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Abstract

Lattices composed of Clifford point-circle configurations provide a geometric
representation of the discrete Schwarzian KP (dSKP) equation. Based on an
An perspective on such lattices, it is shown that their integrability, and hence
that of the dSKP equation, is a consequence of a conformal generalization of
the classical Desargues Theorem of projective geometry.
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1. Introduction

The celebrated Hirota-Miwa equation [8] constitutes a discrete ‘master
equation’ in soliton theory [1] and is known to come in various guises. The
integrability of any of these avatars, regarded as a 6-point equation defined
on a three-dimensional lattice of Z3 combinatorics, is reflected by the fact
that its domain may be extended to a Z4 lattice in such a way that the
equation holds on any of the four systems of parallel coordinate hyperplanes.

The central perspective of this paper is that the domain of the equation
may be more symmetrically considered as an A3 (root) lattice

{(m0, m1, m2, m3) ∈ Z
4 :

∑

i

mi = const}, (1.1)
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that is, a three-dimensional lattice with four natural (linearly related) co-
ordinates. The integrability may then be encapsulated by a cellular consis-
tency condition for extending the domain to an A4 lattice in such a way that
6-point equations hold on the five natural systems of parallel A3-type coor-
dinate hyperplanes. This An perspective has recently been embraced in the
classification of integrable 6-point equations of Hirota-Miwa type by Adler,
Bobenko & Suris [2]. As noted by Doliwa [6], the An lattice also emerges
as a natural domain when relating quadrilateral (or Darboux) lattices to
‘Desargues lattices’ by means of discrete Laplace transformations.

The ‘Schwarzian’ avatar of the Hirota-Miwa equation is the (scalar) dis-
crete Schwarzian Kadomtsev-Petviashvili (dSKP) equation [7, Eq 30]

(q1 − q12)(q2 − q23)(q3 − q13)

(q12 − q2)(q23 − q3)(q13 − q1)
= −1. (1.2)

This equation’s natural algebraic interpretation relates 6 points in the pro-
jective line P 1 in such a way that any five points uniquely determine the
sixth. By interpreting the indices as coordinate shifts in the Z3 lattice, e.g.

q13(m1, m2, m3) = q(m1 + 1, m2, m3 + 1),

the equation (1.2), applied to a lattice function q : Z3 → P 1, imposes the
condition on 6 of the 8 points of each unit cube.

In the complex case, we may identify CP 1 with the conformal 2-sphere
RQ2 and it has been shown [10, 9] that then the equation is also related
to Clifford’s first point-circle theorem [3] in conformal 2-space Q2 (see Sec-
tion 2 for details). Thus the dSKP equation has a geometric interpretation
in terms of ‘Clifford lattices’ in Q2. A similar connection may be found in the
quaternionic case, leading to generalized Clifford configurations in conformal
4-space, as discussed in [12].

In this paper, we present a novel conformal generalization of the clas-
sical Desargues Theorem and demonstrate that it may be regarded as the
geometric source of the integrability of Clifford lattices, and thus as a geo-
metric reflection of the integrability of the dSKP equation. In the special case
that a Clifford lattice is a Menelaus lattice [10], it is the classical Desargues
Theorem that is the geometric source of the integrability (see Remark 6.3).
Indeed, it is this that leads Doliwa [6] to use the term ‘Desargues lattices’
for the natural projective version of Menelaus lattices.
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2. Clifford and Miquel configurations

In this paper, for purposes of familiarity and simplicity, conformal 2-space
Q2 will be considered just over the field R and so will be the conformal 2-
sphere, which may be projected stereographically onto the Euclidean plane.
In this case, there is a unique circle C(x, y, z) through any three distinct
points x, y, z ∈ Q2. To be more general, C(x, y, z) would have to be a
hyperplane section of a smooth quadric Q2 ⊂ P 3 through three sufficiently
general points. In any case, we will not explicitly consider degenerate cases of
results that follow (e.g. Clifford’s Theorem) and thus will implicitly assume
that all sets of points are sufficiently general.

