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Abstract 

This paper explores possibilities of applying enantiomeric profiling to solving problems related to 

estimation of drugs usage in communities via the sewage epidemiology approach: for the 

identification of whether drug residue results from consumption of illicit drug or metabolism of 

other drugs, verification of potency of used drugs and monitoring of changing patterns of drugs 

abuse. Due to the very complex nature of wastewater used in sewage epidemiology, which comes 

from the whole community rather than one individual, verification of the above is challenging but 

vital in accurate estimations of drugs abuse as well as providing comprehensive information 

regarding drug abuse trends. The results of this study indicated that amphetamine in raw wastewater 

was enriched with R(-)-enantiomer due to its abuse as racemate. Methamphetamine was found to be 

racemic or to be enriched with S(+)-enantiomer. MDMA was enriched with R(-)-MDMA, which 

was to be expected as MDMA is abused as racemate. MDA was enriched with S(+)-enantiomer, 

which suggests that its presence might be associated with MDMA abuse and not intentional MDA 

use. Out of the four possible isomers of ephedrine only natural 1R,2S(-)-ephedrine and 1S,2S(+)-

pseudoephedrine were detected in raw wastewater and their diastereomeric fractions were found to 

be season dependent with higher contribution from 1S,2S(+)-pseudoephedrine over winter months 

and an enrichment with 1R,2S(-)-ephedrine during the spring and summer months. These findings 

were accompanied by a decrease of cumulative concentration of ephedrines throughout the 

sampling campaign between February and August. This is a very important finding indicating that 

non-enantioselective measurement of ephedrine concentrations cannot be a reliable indicator of 

actual potency of ephedrines used. 

Keywords: sewage, drug epidemiology, chiral, drugs of abuse, enantiomeric profiling, wastewater 

analysis, environment, amphetamines 

1. Introduction 

 ‘Sewage epidemiology’ is a new and very promising approach for the estimation of drugs 

consumption in communities via the analysis of sewage. It was first proposed by Daughton in 2001 

(Daughton 2001), implemented by Zuccato et al. in 2004 (Zuccato, Chiabrando et al. 2005) and 

followed by others (Bones, Thomas et al. 2007; Huerta-Fontela, Galceran et al. 2008; Banta-Green, 

Field et al. 2009; Kasprzyk-Hordern, Dinsdale et al. 2009; Mari, Politi et al. 2009; van Nuijs, 

Pecceu et al. 2009; Karolak, Nefau et al. 2010; Metcalfe, Tindale et al. 2010; Postigo, de Alda et al. 

2010; Terzic, Senta et al. 2010; Harman, Reid et al. 2011). Those wanting to find out more about 

this new concept are referred to existing reviews (Postigo, Lopez de Ada et al. 2008; Zuccato, 

Chiabrando et al. 2008; van Nuijs, Castiglioni et al. 2010). Significant advances in the development 
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of this new tool were observed in recent years but there are still many uncertainties mainly 

connected with the not entirely understood fate of drugs and their metabolites in sewers, and the 

varying and not well understood excretion profiles of drugs, which might be altered by disease, 

drug interactions, ethnic differences, sex, age and lifestyle. Other sewage epidemiology biases are 

discussed elsewhere (van Nuijs, Castiglioni et al. 2010; Lai, Ort et al. 2011). The above 

uncertainties need to be resolved before this tool is implemented as a routine population screening 

technique for drugs use. One aspect of drugs properties, namely chirality, has not been previously 

taken into account in sewage epidemiology, despite its critical importance in drugs’ abuse potency 

and toxicity, as well as their disposition (distribution, metabolism and excretion) in the body.  

Most illicit drugs are chiral compounds. Among them are plant-derived substances (e.g. cannabis, 

cocaine and heroin) and synthetic drugs (e.g. amphetamine, methamphetamine and related designer 

drugs). A chiral molecule usually has at least one chiral centre (e.g. asymmetric carbon) as a result 

of which it shows optical activity. It exists in the form of two enantiomers, being the non-

superimposable mirror images of each other. Enantiomers of the same drug have similar physico-

chemical properties but differ in their biological properties such as distribution, metabolism and 

excretion, as these processes (due to stereospecific interactions of enantiomers with biological 

systems) usually favour one enantiomer over the other. Additionally, due to different 

pharmacological activity, chiral drugs can differ in toxicity. R,R(+)-LSD is for example over 20 

times more psychoactive than (-)-LSD. Cocaine, similarly to heroin, naturally occurs in the form of 

1R,2R,3S,5S(-)-cocaine. (+)-Cocaine (the unnatural enantiomer) is inactive. Both metabolism and 

toxicity of (+)- and (-)-cocaine were found to be stereoselective. In cannabinoids, the natural d-1-

THC and d-6-THC have a (3R,4R) configuration and a negative rotation. Synthetic (+)-isomers are 

much less active. For instance (+)-d-1-THC is ca. 13 to 230 times less active than the (-)-isomer in 

cannabimimetic activity (Kasprzyk-Hordern 2010). 

The phenomenon of chirality is often utilised by forensic scientists in for example amphetamine or 

methamphetamine abuse cases, where distinction between legal and illicit usage has to be made. It 

can also help with identifying synthetic routes of clandestine manufacture of these drugs. It might 

be of vital importance in sewage epidemiology in:  

 Distinction between legal and illicit use of drugs. 

 Verification of the method of synthesis of illicit drugs. 

 Identification of whether drug residue results from consumption of illicit drug or metabolism 

of other (illicit) drug. 

 Verification of route of administration. 

 Verification of potency of abused drugs. 

 Monitoring of changing patterns of drugs abuse. 

