, a, x, [b, c], d][h, x, x, a, x, d, [b, c]] = g1
4 . 

and hence g1 = 1. Also, 

1 =[h, x, x, [a, b], x, c, d][h, x, x, c, x, [a, b], d] = g2
2 , 

1 =[h, x, x, a, [b, c], x, d][h, x, x, [b, c], a, x, d] = g3
4 . 

Thus g1 = g2 = g3 = 1. 

It remains to see that g4 = 1. Now, by (8), 

1 =[h, x, x, a, b, c, d, x][h, x, x, a, b, c, x, d][h, x, x, a, b, d, c, x] 

[h, x, x, a, b, d, x, c][h, x, x, a, b, x, c, d][h, x, x, a, b, x, d, c] 

=[h, x, x, a, b, c, d, x][h, x, x, a, b, d, c, x]. 

Thus g4 is alternating in the c and d entries. Also, 

1 =[h, x, x, a, b, c, [d, x]][h, x, x, a, b, [d, x], c][h, x, x, a, c, b, [d, x]] 

[h, x, x, a, c, [d, x], b][h, x, x, a, [d, x], b, c][h, x, x, a, [d, x], c, b] 

=[h, x, x, a, b, c, d, x][h, x, x, a, c, b, d, x]. 

Thus g4 is also alternating in the b entry. Hence, by Lemma 5, 

1 =[h, x, x, a, b, [c, d], x][h, x, x, a, [c, d], b, x] = g4
4 . 

Thus, as H is 2-torsion-free, g4 = 1, which completes the proof. 

We now use this to show that the same is true in [H,8 G]. Since we are aiming 
to show that under certain conditions [H,8 G] = {1}, and we are assuming that H is 
upper central, we assume from now on that [H,9 G] = {1}. 

Corollary 1. Any commutator in [H,8 G] with a triple entry is trivial. 
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Proof. Consider commutators with first entry h ∈ H, a triple entry of x ∈ G and other 
entries a, b, c, d, e ∈ G. As in the proof of Lemma 7, we may assume that the second 
and third entry are both x. By Lemma 7 we are left with the commutator 

g = [h, x, x, a, b, c, d, e, x]. 

First, by (8), 

1 =[h, x, x, a, b, c, d, e, x][h, x, x, a, b, c, d, x, e][h, x, x, a, b, c, e, d, x] 

[h, x, x, a, b, c, e, x, d][h, x, x, a, b, c, x, d, e][h, x, x, a, b, c, x, e, d] 

=[h, x, x, a, b, c, d, e, x][h, x, x, a, b, c, e, d, x]. 

Thus g is alternating in the d and e entries. Also, 

1 =[h, x, x, a, b, c, d, [e, x]][h, x, x, a, b, c, [e, x], d][h, x, x, a, b, d, c, [e, x]] 

[h, x, x, a, b, d, [e, x], c][h, x, x, a, b, [e, x], c, d][h, x, x, a, b, [e, x], d, c] 

=[h, x, x, a, b, c, d, e, x][h, x, x, a, b, d, c, e, x] 

and thus g is also alternating in the c entry. Hence, again by (8), we have 

1 =[h, x, x, a, b, c, [d, e], x][h, x, x, a, b, c, x, [d, e]][h, x, x, a, b, [d, e], c, x] 

[h, x, x, a, b, [d, e], x, c][h, x, x, a, b, x, c, [d, e]][h, x, x, a, b, x, [d, e], c] 

=[h, x, x, a, b, c, [d, e], x][h, x, x, a, b, [d, e], c, x] = g 4 . 

Hence g = 1. 

The next step is to show that commutators in [H,8 G] with a double entry are 
trivial, from which Theorem 2 will easily follow. We impose that H is 5-torsion-free at 
this point. 

Lemma 8. Any commutator in [H,8 G] with a double entry is trivial. 