A Clifford lattice is a configuration in Q2 given by a map q : Z3 → Q2 with
the property that the six shifts q1, q2, q3, q12, q13, q23 satisfy the two equivalent
conditions of Clifford’s Theorem:

Theorem 2.1 (Clifford). Let q1, q2, q3, q12, q13, q23 be six points in Q2. Then
the four circles C(q1, q2, q3), C(q1, q12, q13), C(q2, q12, q23), C(q3, q13, q23) pass
through a common point c∗∗ if and only if the four circles C(q1, q2, q12),
C(q1, q3, q13), C(q2, q3, q23), C(q12, q13, q23) pass through a common point c∗.

When these two equivalent conditions are satisfied, we will say that the
six points ‘satisfy Clifford’s condition’ or ‘form a Clifford configuration’ (Fig-
ure 1).

Remark 2.2. One important consequence of Clifford’s Theorem is that
a Clifford configuration has ‘antipodal symmetry’, that is, if the points
q1, q2, q3, q12, q13, q23 are relabelled q23, q13, q12, q3, q2, q1, by taking complemen-
tary indices, then they still satisfy Clifford’s condition. Indeed, the first and
second conditions in Clifford’s Theorem are exactly interchanged by this
change of labelling. Note that this antipodal symmetry is also transparent
in (1.2), because the symmetry interchanges the numerator and denominator
of the left-hand-side, but 1/(−1) = −1.

Clifford’s Theorem is an immediate corollary of the following formulation
of Miquel’s Theorem (see Figure 2):

Theorem 2.3 (Miquel). Let q1, q2, q3, q12, q13, q23 be six points in Q2. Then
the three circles C(q1, q12, q13), C(q2, q12, q23), C(q3, q13, q23) pass through a
common point if and only if the three circles C(q1, q2, q12), C(q1, q3, q13),
C(q2, q3, q23) pass through a common point.
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Figure 1: A Clifford configuration

Figure 2: A Miquel configuration
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To see how Miquel’s Theorem implies Clifford’s, note that, while the
natural symmetry group of Miquel’s Theorem is S3, permuting the three
symbols 1,2,3, the natural symmetry group of Clifford’s Theorem is S4, with
the six points more symmetrically labelled q01, q02, q03, q12, q13, q23. Dropping
any one of the symbols 0,1,2,3 yields an instance of Miquel’s Theorem using
the remaining three symbols. On the other hand, the common point of any
three of the four circles in Clifford’s Theorem is the second intersection point
of any two of them and hence all four such common points are seen to coincide
as soon as they are proved to exist.

3. The An perspective

Because the symmetry group of a Clifford configuration is S4, it is natural
to consider the domain of a Clifford lattice to be an A3 (root) lattice. More
generally, the An lattice is

{(m0, . . . , mn) ∈ Z
n+1 :

∑

i

mi = c}

for some constant c, whose value is essentially irrelevant. The key feature is
that an An lattice has n + 1 natural coordinates, any one of which can be
dropped to give a (non-canonical) isomorphism with Z

n. The coordinates are
naturally permuted by Sn+1 and thus the full symmetry group of the lattice,
including coordinate shifts, is Zn ⋊ Sn+1, which is an affine Coxeter group of
type Ãn. Indeed, the An lattice may also be considered as a ‘honeycomb’, in
the sense of Coxeter [4], that is, an affine (as opposed to spherical) polytope
associated with this Coxeter group.

Just as Zn can be divided into n-cube cells by restricting each of the n
coordinates to two successive integer values, so an An lattice has a cell de-
composition by making the same restriction on each of the n+1 coordinates.
However, now the cells are of several different types, which we denote by gn+1

k

for k = 1, . . . , n. These are obtained by slicing an n-cube cell given by n of
the coordinates by the integral hyperplanes of the remaining coordinate.