This paper aims to explore the possibilities of applying enantiomeric profiling to solving problems 

related to estimation of drugs usage in communities via the sewage epidemiology approach. To the 

authors’ knowledge this is the first attempt to undertake such studies in sewage epidemiology and 

therefore the aim of this paper is to draw attention to the problem rather than to give solutions. 

2. Experimental  

2.1. Chemicals and materials 

All reference standards (R(-)-amphetamine, S(+)-amphetamine, R/S(±)-amphetamine, R(-)-

methamphetamine, S(+)-methamphetamine, 1R,2S(-)-ephedrine, 1S,2S(+)-pseudoephedrine, R/S(±)-

MDA, R/S(±)-MDMA) and internal standards (IS): (R/S(±)-amphetamine-d11, R/S(±)-

methamphetamine-d14, R/S(±)-MDMA-d5, R/S(±)-MDA-d5) (Table 1) were purchased from LGC 
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Standards (Teddington, UK) and Sigma-Aldrich (Gillingham, UK). All solvents used were of LC or 

LC/MS quality. All internal standards were added to the samples before extraction and were also 

used for the quantification of the analytes. 

2.2. Sampling 

Grab wastewater samples (2 per each sampling point) were collected from seven WWTPs in 

England (Tab. 2) over the period of 8 months (January 2010 – August 2010) during 5 sampling 

campaigns. Samples were collected in 2.5 L silanized amber bottles with Teflon faced phenolic 

caps. The samples were primarily filtered through GF/D 2.7 μm glass fibre filter (Whatman, UK) 

and subsequently through 0.7 μm glass fibre filter GF/F (Whatman, UK). 

2.3. Sample preparation and analysis 

2.3.1. Enantiomeric profiling of chiral drugs with SPE-Chiral LC-MS/MS  

Chiral drugs were extracted from wastewater using SPE Gilson ASPEC XL4 (Anachem, UK) and 

Oasis HLB adsorbents (Waters, UK). A volume of 100 mL of filtered wastewater samples (pH, 7.5 

adjusted with NaOH) spiked with 100 ng of internal standards was passed through the cartridge at a 

rate of 6 mL/min. Analytes were extracted from HLB cartridge with 4 mL of MeOH at a rate of 1 

mL/min. The extracts were evaporated to dryness with TurboVap evaporator (Caliper, UK, 40
o
C, 

N2, 5-15 psi) and finally reconstituted in 0.5 mL of mobile phase. All samples were filtered through 

0.2 μm PTFE filters (Whatman, Puradisc, 13 mm) and transferred to maximum recovery 

deactivated vials with PTFE septa (Waters, UK).  

Waters ACQUITY UPLC
TM

 system (Waters, Manchester, UK) consisting of ACQUITY UPLC
TM

 

binary solvent manager and ACQUITY UPLC
TM

 sample manager was used for the separation of 

analytes. Chiral-CBH column, 100x2mm, 5µm (Chromtech, Congleton, UK) and Chiral-CBH 

10x2.0mm guard column (Chromtech, Congleton, UK) were used for the separation of enantiomers 

of chiral drugs. The separation of chiral drugs was undertaken under isocratic conditions with the 

usage of mobile phase (pH, 5.0) composed of 90% H2O, 10% 2-propanol and 1 mM ammonium 

acetate. 20 μL of the sample was injected into the system. The column was kept at 25
o
C and the 

temperature in the sample manager was kept at 4
o
C. The flow rate of mobile phase was 0.075 

mL/min, which allowed for the introduction of mobile phase from LC into MS without splitting. 

A TQD (triple quadrupole) mass spectrometer (Waters, Manchester, UK), equipped with an 

electrospray ionisation source, was used for drugs of abuse quantification. The analyses were 

performed in positive mode with a capillary voltage of 3 kV, a source temperature of 150
o
C and a 

desolvation temperature of 200
o
C. A cone gas flow of 50 L/h and desolvation gas flow of 450 L/h 

were used. Nitrogen, used as a nebulising and desolvation gas, was provided by a high purity 

nitrogen generator (Peak Scientific Instruments Ltd, UK). Argon (99.999%) was used as a collision 

gas. MassLynx 4.1 (Waters, UK) software was used to collect and analyse the obtained data. Mass 

spectrometry analyses were performed in the multiple reaction monitoring (MRM) mode, 

measuring the fragmentation of the protonated pseudo-molecular ions of each chiral drug (Tab. 3). 

A dwell time of 50 ms per ion pair was used to maintain high sensitivity of the analysis and 

required a number of data points across the chromatographic peak. All instrumental and methods 

validation parameters such as: linearity and range, accuracy, precision, detection and quantification 

limits and calibration curve were determined. A detailed discussion of this method is presented 

elsewhere (Kasprzyk-Hordern, Kondakal et al. 2010). Validation parameters for this method can be 

found in Tab. 4. 

The relative concentration of enantiomers of chiral drugs was expressed as the enantiomeric 

fraction (EF) and was calculated with the following equation: 
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where R(-) and R(+) are peak areas for R(-) and S(+) enantiomers of a chiral drug. EF equals 1 or 0 

in the case of single enantiomer form and 0.5 in the case of racemate. Enantiomers of amphetamine, 

ephedrine and methamphetamine were confirmed in this research through the usage of 

enantiomerically pure standards. Identification of elution order of MDMA and MDA was based on 

data published by others (Fornstedt, Hesselgren et al. 1997; Buechler, Schwab et al. 2003).  