Proof. Consider commutators with first entry h ∈ H, double entry x and other entries 
a, b, c, d, e and f . By Corollary 1 we may assume that the second entry is x, by use of 
1 = (a; x; x)(x; a; x)(x; x; a). First we show that it suffices to see that 

g1 =[h, x, x, a, b, c, d, e, f ], g2 = [h, x, a, x, b, c, d, e, f ], g3 = [h, x, a, b, x, c, d, e, f ], 

are trivial. 

By Corollary 1, 

(a; b; x)(a; x; b)(b; a; x)(b; x; a)(x; a; b)(x; b; a) = 1. 

Hence, modulo commutators with second entry x and other x entry further to the left, 
the entries between the two x entries are alternating. So, modulo these commutators, 

1 =[. . . , [a, b], c, x, . . .][. . . , [a, b], x, c, . . .][. . . , c, [a, b], x, . . .] 

[. . . , c, x, [a, b], . . .][. . . , x, [a, b], c, . . .][. . . , x, c, [a, b], . . .] 

=[. . . , a, b, c, x, . . .]2[. . . , c, a, b, x, . . .]2 

=[. . . , a, b, c, x, . . .]4 . 
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Hence, as H is 2-torsion-free, it does indeed suffice to see that g1 = g2 = g3 = 1. 

Next suppose that g1 and g2 are trivial. Then g3 is alternating in the entries a and 
b. Hence, by Lemma 3(ii), 

1 =[h, x, x, [a, b], c, d, e, f ]2[h, x, [a, b], x, c, d, e, f ]2[h, [a, b], x, x, c, d, e, f ]2 

=g3
4[h, a, b, x, x, c, d, e, f ]2[h, b, a, x, x, c, d, e, f ]−2 

=g3
4[h, x, b, a, x, c, d, e, f ]−2[h, x, a, b, x, c, d, e, f ]2, by Corollary 1, 
8 =g3 . 

Thus it remains to show that g1 = g2 = 1. To show this we can instead, by Lemma 
3(ii), show that g1 and ĝ2 = [h, a, x, x, b, c, d, e, f ] are trivial. For this we will show 
that g1 is alternating in the entries a, b, c, d, e, f and ĝ2 in the entries b, c, d, e, f . By 
the proof that we need only check that g1 and ĝ2 are trivial, it suffices for this to show 
that the elements [h, x, x, a, y, y, b, c, d], [h, x, x, y, a, y, b, c, d], [h, a, x, x, b, y, y, c, d] and 
[h, a, x, x, y, b, y, c, d] are trivial. 

Consider the following commutators in [H,8 G], where k ∈ H. 

h1 = [k, x, x, a, y, y, . . .], h2 = [k, x, x, y, a, y, . . .], h3 = [k, x, a, x, y, y, . . .], 

h4 = [k, x, a, y, x, y, . . .], h5 = [k, x, y, x, a, y, . . .], h6 = [k, x, y, a, x, y, . . .]. 

The four commutators listed earlier are all of the same form as h1 or h2. We first show 
that h1 = 1. First, by (8), 1 = h1h2h3h4h5h6 (α). We also have 

1 =[k, x, x, [y, a, y], . . .][k, x, [y, a, y], x, . . .][k, [y, a, y], x, x, . . .] 

=[k, x, x, y, a, y, . . .]3[k, x, y, a, y, x, . . .]3[k, y, a, y, x, x, . . .]3 

=h32h
−3h−3h3 
1 6 3


=h−1
1h2h3h

−
6
1 (β),


1 =[k, x, x, [a, y], y, . . .][k, x, [a, y], x, y, . . .][k, [a, y], x, x, y, . . .] 

=h1h
−
2
1h4h

−
6
1[k, a, y, x, x, y, . . .][k, y, a, x, x, y, . . .]−1 

=h1h
−
2
1h3h

2
4h

−
5
1h−6

2 (γ), 

1 =[k, x, [x, a], y, y, . . .][k, x, y, [x, a], y, . . .][k, x, y, y, [x, a], . . .] 