For example, a 3-cube is sliced into two tetrahedra g4
1 and g4

3, and one
octahedron g4

2 (see Figure 3). The vertices of such an octahedral g4
2 cell are

the natural labels of a Clifford configuration, namely 1, 2, 3, 12, 13, 23 in Z3

notation, or 01, 02, 03, 12, 13, 23 in A3 notation.
In general, the vertices of the typical gn+1

k cell can be labelled by all
choices of k symbols from 0, . . . , n, indicating that they may be obtained
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Figure 3: The cells of Z3 and A3 lattices

from a single point p ∈ Zn+1 by applying all possible sets of k distinct
coordinate shifts. Note that all such shifts will lie in the same An lattice,
although the original point p will not. We call this the An notation for these
points. Dropping any one of the symbols 0, . . . , n (usually 0) we get a Zn

notation for the same points.
Of special interest below are the two four-dimensional cells g5

2 and g5
3.

These each have two sorts of faces: the first having five tetrahedral g4
1s and

five octahedral g4
2s, the second having five octahedral g4

2s and five tetrahedral
g4
3s. Figure 4 shows the octahedral faces of a pair of adjacent g5

2 and g5
3 cells,

in Z4 notation; notice how they meet along one common octahedral face.

4. A Conformal Desargues Theorem

We now present our main theorem that we will show, in the next section,
to be the geometric key to the integrability of Clifford lattices.

Theorem 4.1. Let q01, . . . , q34 be a configuration of ten points in Q2 labelled
by the vertices of a g5

2 cell (in A4 notation). If three of the octahedral faces,
e.g. those in the first row of Figure 4, form Clifford configurations, then so
do the other two, e.g. those in the second row of Figure 4.

Proof. The five octahedra under consideration are those with vertices labelled
by the six pairs formed from four of the labels 0, 1, 2, 3, 4, i.e. by omitting
each of the labels in turn. Thus we may suppose that we have Clifford points
c∗4, c∗3, c∗2 for the three octahedra that omit the labels 4, 3, 2 and we must
prove the existence of Clifford points c∗1, c∗0 for the other two octahedra.

The final configuration (see Figure 5) should consist of the ten circles
C(qij, qjk, qik) each also passing through c∗l and c∗m, where i, j, k, l, m are the
labels 0, 1, 2, 3, 4 in some order. So we may begin by assuming this holds
whenever l, m are two of 2, 3, 4.
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Figure 4: The nine octahedral faces of the g5

2
and g5

3
cells (in Z4 notation)
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Figure 5: A conformal Desargues configuration

From the three assumed Clifford configurations, we know that

C(q12, q13, q23) = C(q12, q13, c
∗

4)

C(q12, q14, q24) = C(q12, q14, c
∗

3)

C(q13, q14, q34) = C(q13, q14, c
∗

2)

and we can then use Miquel’s Theorem to deduce that these three circles have
a common point, which we call c∗0, because the three circles C(q12, c

∗

3, c
∗

4),
C(q13, c

∗

2, c
∗

4), C(q14, c
∗

2, c
∗

3) have a common point, namely q01.
Reversing the role of 0 and 1, we obtain a point c∗1, through which the

three circles C(q02, q03, q23), C(q02, q04, q24), C(q03, q04, q34) pass. It remains
to show that c∗0 and c∗1 both lie on the circle C(q24, q34, q23).

Using Miquel’s Theorem again, observe that the circles C(q14, q24, c
∗

0),
C(q04, q24, c

∗

1), C(q04, q14, c
∗

2) have a common point, namely c∗3, and hence the
circles C(q04, c

∗

1, c
∗

2), C(q14, c
∗

0, c
∗

2), C(q24, c
∗

0, c
∗

1) also have a common point.
However, the intersection of the first two of these circles is q34 and thus q34

also lies on C(q24, c
∗

0, c
∗

1).
Interchanging the roles of 3 and 4 in this argument, we also deduce that

q34 lies on C(q23, c
∗

0, c
∗

1). In other words, q34, q24, q23 and c∗0, c
∗

1 all lie on the
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same circle, as required.