Out of two enantiomeric pairs of (pseudo)ephedrine only two diastereomers: 1R,2S(-)-ephedrine 

and 1S,2S(+)-pseudoephedrine were frequently quantified in wastewater. For these two compounds 

diastereomeric fractions (DFs) were calculated: 

drinepseudoephe-)S,2S(ephedrine-1R,2S(-)

ephedrine-1R,2S(-)
DF
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2.3.2. Quantification of chiral drugs with SPE-UPLC-MS/MS  

Solid phase extraction of samples was carried out as described above. Oasis MCX cartridge was 

used for the extraction of all analytes. 500 mL of acidified river water and 100 mL of wastewater 

were spiked with 50 ng of each surrogate/internal standard and then passed through the MCX 

cartridge at a rate of 6 mL min
-1

. Cartridges were washed with 0.6%HCOOH/MeOH (2 mL, pH 2) 

at a flow rate of 3 mL min
-1 

followed by elution with 7%NH4OH/MeOH (3 mL) at a flow rate of 1 

mL min
-1

 into silanised vials. Extracts were evaporated to dryness (40 °C, N2, 2-10 psi) and 

reconstituted with 0.3%CH3COOH/5%MeOH/H2O (500 µL). All samples were filtered through 0.2 

µm PTFE filters (Whatman, Puradisc, 13 mm) before being transferred to maximum recovery 

deactivated vials with PTFE septa (Waters, UK).   

Analyses were carried out with the usage of Waters ACQUITY UPLC
TM

 system (Waters, UK) and 

ACQUITY UPLC BEH C18, 150x1mm, 1.7µm columns (Waters, UK). The UPLC method 

employed mobile phase A (pH 2.9): 79.7%H2O, 20%MeOH, 0.3%CH3COOH and mobile phase B 

(pH 3.30): 99.7%MeOH, 0.3%CH3COOH. The gradient programme was as follows: 0min-100%A, 

17min-41.3%A, 17.2min-0%A, 20.2min-0%A, 20.3min-100%A, 34.0min-100%A. An injection 

volume of 20 µL was used, the column was maintained at 30 °C and the temperature of the sample 

manager was 4 °C. The flow rate was 0.04 mL min
-1

, which gave an initial pressure of ~6500 psi. 

A triple quadrupole mass spectrometer (TQD, Waters, UK) was used as described above. The 

mobile phase flow rate of 0.04 mL min
-1

 was directly introduced in the ion source without splitting. 

A detailed discussion of the methods and their validation is presented elsewhere (Tab. 5) (Baker and 

Kasprzyk-Hordern 2011). 

Although due to experimental set-up two methods were used for quantification and enantiomeric 

profiling full method validation and robust analytical protocols ensured high performance of the 

overall analytical process. 

3. Results and discussion 

3.1. Amphetamine and methamphetamine 

Estimation of amphetamine and methamphetamine abuse in communities with the usage of the 

sewage epidemiology approach has been undertaken by several research groups (Chiaia, Banta-

Green et al. 2008; Zuccato, Chiabrando et al. 2008; Kasprzyk-Hordern, Dinsdale et al. 2009; 

Metcalfe, Tindale et al. 2010; Postigo, de Alda et al. 2010; Terzic, Senta et al. 2010; van Nuijs, 

Mougel et al. 2011) but possibility of overestimation of abuse trends (due to e.g. medical usage of 

amphetamine and methamphetamine and their metabolic formation) was also emphasized 

(Kasprzyk-Hordern, Dinsdale et al. 2009; Postigo, de Alda et al. 2010; van Nuijs, Castiglioni et al. 
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2010; Chiaia-Hernandez, Banta-Green et al. 2011). There are currently no solutions to overcome the 

above mentioned problems in order to provide more accurate estimates. However, enantiomeric 

profiling of amphetamine and methamphetamine might be of great importance here.  

Amphetamine is a chiral compound with one asymmetric carbon. It can exist in the form of two 

enantiomers, which significantly differ in potency:  S(+)-amphetamine has twice as high stimulant 

activity than R(-)-amphetamine (Kasprzyk-Hordern 2010). Amphetamine is the most commonly 

synthesized via the Leuckart method, which uses 1-phenyl-2-propanone and other reagents such as 

formic acid, ammonium formate or formamide to yield a racemic amphetamine. Another, less 

common, but stereoselective method involves reduction of appropriate diastereoisomers of 

norephedrine or norpseudoephedrine (King 2009). Both S(+)- and S(+)/R(-)-amphetamine are 

prescription medications. Amphetamine can also be excreted as a result of metabolism of 

methamphetamine and certain prescription drugs. For example, R(-)-amphetamine is excreted 

(alongside R(-)-methamphetamine) as a result of administration of selegiline (marketed as R(-)-

enantiomer). S(+)-Amphetamine is formed as a result of an administration of clobenzorex. On the 

other hand metabolism of famprofazone leads to the formation of S(+)/R(-)-amphetamine and 

S(+)/R(-)-methamphetamine. Similarly, administration of fenproporex leads to the formation of 

S(+)/R(-)-amphetamine. Benzphetamine metabolism results in the formation of S(+)-amphetamine 

(and S(+)-methamphetamine) (Cody 2002). Furthermore, metabolism of amphetamine is known to 

be stereoselective: S(+)-amphetamine metabolises faster than R(-)-enantiomer.  

Methamphetamine, similarly to amphetamine, contains one chiral carbon and exists in the form of 

two enantiomers, which differ in their psychostimulant effects with S(+)-enantiomer being much 

more active than R(-)-enantiomer. Methamphetamine, as opposed to amphetamine, is usually 

abused in pure enantiomeric form of the S(+)-enantiomer. However, also R(-)-enantiomer and the 

mixture of two enantiomers of methamphetamine can be abused (Nagai, Matsushima et al. 2000). 