=h1h
−
3
1h5h

−
6
1[k, x, y, y, x, a, . . .][k, x, y, y, a, x, . . .]−1 

=h1h2h
−
3
1h−4

1h5
2h−6

2 (δ), 

1 =[k, x, x, y, [a, y], . . .][k, x, [a, y], y, x, . . .][k, [a, y], x, y, x, . . .], by Lemma 7, 

=h2[k, x, x, y, y, a, . . .]
−1[k, x, a, y, y, x, . . .][k, x, y, a, y, x, . . .]−1 

[k, a, y, x, y, x, . . .][k, y, a, x, y, x, . . .]−1 

=h21h2h
−
3
1h−4

3h6 (�). 
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Now, (α)5(β)−5(γ)7(δ)(�)6 gives h30 = 1 and hence, as H is {2, 3, 5}-torsion-free,1 
h1 = 1. Then (α)(β)−1(γ)(�) gives h6 = 1. (β) is then h2h3 = 1, (α)(β)−1 is h4h5 = 1 
and (α)(γ) is h23h

3
4 = 1. 

Now consider commutators in [H,8 G] with first entry h and double entries of x, y 
and z within six entries. We will show that these are trivial. First we may assume, 
by Corollary 1, that of these six entries, the first is x, fifth is y and sixth is z. Since 
h1 = h6 = 1 we are left with 

k1 = [k, x, x, y, z, y, z, . . .], k2 = [k, x, y, x, z, y, z, . . .], k3 = [k, x, z, x, y, y, z, . . .]. 

By (8) we get k1k2k3 = 1. Also, h2h3 = 1 gives k1k3 = 1. Hence k2 = 1. Further, 
h23h

3
4 = 1 implies that k3

2 = 1 and hence that k3 = 1. Thus k1 = 1 as well. So these 
commutators are trivial. In particular, any commutator in [H,8 G] with first entry h 
and double entries of x and y within six other entries will be alternating in the other 
two entries of the six. 

By Lemma 7, 

1 =[h, x, y, y, x, [a, b], c, d][h, x, y, y, [a, b], x, c, d][h, [a, b], y, y, x, x, c, d] 

=[h, x, y, y, x, a, b, c, d]2[h, x, y, y, a, b, x, c, d]2[h, a, b, y, y, x, x, c, d]2 

=[h, x, y, y, x, a, b, c, d]2[h, x, y, y, x, b, a, c, d]−2[h, a, y, y, x, b, x, c, d]−2 

[h, a, y, b, y, x, x, c, d]−2, since h1 = 1, 

=[h, x, y, y, x, a, b, c, d]4[h, a, y, y, x, b, x, c, d]−2[h, a, y, b, y, x, x, c, d]−2 . 

Since h2h3 = 1, we get [h, x, y, y, x, a, b, c, d]4 = [h, x, y, y, x, a, b, c, d] = 1. Hence, 
as h6 = 1, [h, x, a, y, x, y, b, c, d] = 1. From h23h4

3 = 1 and h2h3 = 1 it follows that 
h−2

2h34 = 1. Hence [h, x, x, y, a, y, b, c, d] = 1 and similarly [h, a, x, x, y, b, y, c, d] = 1. 

This proves that g1 and ĝ2 are alternating in the entries b, c, d, e, f . Thus, for g1 

and ĝ2, 

1 =[h, . . . , [b, c], [d, e], f ][h, . . . , [b, c], f, [d, e]][h, . . . , [d, e], [b, c], f ] 

[h, . . . , [d, e], f, [b, c]][h, . . . , f, [b, c], [d, e]][h, . . . , f, [d, e], [b, c]] 

=[h, . . . , b, c, d, e, f ]24 

Hence g1 = ĝ2 = 1, which completes the proof. 