Remark 4.2. An identical theorem holds for a configuration of ten points
q012, . . . , q234 in Q2 labelled by the vertices of a g5

3 cell, namely that, if three
of the octahedral faces are Clifford configurations, then so are the other two.
This is not completely automatic, but follows from the antipodal symmetry
of the Clifford condition (see Remark 2.2), as we need to take complementary
indices to identify g5

3 and g5
2 cells.

Remark 4.3. An alternative formulation of Theorem 4.1 is that, if nine
points, say q01, . . . , q24, have been chosen so that the two octahedra they
form are Clifford configurations, then it is possible to choose the tenth point
q34 in such a way that the three remaining octahedra, that contain it, are all
Clifford configurations.

5. Four-dimensional consistency of Clifford lattices

We will now show that the g5
2 consistency expressed by Theorem 4.1

and Remark 4.3, together with the g5
3 consistency of Remark 4.2, provide

the key to proving the integrability of Clifford lattices. Thus, Theorem 4.1
may be regarded as a geometric incarnation of the integrability of the dSKP
equation (1.2). More precisely, we will use these two consistency conditions
in the construction of a four-dimensional Clifford lattice q : Z4 → Q2 (where
the domain is really considered as an A4 lattice), with the property that
restriction to any A3 sublattice in one of the five parallel families yields an
ordinary three-dimensional Clifford lattice. Indeed, we will demonstrate that
the two conditions guarantee that a solution propagates consistently from the
same sort of two-dimensional Cauchy data that generates a three-dimensional
Clifford lattice.

A Cauchy problem for any 6-point equation, such as dSKP, on (the oc-
tahedra of) an A3 lattice should lead to a unique solution on a given region
from arbitrarily specified Cauchy data on the boundary of this region. Not
all regions have this property, but, when it does hold, we will say that the
region has a ‘Cauchy boundary’.

One example of a region with Cauchy boundary is (in Z
3 notation)

R(2+, 3+) = {(m1, m2, m3) ∈ Z
3 : m2 ≥ 0, m3 ≥ 0}.

9



Indeed, we claim that a solution in this region is uniquely determined by
Cauchy data on the two half-hyperplanes

S(2+, 30) = {(m1, m2, m3) ∈ Z
3 : m2 ≥ 0, m3 = 0}

S(20, 3+) = {(m1, m2, m3) ∈ Z
3 : m2 = 0, m3 ≥ 0}.

One way to see this is to project out the m1-coordinate and interpret a lattice
function q : Z3 → Q2 as a function

q̂ : Z
2 →

(

Q2
)Z

on a two-dimensional lattice with coordinates (m2, m3), whose ‘values’ are the
Z many values of the original three-dimensional lattice function with those
two coordinates fixed. Thus, the 6-point equation, by which q23 is uniquely
determined by q1, q2, q3, q12, q13, becomes a 4-point equation by which q̂23 is
uniquely determined by q̂, q̂2, q̂3. It is then a more familiar observation that a
4-point equation determines a solution on the quadrant R̂(2+, 3+) ∈ Z2 from
Cauchy data on the two half-lines Ŝ(2+, 30) and Ŝ(20, 3+).