Methamphetamine is the most commonly produced in clandestine laboratories by reduction of 

1R,2S(-)-ephedrine or 1S,2S(+)-pseudoephedrine (naturally produced by ephedra). R(-)-enantiomer 

of methamphetamine can be produced by reduction of synthetic 1S,2R(+)-ephedrine or 1R,2R(-)-

pseudoephedrine. Both the Leuckart route and reductive amination of 1-phenyl-2-propanone (P2P) 

are less commonly used and yield a racemic mixture of methamphetamine (King 2009). 

Enantiomeric ratios of methamphetamine and amphetamine are therefore closely related to 

configuration of precursors used for their synthesis, and this can provide useful information 

concerning the origins and synthetic methods used for illicit manufacture (Lee, Yang et al. 2007). 

Methamphetamine shares the same pharmacokinetic profile as amphetamine. This means that S(+)-

methamphetamine metabolises faster in humans than R(-)-enantiomer, which leads to enrichment of 

excreted methamphetamine with R(-)-enantiomer (Levine 2003). Methamphetamine, similarly to 

amphetamine, can be used for valid medical treatment and can be excreted as a result of metabolism 

of certain drugs such as selegiline (R(-)-methamphetamine), benzphetamine (S(+)-

methamphetamine) famprofazone (S(+)/R(-)-methamphetamine).  

Due to different uses of amphetamine and methamphetamine (both medical and illicit) verification 

of their abuse through biological specimen analysis (usually urine and blood) is difficult. 

Enantiomeric analysis of abused amphetamines, their metabolites and precursors in biological 

specimen can help, as it can confirm or contradict the stated (meth)amphetamine sources of these 

compounds. The following information is usually taken into account: 

1. Medical use of amphetamine and methamphetamine 

As mentioned above, S(+)-methamphetamine, S(+)-amphetamine or S(+)/R(-)-amphetamine could 

be used for valid medical treatment. All of the above formulations are controlled substances, but are 

available for prescription use (this is not true for S(+)/R(-)-methamphetamine) (Cody and 

Schwarzhoff 1993; Cody 2002). Amphetamine is used in narcolepsy, attention deficit disorder in 
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children and short term weight loss. Methamphetamine is prescribed to treat attention deficit 

disorder in children and exogeneous obesity. In the USA methamphetamine is prescribed as S(+)-

enantiomer. However, R(-)-methamphetamine is present in the Vicks Inhaler (an over-the-counter 

medication). On the other hand amphetamine can be prescribed as S(+)-enantiomer or racemate. In 

this case, interpretation of the enantiomeric composition depends on the composition of prescribed 

drug. If S(+)-amphetamine is prescribed, only S(+)-enantiomer should be found in urine. Similarly, 

if both enantiomers were used, there should be evidence of the appropriate metabolic profile of 

these enantiomers (Cody and Schwarzhoff 1993; Cody 2002). 

2. Amphetamine and methamphetamine as metabolites 

A number of drugs can lead to metabolic formation of amphetamine and methamphetamine. Among 

them are: amphetaminil, benzphetamine, clobenzorex, deprenyl, dimethylamphetamine, 

ethylamphetamine, famprofazone, fencamine, fenethylline, fenproporex, furfenorex, mefenorex, 

mesocarb and prenylamine. They are comprehensively reviewed by Cody (Cody 2002). Many 

precursors of illicit drugs belong to the group of anorectics but are often used for treatment of 

obesity (Liu and Liu 2002). In order to distinguish between (meth)amphetamine abuse and its 

formation due to use of prescription medication leading to the formation of (meth)amphetamine, the 

following factors are usually taken into account: 

 Enantiomeric configuration of illicit drug 

Enantiomeric configuration influences the metabolism of amphetamine, methamphetamine 

and the precursor drugs. When racemic amphetamine and methamphetamine are 

administered, the S(+)-enantiomer is metabolised more rapidly than the R(-)-enantiomer. As 

a result, (meth)amphetamine in urine will be enriched with R(-)-enantiomer and the ratio of 

R(-)-to S(+)-(meth)amphetamine will be increasing over the course of the metabolism 

process (Cody 2002; Wang, Wang et al. 2005). 

 Amphetamine to methamphetamine ratio 

The proportion of amphetamine and methamphetamine is also an important factor and can 

provide valuable information in the interpretation of laboratory results (Cody 2002). 

 Detection of parent compounds and/or their unique metabolites 

For those precursor compounds that are excreted unchanged, detection of parent 

compounds or their unique metabolites, when related to the amount of methamphetamine 

and/or amphetamine present, can be  a powerful tool to help properly interpret analytical 

data and evaluate the origin of studied illicit drugs (Cody 2002). 

 Influence of pH 

Urinal pH can significantly affect the excretion patterns of amphetamines, which can 

complicate interpretation of metabolism data. Because amphetamines are basic drugs 

reabsorption in the kidneys is insignificant under acidic urine conditions, which results in 

the excretion of a higher percentage of parent drugs. Under alkaline conditions more 

significant reabsorption occurs, with a net effect of increased drug half-life and increased 

metabolic degradation. Although urine pH does not cause differential excretion of S(+) and 

R(-)-enantiomes, its effects on reabsorption rate will have a secondary effect on the 

observed enantiomeric composition (Liu and Liu 2002). 

.  

As discussed above, this wide usage of different forms of amphetamine and methamphetamine and 

their stereoselective metabolism make verification of medical/illicit amphetamine use complex in 

biological specimens such as urine or blood. This process becomes even more difficult if 

verification is to take place in wastewater which provides only collective information on the whole 

population served by targeted WWTP rather than one individual. 
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In this study amphetamine quantified in wastewater was enriched with R(-)-enantiomer (Fig. 1). 

