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20 Abstract 

21 Nematode nicotinic acetylcholine receptors are the targets for many effective anthelmintics, 

22 including those recently introduced into the market. We have identified a novel nicotinic receptor 

23 subunit sequence, acr-26, that is expressed in all the animal parasitic nematodes we examined 

24 from clades III, IV and V, but is not present in the genomes of Trichinella spiralis, 

25 Caenorhabditis elegans, Pristionchus pacificus and Meloidogyne spp. In Ascaris suum, ACR-26 

26 is expressed on muscle cells isolated from the head, but not from the mid-body region. Sequence 

27 comparisons with other vertebrate and nematode subunits suggested that ACR-26 may be 

28 capable of forming a functional homomeric receptor; when acr-26 cRNA was injected into 

29 Xenopus oocytes along with X. laevis ric-3 cRNA we occasionally observed the formation of 

30 acetylcholine- and nicotine-sensitive channels. The unreliable expression of ACR-26 in vitro 

31 may suggest that additional subunits or chaperones may be required for efficient formation of the 

32 functional receptors. ACR-26 may represent a novel target for the development of cholinergic 

33 anthelmintics specific for animal parasites.  

34 
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36 1. Introduction 

37 

38 Control of parasitic nematode infections continues to rely on the use of chemical anthelmintics. 

39 Many of these compounds act at ion channels, including the nicotinic acetylcholine receptors 

40 (nAChRs) found at the nematode neuromuscular junction, on pharyngeal muscle and within the 

41 central nervous system [1,2,3,4]. Indeed, the two most recently introduced veterinary 

42 anthelmintics, monepantel [5] and derquantel [6], as well as tribendimidine, proposed for use 

43 against human infections [7], all act at nicotinic receptors [8,9,10]. Nematodes possess many 

44 nAChR genes, and these vary considerably between species, with several parasites having fewer 

45 than the model organism, Caenorhabditis elegans [11]. From in vitro studies that have 

46 reconstituted levamisole-sensitive receptors [12,13,14] it is clear than the subunit composition 

47 and pharmacology of the neuromuscular nAChR are different between parasites and C. elegans, 

48 and this has led us to search for novel nAChR sequences in the parasitic nematode, Ascaris 

49 suum. Such novel receptors may have potential as drug targets. This large worm was selected for 

50 these studies because the physiology and pharmacology of many of its nAChR can be studied ex 

51 vivo [15,16], and because the distribution of the receptor subunits can be studied in dissected 

52 tissues and on disassociated muscle cells.  

53 

54 We report here the identification and expression of a nAChR subunit sequence, acr-26, that is 

55 present in A. suum and orthologues of which are widely distributed in animal parasitic 

56 nematodes, but are absent from the genomes of several free-living and plant parasitic species. 



57 2 Materials and Methods 

58 2.1 Parasite Material 

59 Adult A. suum were a kind gift of Prof A. Maule (Queen’s University, Belfast) and Dr Richard 

60 Martin (Iowa State University). Haemonchus contortus L3 larvae of the drug sensitive ISE 

61 isolate were kindly supplied by Dr Philip Skuce (Moredun Institute). 

62 

63 2.2 Molecular cloning 

64 An EST sequence (Accession number FE918510), derived from A. suum and showing significant 

65 identity to known nAChR subunit cDNAs, was identified in the database. 5´ and 3´ RACE 

66 reactions (primers; 5´ RACE, SL1 (GGTTTAATTACCCAAGTTTGAG) and ACR26-RV3 

67 (AACGTTTATCGTCAACACCTG); 3´ RACE, anchor (GACCACGCGTATCGATGTCGAC) 

68 and ACR26-FW2 (TAATTATGTTGTGTCGGGTG) were carried out as described previously 

69 [12,17] to amplify the rest of the cDNA sequence.  These partial products were cloned into 

70 pGEM-Teasy and sequenced. Specific primers (forward – ATGATGGCAACTCGTCGG; 

71 reverse – TTAATGCAGACCATATAAAGAC) were used to amplify a full-length sequence 

72 from A. suum cDNA (made from RNA extracted from the head region); this sequence was also 

73 cloned into pGEM-Teasy and sequenced. The sequence was deposited in the database under the 

74 Accession Number GU135625. An essentially identical procedure was used to amplify a full

75 length cDNA from Haemonchus contortus, which was deposited under Accession number 

76 EU006791. 

77 

78 In order to search for related sequences in cDNA from other species (Cooperia oncophora, 

79 Ostertagia ostertagi and Teladorsagia circumcincta) degenerate oligonucleotide primers were 



80 designed based on the aligned sequences from A. suum and H. contortus and used to amplify 


81 partial sequences from the target organisms. 