Remark 5.1. A word of warning is needed here, as the formulation of the
Cauchy problem in terms of q̂ gives a misleading impression of its symmetry.
Regions like R(2+, 3+) and R(2−, 3−), where two of the A3 coordinates have
the same sign, do have Cauchy boundary, but, because of the asymmetric
way in which the 6-point equation for q becomes a 4-point equation for q̂,
regions like R(2+, 3−) and R(2−, 3+), where two coordinates have opposite
signs, do not have Cauchy boundary. However, a region like R(2+, 3−) may be
subdivided into two regions, such as R(1+, 2+, 3−) and R(1−, 2+, 3−), which
do have Cauchy boundary. Thus we can, in several ways, divide Z3 into
six regions to obtain a Cauchy problem for the whole lattice. For example,
one could choose Cauchy data on the two planes S(20), S(30) and the two
quarter-planes S(10, 2+, 3−), S(10, 2−, 3+).

In this section, we will restrict attention to the simple partial Cauchy
problem we first described; the one that can be analysed by reinterpreting
q : Z3 → Q2 as q̂ on Z2. Thus what we will prove is that a four-dimensional
Clifford lattice q : Z

4 → Q2, or q̂ on Z
3, is uniquely determined on the re-

gion R(2+, 3+, 4+) starting from Cauchy data on S(2+, 30, 40), S(20, 3+, 40)
and S(20, 30, 4+). In terms of a 4-point equation on q̂, this entails checking
the familiar condition of ‘consistency around a cube’ as indicated in Fig-
ure 6: starting from q̂, q̂2, q̂3, q̂4 (black points) and using the equation to find

10



Figure 6: A projected Cauchy problem for four-dimensional Clifford lattices and consis-
tency around the cube

q̂23, q̂24, q̂34 (grey points), one must check that q̂234 (white point) is consis-
tently determined by any one of the remaining equations.

With this in mind, we pursue the argument in Z4 notation, using the
6-point Clifford condition and following Figure 4. Thus we use three Clifford
conditions to determine the grey points

q23 from q1, q2, q3, q12, q13,

q24 from q1, q2, q4, q12, q14,

q34 from q1, q3, q4, q13, q14,

(5.1)

noting that the values on the right are all part of the Cauchy data (i.e. black
points). We can then deduce from Theorem 4.1 (in Z

4 notation with the
label 0 omitted) that the Clifford condition is also satisfied on the other two
octahedra

q2, q3, q4, q23, q24, q34 and q12, q13, q14, q23, q24, q34. (5.2)

Now, a 1-shift of the above argument also gives us q123, q124, q134 (still grey
points) and we may use the second of the octahedra in (5.2) and the 1-shift
of the first to see that Clifford’s condition is satisfied on

q12, q13, q14, q23, q24, q34 and q12, q13, q14, q123, q124, q134. (5.3)

11



To finish, we need to know that we obtain the same answer by determining
the white point q234 from q14, q24, q34, q124, q134, or from q13, q23, q34, q123, q134,
or from q12, q23, q24, q123, q124. This is a second application of Theorem 4.1, to
the g5

3 cell of 10 points q012, . . . , q234 (in A4 notation), relying on Remarks 4.2
and 4.3. Note the key role of the common octahedral face of the g5

2 and g5
3

cells that we use in the proof (cf. Figure 4).
Notice that every octahedron in each of the five families of parallel A3

sub-lattices in an A4 lattice is a face of some (in fact, unique) g5
2 cell and also

of some g5
3 cell. Thus, since we have demonstrated that the Clifford condition

holds on all five octahedral faces of the g5
2 (and g5

3) cell in every unit cube
in R(2+, 3+, 4+) ⊂ Z4, we have indeed shown that all five families of parallel
A3 sub-lattices (within this region) form Clifford lattices.

6. Concluding Remarks

Remark 6.1. The Cauchy problem solved in Section 5 leads to a unique
Clifford lattice on the region R(2+, 3+, 4+) ⊂ Z4. As for Z3 (cf. Remark 5.1),
there are various ways of prescribing Cauchy data to obtain a Clifford lattice
on the whole of Z4. For instance, a Clifford lattice q : Z4 → Q2 is deter-
mined by Cauchy data on the three planes S(k0, l0) and six quarter-planes
S(10, k+, l−, m0), for each choice of distinct k, l, m ∈ {2, 3, 4}.