Enantiomeric fractions varied from 0.52 to 0.84, with median value of 0.64. This situation is 

expected in urine and subsequently in raw wastewater (obviously if no changes of EFs in sewers 

take place) if racemic amphetamine is administered. This is because, as was discussed earlier, S(+)-

amphetamine metabolizes faster in humans than R(-)-amphetamine. Indeed, amphetamine is usually 

abused as racemate. Furthermore, according to NHS statistics in England, only S(+)-amphetamine is 

prescribed (dexamfetamine and lisdexamphetamine: 25 and 0.01 kg/2010) (NHS, 2010). These are 

relatively low levels when compared to illegal use (estimated usage of amphetamine and 

methamphetamine: 4.0 tonnes in 2003/2004; calculated with reference to seizures, purity and 

survey-based estimates of usage) (Singleton et al., 2006). Amphetamine can also be excreted in 

different enantiomeric forms as a result of metabolism of methamphetamine and certain prescription 

drugs (e.g. selegiline, prescription in England: 13 kg/2010 (NHS, 2010), which leads to the 

metabolic formation of R(-)-amphetamine and R(-)-methamphetamine). Again, these quantities are 

insignificant when compared to actual estimated abuse of amphetamine and methamphetamine. 

The results of this study indicated that methamphetamine was only quantified in the August 

sampling campaign in three WWTPs at levels not exceeding 0.08 g/day (concentration, <1.8 ng/L). 

It was found to be enriched with S(+)-enantiomer in the case of WWTP 2 and 4 and was racemic in 

WWTP 1 (Fig. 2). Currently, there is no medical use of methamphetamine in England. Therefore, if 

present in wastewater it is thought to result from its abuse or metabolism of other drugs. As 

mentioned above, prescription drug selegiline (England: 13 kg/2010 (NHS, 2010)) can lead to the 

metabolic formation of R(-)-methamphetamine. If the latter is the case, only R(-)-enantiomer of 

methamphetamine should be found in wastewater. Although the limited data obtained in this study 

does not allow for accurate interpretation of methamphetamine usage trends in the studied WWTPs, 

it can be concluded that methamphetamine found in wastewater might result from abuse of mainly 

S(+)-methamphetamine with contribution from illicit R(-)/S(+)-methamphetamine and/or R(-)-

methamphetamine, a metabolite of selegiline. The latter is less likely due to low usage of this 

pharmaceutical in the UK, although it cannot be excluded without having data on prevalence of 

selegiline use in the local area.  

The above study, although limited in scope, indicates that enantiomeric analysis of amphetamine 

and methamphetamine might significantly contribute to more accurate estimation of their abuse 

patterns via sewage epidemiology. After taking into consideration medical use of 

(meth)amphetamine (this data can be obtained in most countries) and their possible metabolic 

formation from certain prescription drugs (this data can be also obtained in most countries), 

enantiomeric profiling might give invaluable information on enantiomeric purity of 

(meth)amphetamine being abused and might also indicate patterns of their abuse. The analysis of 

wastewater could also be critical in evaluating illicit distribution of different batches of drugs (and 

their spread) in local communities.  

3.2. Hallucinogenic amines: MDMA and MDA 

Hallucinogenic amines: MDMA and MDA have one asymmetric carbon centre and therefore they 

can exist in the form of two enantiomers, which differ both quantitatively and qualitatively in  

pharmacological activity: S(+)-enantiomers are more amphetamine-like stimulants and  R(–)-

enantiomers are more hallucinogenic (Fantegrossi 2008). MDMA’s enantiomers have different 

serotonin (5-HT) neurotoxicity: S(+)-MDMA is a more potent neurotoxin than R(-)-MDMA. On the 

other hand, both isomers of MDA cause long-term serotonin neurotoxicity (Moore, Mozayani et al. 

1996). It is however believed that much of the neurotoxicity of MDMA results from MDA, its more 

potent neurotoxic metabolite (Levine 2003). 

There are four principal precursors, which can be used in manufacture of MDMA and related drugs: 

safrole, isosafrole, piperonal, 3,4-methylenedioxyphenyl-2-propanone (PMK). Many illicit 
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syntheses start with PMK and use either the Leuckart route or various reductive aminations. All of 

these methods produce racemic MDMA (King 2009). S(+)-MDMA is however known to undergo 

preferential metabolism over R(-)-MDMA, which leads to enrichment of MDMA with R(-)-

enantiomer and preferential formation of S(+)-MDA. Moore et al. (Moore, Mozayani et al. 1996) 

observed that both primary routes of excretion in human (bile and urine) had greater concentrations 

of R(-)-MDMA than the S(+) isomer (EF of 0.57, autopsy findings). These fluids also contained 

twice the concentration of S(+)-MDA than the R(-)-isomer (EF=0.37, autopsy findings) as reported 

by Moore at al. (Moore, Mozayani et al. 1996). This is very important information, which allows 

for the verification of whether drug residue present in wastewater results from its actual 

consumption (EF>0.5) or direct disposal (EF=0.5). As MDMA does not currently have medical 

applications its presence in biological specimen is believed to result from its abuse. 

The results of this study indicate that MDMA is found in raw wastewater in the form enriched with 

R(-)-MDMA. Mean EF value for raw wastewater collected during 5 sampling months and at 7 

different WWTPs was found to be 0.68 (Fig. 3). This correlates well with published data on 

metabolism of MDMA in humans (Moore, Mozayani et al. 1996) and suggests that MDMA found 

in studied WWTPs results from MDMA abuse rather than direct disposal. It has to be however 

remembered that the uncertainty of such assumptions is probably high due to the influence of 

several parameters (such as different metabolism patterns in humans: age, gender, route of 

administration and co-administration with other drugs) on the overall EF of MDMA in wastewater, 

which should be taken into account and investigated further. 