We now have that commutators in [H,8 G] with a double entry are trivial. This 
shows that commutators in [H,8 G] are alternating in all entries, except for the entry 
from H. For g1, . . . , g8 ∈ G we then have 

1 =[h, g1, [g2, g3], [g4, g5], g6, g7, g8][h, g1, [g4, g5], [g2, g3], g6, g7, g8] 

[h, [g2, g3], g1, [g4, g5], g6, g7, g8][h, [g2, g3], [g4, g5], g1, g6, g7, g8] 

[h, [g4, g5], g1, [g2, g3], g6, g7, g8][h, [g4, g5], [g2, g3], g1, g6, g7, g8] 

=[h, g1, g2, g3, g4, g5, g6, g7, g8]
24 . 
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As H is {2,3}-torsion-free, this completes the proof of Theorem 2. 

5 Theorem 2 is best possible 

We now show that Theorem 2 is best possible, by finding a group G and subgroup H 
satisfying the conditions of Theorem 2, but with [H,7 G] =� {1}. 

Let G = �h, x, y, a, b, c� be the free group on six generators. Let H = �h�G . Quotient 
G out by H � to make H abelian. Further, quotient out by any commutator containing 
a triple entry of x or y, or a double entry of either a, b or c. Note that, as in Section 
3, there are no relations between left normed commutators in H with first entry h and 
entry set {h, x, y, a, b, c}, other than those that follow directly from what is quotiented 
out by above. We now place some more structure on [H,7 G]. 

Note that currently [H,7 G] is generated by left normed commutators with first 
entry h, double entries of both x and y and single entries of a, b and c, and that these 
commutators are independent. We quotient out by products of commutators to make 
all commutators in [H,7 G] alternating in entries of a, b and c and such that we can 
swap both x entries with both y entries. Further, we quotient out by every product of 
the form 

[h, g1, g2, . . . , g7][h, g2, g3, . . . , g7, g1]
−1 , 

where g1, . . . , g7 ∈ {x, y, a, b, c}, so that the entries after h in commutators in [H,7 G] 
can be cycled around. We also quotient out by products of the form 

[h, g1, g2, . . . , g7][h, g7, g6, . . . , g1], 

so that the entries after h in commutators in [H,7 G] can be reflected, which inverses 
the commutator. 

Using the alternating, cycling, reflecting and swapping properties we can seperate 
the generators of [H,7 G] into equivalence classes, where two commutators are equivalent 
if one is equal to the other or the inverse of the other. For each equivalence class we 
can pick as a representative the smallest commutator in the class with respect to the 
lexicographical order where x < y < a < b < c. Note that these representatives are 
independent. We now place these in sets as follows. Let 

A = {[h, x, x, a, y, b, y, c]}−4 

A = {[h, x, x, y, y, a, b, c]}−3 

A = {[h, x, y, x, a, y, b, c], [h, x, y, a, y, x, b, c]}−2 

A0 = {[h, x, y, a, x, y, b, c]}
A1 = {[h, x, x, y, a, y, b, c], [h, x, x, y, a, b, y, c], [h, x, y, x, y, a, b, c], [h, x, y, a, x, b, y, c]}
A2 = {[h, x, x, y, a, b, c, y], [h, x, x, a, y, y, b, c]}
A3 = {[h, x, y, a, y, b, x, c]}. 
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For each xi ∈ Ai we quotient G out by [h, x, x, y, a, y, b, c]−ixi. Thus we have that 
xi = [h, x, x, y, a, y, b, c]i . Since the elements above were previously independent we 
have that [h, x, x, y, a, y, b, c] is still a torsion-free element of [H,7 G]. 

Using the alternating, cycling, reflecting and swapping properties above, every com
mutator in [H,7 G] may be written as a product of elements from the Ai’s. Thus [H,7 G] 
is generated by [h, x, x, y, a, y, b, c]. Let 

N = �[h, g, g, g] : g ∈ G�G . 

Then H/N is a right 3-Engel subgroup of G/N and it remains to check that no non
zero power of [h, x, x, y, a, y, b, c] is in N . The calculations for this, along with some 
techniques to shorten the calculations, can be found in [2] (Section 6.5 and Appendix 
A). 
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