Notice that, by virtue of Remark 5.1, the part of the above Cauchy data
lying in the A3 sublattice R(40) is precisely what is needed to determine the
three-dimensional Clifford lattice

q : R(40) → Q2. (6.1)

Furthermore, the part lying in the A3 sublattice R(41), namely the Cauchy
data on the line L(20, 30, 41) and the two half-lines L(10, 2−, 30, 41) and L(10, 20, 3−, 41),
is precisely what is needed, in addition to the solution on R(40), to determine
the three-dimensional Clifford lattice

q : R(41) → Q2. (6.2)

Thus, in the terminology of soliton theory [1], the Clifford lattice (6.2) can
be interpreted as a Bäcklund transform of the Clifford lattice (6.1). In fact,
this Bäcklund transformation is an analogue of the standard Bäcklund trans-
formation of the Hirota-Miwa equation [8].

12



Remark 6.2. The existence of higher-dimensional Clifford lattices

q : An → Q2, n ≥ 5,

with the property that the restriction to any A3 sublattice yields an ordi-
nary three-dimensional Clifford lattice, may be proved by considering the
projected problem for the corresponding map

q̂ : Z
n−1 →

(

Q2
)Z

,

as in Section 5. Indeed, it is well-known that, for purely combinatorial rea-
sons, if q̂ is prescribed on the coordinate half-lines

Ŝ(2+, 30, . . . , n0), . . . , Ŝ(20, . . . , (n − 1)0, n+),

then consistency around the cube, as indicated in Figure 6, guarantees that

one obtains a unique map q̂ : R(2+, . . . , n+) →
(

Q2
)Z

, but to see that this
actually yields (a sector of) an n-dimensional Clifford lattice, we must check
that the Clifford condition holds on all

(

n+1

4

)

different types of g4
2 cells, i.e.

octahedra.
Now,

(

n−1

2

)

of these octahedra are lifts of the quadrilaterals in Zn−1 and so

are Clifford configurations constructed as in (5.1). A further 2
(

n−1

3

)

octahedra
are of the type of (5.2), and so are Clifford configurations by an immediate
application of the ‘three-implies-five property’ of Theorem 4.1. A typical one
of the remaining

(

n−1

4

)

octahedra is given (in Zn notation) by

q23, q24, q25, q34, q35, q45

and this octahedron is a face of a g5
2 cell which has three other faces

q2, q3, q4, q23, q24, q34, q2, q3, q5, q23, q25, q35 and q2, q4, q5, q24, q25, q45

of the type of (5.2). Hence, a further application of the three-implies-five
property guarantees that this remaining octahedron is also a Clifford config-
uration.

Remark 6.3. A degenerate case of a Clifford lattice q : Z3 → Q2 occurs when
the common point c∗ is the same for every Clifford configuration q1, q2, q3, q12, q13, q23

in the lattice. We may then take this point c∗ to be the point at infinity in
RQ2 and interpret the lattice in the Euclidean plane, i.e. q : Z3 → R2, with

13
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Figure 7: A Menelaus configuration

each of the triples (q1, q2, q12), (q1, q3, q13), (q2, q3, q23) and (q12, q13, q23) being
colinear and thus forming a Menelaus configuration as in Figure 7. Such a
degenerate Clifford lattice is known as a Menelaus lattice [10].

In this case, Theorem 4.1 degenerates to the statement that, if three of the
octahedral faces are Menelaus configurations, then so are the other two. This
is readily seen to be a formulation of the classical Desargues Theorem in the
plane. Indeed, Figure 5 degenerates to the classical Desargues configuration
with the five points c∗1, . . . , c

∗

5 becoming the same point at infinity and all the
circles becoming straight lines.