MDA, similarly to MDMA, has no medical usage and is synthesized and abused in racemic form. 

Similarly to MDMA, S(+)-MDA is preferentially metabolized to R(-)-MDA leading to enrichment 

of excreted MDA with R(-)-enantiomer (Meyer, Peters et al. 2009). However, if the presence of 

MDA in urine is expected due to MDMA abuse and not direct MDA use, an enrichment of MDA 

with S(+)-enantiomer should be expected in urine. It is worth remembering that in such cases, 

almost twice as much S(+)-MDA will be excreted in urine as compared to R(-)-MDA (Levine 

2003). The above information may be of vital importance in sewage epidemiology as it potentially 

allows for the evaluation of the origin of MDA through making a distinction between actual abuse 

of MDA (EF>0.5) or metabolic formation of MDA as a result of MDMA use (EF<0.5).  

In this study, MDA was only quantified in the August sampling campaign and it was found in raw 

wastewater to be enriched with S(+)-enantiomer, which suggests that its presence might be 

associated with MDMA abuse and not intentional MDA use (Fig. 4). The ratio of MDMA to MDA 

denoted: 9.8, 14.1, 6.0 in the case of WWTP 1, 2 and 3 respectively. The presence of MDA 

(alongside MDMA) in wastewater was reported by several groups (Castiglioni, Zuccato et al. 2006; 

Chiaia, Banta-Green et al. 2008; Huerta-Fontela, Galceran et al. 2008; Bijlsma, Sancho et al. 2009). 

Ratios between MDMA and MDA concentrations were in the range: 0.4 – 15. Furthermore, 

metabolism of MDMA was reported to lead to urinary excretion of 65% of the dose as parent drug 

and 7% as MDA (Baselt 2004), which gave an MDMA to MDA ratio of 9.3. This suggests, 

although with high uncertainty, that in the discussed study MDA found in wastewater is likely to 

result rather from MDMA abuse than MDA use. It should be however noted here that MDA can be 

also formed as a result of metabolism of another abused drug, MDEA. Although not discussed in 

this manuscript, MDEA was also a subject of investigation in this study and was not quantified in 

any of the analysed samples. 

Enantiomeric analysis of hallucinogenic amines such as MDMA and MDA, which are distributed as 

racemates and have no medical use, can therefore provide simple and straightforward verification of 

their abuse: it can help in the differentiation between drugs present in wastewater which are derived 

from either their abuse or metabolic formation from different drugs, as well as allowing for 

distinction between their consumption and direct disposal.   
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3.3. Sympathomimetic amines: ephedrine and pseudoephedrine 

Ephedrine has two chiral carbons and can therefore exist in the form of two pairs of enantiomers: 

1R,2S(-)-ephedrine, 1S,2R(+)-ephedrine, 1S,2S(+)-pseudoephedrine and 1R,2R(-)-pseudoephedrine, 

which significantly differ in CNS system potency. The ephedrine enantiomers have a 

diastereomeric relationship with pseudoephedrine enantiomers. Only two diastereomers: 1R,2S(-)-

ephedrine and 1S,2S(+)-pseudoephedrine are found in natural sources such as ephedra. It has to be 

however emphasized that the complementary enantiomers can be synthesised synthetically. 1R,2S(-

)-Ephedrine is used as a bronchodilator to treat bronchospasm associated with asthma, bronchitis 

and emphysema. It is also abused for its stimulant properties; however, its potency as a stimulator 

of the CNS is not as high as that of amphetamine. 1S,2S(+)-Pseudoephedrine has the weakest CNS 

effects of this class of drugs and is primarily used as a decongestant and is present in over-the 

counter cold and allergy medications in combination with antihistamines and analgesics (Levine 

2003). 

Ephedrine is a prescription drug and it is also present in over-the-counter medications. Due to its 

high medical usage and also abuse it is commonly identified in wastewater (Postigo, de Alda et al. 

2008; Postigo, de Alda et al. 2010; Baker and Kasprzyk-Hordern 2011). In this study, cumulative 

concentrations of ephedrine/pseudoephedrine found in raw wastewater varied from 8 ng/L to 1.6 

µg/L (daily loads: 0.2 – 73 g/day) (Fig. 5). Unfortunately achiral analytical methodology, which is 

currently commonly used for quantification of ephedrine/pseudoephedrine (Chiaia, Banta-Green et 

al. 2008; Postigo, de Alda et al. 2008; Baker and Kasprzyk-Hordern 2011) does not allow for its 

enantiomeric profiling and as a result does not provide information on actual stereoisomer used. 

This lack of enantiomeric profiling therefore leads to an inability to determine the actual potency of 

ephedrine/pseudoephedrine used. 

The results of this study indicate that out of the two enantiomers of ephedrine (1S,2R(+)- and 

1R,2S(-)-) and two enantiomers of pseudoephedrine (1S,2S(+)-and 1R,2R(-)-), only natural 1R,2S(-

)-ephedrine and 1S,2S(+)-pseudoephedrine were frequently detected in raw wastewater. 1S,2R(+)-

Ephedrine was detected at low levels in only three WWTPs during the August sampling campaign 

(EFs = 0.95, 0.96, 0.81 in WWTP 3, 4 and 6). The achiral analysis of ephedrine/pseudoephedrine 

indicated that ephedrine/pseudoephedrine was present in raw wastewater at daily loads exceeding 

70 g/day, with the highest loads observed during winter months (Fig. 5). Furthermore,  the analysis 

of diastereomeric fractions of 1R,2S(-)-ephedrine and 1S,2S(+)-pseudoephedrine in raw wastewater 

revealed that over the winter months ephedrine was enriched with 1S,2S(+)-pseudoephedrine (Fig. 

5). This is possibly due to higher usage of over-the-counter medications (containing 1S,2S(+)-

pseudoephedrine) for the treatment of mild symptoms of cold and contributing to higher 

concentrations of observed cumulative ephedrine/pseudoephedrine loads. During the spring and 

summer months the reverse situation was observed as ephedrine/pseudoephedrine was found to be 

enriched with a much more potent stimulant, 1R,2S(-)-ephedrine. Cumulative loads of 1R,2S(-)-

ephedrine, 1S,2S(+)-pseudoephedrine  and total ephedrine (1R,2S(-)-ephedrine + 1S,2S(+)-

pseudoephedrine ) for all WWTPs during different sampling campaigns are presented in Fig. 6. It 

can be observed that 1S,2S(+)-pseudoephedrine  reaches its peak load in February (170 g/day), 

which gradually decreases over March and April to 41 g/day in August.  On the other hand 1R,2S(-

)-ephedrine was observed at the lowest levels in winter months (January March: 16-11 g/day) with a 

significant increase in loads in August (39 g/day). These findings were, as mentioned above, 

accompanied by a decrease of cumulative concentration of ephedrines throughout the sampling 

campaign between months: Feb – August. This is a very important finding indicating that non-

enantioselective measurement of ephedrine concentrations cannot be a reliable indicator of actual 

potency of ephedrines used. 

4. Conclusions 
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This manuscript is, to the authors’ knowledge, the first to report the importance of enantiomeric 

profiling of abused drugs in sewage epidemiology. Enantiomeric profiling can supplement 

epidemiology data with valuable information on abuse trends and potency of chiral drugs and can 

also help with distinguishing between legal and illicit use of drugs as well as providing an 

indication of actual consumption and direct disposal. 

The verification of amphetamine and methamphetamine abuse trends through the analysis of 

sewage is difficult. This is because both amphetamine and methamphetamine have medical use 

(different in different countries) and can be excreted in urine due to metabolism of certain 

prescription drugs. While it is possible to distinguish between legal and illicit use of amphetamine 

and methamphetamine in legal cases when biological matrix from a suspect is analyzed, this might 

prove to be impossible in sewage due to the large number of individuals being considered. Despite 

this obstacle, enantiomeric profiling of amphetamine and methamphetamine in populations (e.g. at 

regional and national scale) for which prescription and sales data exist, can provide valuable 

information of trends of (meth)amphetamine abuse, e.g. whether enantiomerically pure form of 

abused drug or racemic form are preferably used. 

Enantiomeric profiling proves to be invaluable in the verification of MDMA and MDA abuse, and 

particularly in making a distinction between MDA abuse and its formation due to metabolism of 

MDMA. It can also help with making a distinction between actual consumption and direct disposal 

of MDMA. Similarly, enantiomeric profiling allows for a distinction to be made between widely 

used decongestant 1S,2S(+)-pseudoephedrine  and more potent and more likely abused 1R,2S(-)-

ephedrine.  

Further study is needed in order to address several uncertainties related to enantiomeric profiling as 

a tool in sewage epidemiology. Among the most pressing phenomena to study and verify are: 

 Stereoselective disposition of drugs in the body, which can be affected by several 

parameters. Among them are: disease, ethnic differences, sex, age and lifestyle as well as 

co-administration of other drugs, pH of urine (which might lead to reabsorption e.g. of 

amphetamine, and as result lower concentrations of the drug in urine and higher metabolism 

of the drug), etc (Kasprzyk-Hordern 2010). Only limited data, obtained for a low number of 

individuals, exists regarding stereoselective metabolism of chiral drugs of abuse. More 

information is needed to provide statistically sound estimation of stereoselective disposition 

of drugs and the importance of possible factors influencing streoselective behaviour of drugs 

in the body. 

 The possibility of chiral inversion of the enantiomers of amphetamine-like compounds, 

although unlikely, needs to be further investigated. This has not been reported before, and 

thus far has been considered not to take place. This phenomenon is for example common in 

the case of NSAIDs (Kasprzyk-Hordern 2010). 

 The fate of chiral drugs in sewers needs to be studied, as processes taking place in sewers, 

due to the presence of microorganisms, might be stereoselective in nature. Stereoselectivity 

of amphetamine-like drugs (amphetamine, MDMA and ephedrines) was for example 

observed during wastewater treatment (Kasprzyk-Hordern et al 2010; Kasprzyk-Hordern 

and Baker, 2012). 

In summary, enantiomeric profiling should be undertaken together with other analytical 

methods in order to provide a reliable assessment of drugs use in communities. For example the 

analysis of metabolites (especially these characteristic for a drug of concern), of which not all 

are chiral, is vital in the verification of legitimate/illicit use, route of administration and 

consumption/direct disposal of drugs. It would also be interesting to explore other techniques 

widely used in forensic science, which could provide additional information of drugs abuse 
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trends in communities. Isotope ratio mass spectrometry, amongst others, is an interesting 

example. 
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Table 1. Selected chiral drugs. 