Although the argument used in proving Theorem 4.1 does not apply di-
rectly to this degenerate case, we can argue that sending c∗2, c

∗

3, c
∗

4 to infinity
necessarily takes c∗0, c

∗

1 to infinity as well and so the classical Desargues The-
orem is obtained as a limiting case of Theorem 4.1.

In this degenerate case, the consistency argument of Section 5 works in
largely the same way, except for a difference in the nature of the g5

3 version of
Theorem 4.1. In a Menelaus lattice, while each g5

2 configuration degenerates
to a classical Desargues configuration, each g5

3 configuration degenerates in a
different way to a complete 5-line, as in Figure 8. In this case, the g5

3 version of
Theorem 4.1 is effectively trivial, because of the way the 10 circles degenerate
to 5 lines. More precisely, the point q234 simply needs to be chosen to be the
intersection of the lines through q23, q24, q34 and q123, q124, q134 in order to
create the three Menelaus configurations corresponding to the bottom three
octahedra in Figure 4.

Thus we see that the classical Desargues Theorem is the essential geo-
metric source of integrability for Menelaus lattices, even though it does not
have the antipodal symmetry of its conformal generalization.
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Figure 8: A complete 5-line

Remark 6.4. One point that has been highlighted in this paper is that,
taking the An perspective on the integrability of 6-point equations like (1.2),
requires an appropriate consistency condition to be satisfied on both g5

2 and
g5
3 cells in the A4 lattice. In many cases (cf. Remark 4.2), these conditions

are equivalent because of an antipodal symmetry inherent in the equations,
although this is not automatically the case (cf. Remark 6.3).

For example, consider the discrete modified Kadomtsev-Petviashvili (dmKP)
equation [11]

q1 − q2

q12

+
q2 − q3

q23

+
q3 − q1

q13

= 0, (6.3)

for q : Z3 → C. The extension to Z4 involves the additional three equations

q1 − q2

q12

+
q2 − q4

q24

+
q4 − q1

q14

= 0, (6.4)

q1 − q3

q13

+
q3 − q4

q34

+
q4 − q1

q14

= 0, (6.5)

q2 − q3

q23

+
q3 − q4

q34

+
q4 − q2

q24

= 0. (6.6)

This system of four equations is known to be consistent in Z
4. One way to

see this is to observe that, not only is the fourth equation (6.6) an algebraic
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consequence of the previous three, but so is a fifth equation

(q14 − q12)(q24 − q23)(q34 − q13)

(q12 − q24)(q23 − q34)(q13 − q14)
= −1, (6.7)

as noted in [2]. Thus, in An terminology, this new system of five equations is
consistent around a g5

2 cell, as, in fact, any three imply the other two. One
thing this example demonstrates is that it is not strictly necessary for the
five equations on the five A3 sublattices of A4 to take the same form (cf. [2]).

Now, the consistency around a g5
3 cell requires the same three-implies-five

property for (6.7) together with the 4-shift of (6.3), the 3-shift of (6.4), the
2-shift of (6.5) and the 1-shift of (6.6), which is a priori a different condi-
tion. However, the dmKP system also has a (slightly more subtle) antipodal
symmetry, so that the g5

3 consistency is implied by the g5
2 consistency after

simultaneously reflecting in the domain and inverting in the codomain:

(q, q1, q2, q3, q4, q12, . . . ) 7→
(

q−1, q−1

1
, q−1

2
, q−1

3
, q−1

4
, q−1

12
, . . .

)

,

where q1 denotes a backward shift in the 1 direction, etc. Thus, if we also
shift in the 1234 direction for clarity, (6.3) becomes

q−1
234 − q−1

134

q−1
34

+
q−1
134 − q−1

124

q−1
14

+
q−1
124 − q−1

234

q−1
24

= 0

which rearranges to give the 4-shift of (6.3). The equations (6.4), (6.5), (6.6)
behave similarly, while (6.7) is unchanged by the transformation, thereby
yielding the required g5

3 consistency.
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