Name CAS 

R/S(±)-Amphetamine 

C9H13N 

R(-): 300-62-9 

S(+): 51-64-9 

R/S(±): 300-62-9                                                                                         

R/S(±)-Methamphetamine 

C10H15N 

R(-): 33817-09-3 

S(+): 537-46-2 

R/S(±)-MDA 

C10H13NO2 

4764-17-4 

R/S(±)-MDMA 

C11H15NO2 

42542-10-9 

1R,2S(-)-Ephedrine HCl 

C10H15NO·HCl 

50-98-6 

1S,2R(+)-Ephedrine HCl 

C10H15NO·HCl 

24221-86-1 

1S,2S(+)-Pseudoephedrine HCl 

C10H15NO·HCl 

345-78-8 

1R,2R(-)-Pseudoephedrine 

C10H15NO 

90-82-4 

R/S(±)-Amphetamine-d11 

C9H2D11N 

NA 

R/S(±)-Methamphetamine-d14 

C10HD14N 

NA 

R/S(±)-MDA-d5 

C10H8D5NO2 

136765-42-9 

R/S(±)-MDMA-d5 

C11H10D5NO2 

136765-43-0 
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Table 2. General information on the studied WWTPs. 

WWTP Parameter 

Population served 

(thousands) 

Flows  

[L s
-1

] 

Wastewater  

(% industrial/% domestic) 

WWTP 1 15 89-212 10-15/85-90 

WWTP 2 10 32-75 10-15/85-90 

WWTP 3 11 40-115 10-15/85-90 

WWTP 4 190 366-1300 30/70 

WWTP 5 240 603-1231 30/70 

WWTP 6 244 476-1378 30/70 

WWTP 7 190 395-563 20/80 

 

 

Table 3. Optimised MRM conditions for the analysis of chiral drugs by UPLC/MS/MS. 

Analyte CV/CE MRM1 

(quantification) 

CV/CE MRM2 

(confirmation) 

R/S(±)-Amphetamine 18/8 136.16>119.10 18/16 136.16>91.10 

1R,2S(-)/1S,2R(+)-Ephedrine/           

1S,2S(+)/1R,2R(-)-Pseudoephedrine 

23/12 166.09>148.10 23/21 166.09>133.00 

R/S(±)-MDA 21/11 180.03>163.10 21/22 180.03>105.10 

R/S(±)-MDMA 24/13 194.09>163.10 24/24 194.09>105.10 

R/S(±)-Methamphetamine 24/10 150.20>119.05 24/19 150.20>91.10 

R/S(±)-Amphetamine-d11 18/8 147.16>130.10 - - 

R/S(±)-MDA-d5 21/11 185.09>168.10 - - 

R/S(±)-MDMA-d5 26/13 199.1>165.10 - - 

R/S(±)-Methamphetamine-d14 24/19 164.16>98.10 - - 

CV-cone voltage [V]; CE-collision energy [eV] 
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Table 4. Validation parameters for SPE-Chiral LC-MS/MS method. 

Analyte Method parameters
 

EFo* 

 

Rs
 

R
2
** RSD% 

10 [ng/L] 50 [ng/L] 

R/S(±)-Amphetamine 

(IS: R/S(±)-AMPH-d11) 

0.52±0.02 2.1 0.999 6.5 3.7 

1R,2S(-)-Ephedrine 

(IS: R/S(±)-MDMA-d5) 

0.52±0.03*** 1.2 0.998 3.6 5.2 

1S,2S(+)-Pseudoephedrine 

(IS: R/S(±)-MDMA-d5) 

2.3 0.999 8.7 6.8 

R/S(±)-MDA 

(IS: R/S(±)-MDA-d5) 

0.48±0.01 3.0 0.998 7.8 3.3 

R/S(±)-MDMA 

(IS: R/S(±)-MDMA-d5) 

0.48±0.01 1.9 0.999 7.5 2.6 

R/S(±)-Methamphetamine 

(IS: R/S(±)-METH-d14) 

0.47±0.01 0.95 0.999 4.9 3.7 

*- EFo – enantiomeric fraction in standard solution spiked with racemic chiral drug  

(concentrations: 1-500 ng/L) 

**- Studied linearity range: 1-500ng/L 

***- the value refers to DF (diastereomeric fraction) in standard solution spiked with 1R,2S(-)-

ephedrine and 1S,2S(+)-pseudoephedrine 

IS – Internal standard 

 

Table 5. Validation parameters for SPE-UPLC-MS/MS method. 

Analyte Method parameters
 

Linearity 

range 

[ng/L] 

R
2 

RSD% MQL [ng/L] 

0.5 [ng/L] 50 [ng/L] 

Amphetamine 

(IS: Amphetamine-d11) 

0.5-1000 0.999 <MQL* 10 5.1 

Ephedrine/ Pseudoephedrine 

(IS: Amphetamine-d11) 

0.5-1000 0.999 <MQL 10.7 5.6 

MDA 

(IS: MDA-d5) 

0.1-1000 0.999 11 2.1 4.2 

MDMA 

(IS: MDMA-d5) 

0.1-1000 0.999 9.4 3.9 0.7 

Methamphetamine 

(IS: Methamphetamine-d14) 

0.05-1000 0.999 8.3 4.1 0.6 

* - MQL – method quantification limit for WWTP influent 

IS – Internal standard 
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Fig. 1. Amphetamine in sewage: concentrations, loads and enantiomeric fractions. 
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Fig. 2. Methamphetamine in sewage: concentrations, loads and enantiomeric fractions. 
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Fig. 3. MDMA in sewage: concentrations, loads and enantiomeric fractions. 
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Fig. 4. MDA in sewage: concentrations, loads and enantiomeric fractions. 
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Fig. 5. Ephedrine in sewage: concentrations, loads and diastereomeric fractions. 
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Fig. 6. 1R,2S(-)-Ephedrine and 1S,2S(+)-pseudoephedrine loads in sewage (sum of loads from all 

WWTPs). 

 