82 


83 2.3 Immunofluorescence 

84 A specific goat antiserum (Sigma-Genosys, USA) was raised against a synthetic multiple 

85 antigenic peptide, EIDGTATDEQKLLHLL, (Alta Biociences, UK) corresponding to the N

86 terminus of the mature ACR-26 polypeptide, essentially as described [12]. IgG was isolated from 

87 the serum by affinity chromatography over a CPG column to which the antigenic peptide had 

88 been immobilised, and the purified antibody used in immunofluorescence experiments in 

89 dissociated muscle cells isolated from the body wall and head regions. Adult A. suum were 

90 kindly provided by Prof, A. Maule (Queen’s University, Belfast, UK) and were shipped and 

91 stored in Ascaris Ringer Solution (4mM NaCl, 5.9mM CaCl2, 4.9mM MgCl2, 5mM Tris-HCl 

92 pH7.4, 125mM sodium acetate, 24.5mM KCl). They were used within 24hrs of their arrival. The 

93 worms were pinned out on a dissection tray and injected at 3cm intervals with 5mg/ml 

94 collagenase 1A in ARS. After 2 hrs at 37◦ the cuticle was cut longitudinally and pinned flat at the 

95 head end. Disassociated head and muscle cells were removed independently with a Pasteur 

96 pipette and fixed in 5% (v/v) formaldehyde in ARS for 9hrs at 4◦. The cells were washed three 

97 times in 0.1% (v/v) Triton X-100 in phosphate-buffered saline (PBS). The affinity-purified anti

98 ACR-26 was applied at a 1:200 dilution in PBS and the cells incubated with gentle agitation for 

99 40hrs at 4◦. Control cells were incubated with purified control goat IgG under the same 

100 conditions. The cells were washed three times in Triton X-100/PBS as before and then an FITC

101 conjugated rabbit anti-goat IgG (Sigma, Poole, UK, catalogue number F7367), diluted 1:200 in 

102 PBS, added for 4hrs at 4◦. The cells were washed three times in Triton X-100/PBS before being 



103 mounted in Mowiol 4-88 reagent (Polysciences, Inc, USA) and observed under a Zeiss LSM510 

104 confocal microscope.  

105 

106 2.4 Functional Expression 

107 The acr-26 cDNA was subcloned into the BglII and SpeI sites of the pT7TS vector, which was 

108 linearised and transcribed into cRNA using the mMessage mMachine T7 kit (Ambion). The 

109 cRNA was injected into defolliculated Xenopus oocytes along with cRNA encoding the X. laevis 

110 orthologue of RIC-3 (Bennett et al., unpublished), which were screened for acetylcholine-gated 

111 channels as described [12]. 

112 

113 



114 3 Results 

115 3.1 Cloning of acr-26 cDNA from parasitic nematodes 

116 We successfully amplified a full-length cDNA encoding the novel nAChR subunit from A. suum, 

117 extending the EST sequence (Accession number FE918510) that had already been deposited in 

118 the database. We compared the sequence of the A. suum subunit with the other nAChR subunits 

119 from both A. suum and C. elegans (Figure 1). The results showed that the new subunit was not 

120 orthologous to any of those from C. elegans and we therefore named the new sequence acr-26 to 

121 distinguish it from them. In order to determine whether acr-26 was confined to A. suum or was 

122 present in other parasitic nematodes, we searched the partial genome sequence of H. contortus 

123 for similar sequences and used the results of that search to amplify a full-length orthologous 

124 sequence from this clade V parasite. Alignments of the Asu-ACR-26 and Hco-ACR-26 

125 sequences (Figure 2) showed that they were very similar, and would almost overlap if both were 

126 plotted on the tree shown in Figure 1. Both subunits shared key amino-acid residues in loops that 

127 form the agonist binding sites with vertebrate α7 subunits, especially in the complementary loop 

128 D normally provided by β-subunits in heteromeric receptors, suggesting that ACR-26 may be 

129 able to form a homomeric nAChR [18].  Further BLAST searches (Table 1) revealed that acr-26 

130 like sequences are present in the filarial parasites Brugia malayi, Dirofilaria immitis, Loa loa and 

131 Wuchereria bancrofti, and Strongyloides ratti, but not in Trichinella spiralis, the plant parasitic 

132 Meloidogyne spp. or in the free living Pristionchus pacificus. When we searched other 

133 invertebrate phyla for ACR-26-like sequences, the best hits were with the nAChR subunits G and 

134 D from Lymnaea stagnalis [19], which shared 67% and 61% amino-acid identity with Asu-ACR

135 26, respectively. In order to investigate whether or not the gene is present in other 

136 trichostrongylid nematodes of economic importance, we amplified and sequenced partial acr-26 



137 cDNAs from C. oncophora, O. ostertagi and T. circumcincta. The partial clones were sequenced 

138 and proved to possess high levels of identity to Hco-ACR-26, showing that this subunit is also 

139 expressed in these parasites (Figure 3). They are deposited in the sequence database under 

140 Accession numbers JN966888, JN966889 and JN966890.   

141 

142 3.2 Distribution of ACR-26 in Ascaris suum 

143 In order to determine where in the parasite ACR-26 was expressed, we raised an antiserum 

144 against a synthetic peptide corresponding to the predicted N-terminal sequence of the mature 

145 polypeptide. Antibodies purified from this antiserum recognized an HA-tagged version of ACR

146 26 when this was expressed in mammalian cells, and when examined under confocal microscopy 

147 the anti-ACR-26 immunofluorescence completely overlapped with that produced by an anti-HA 

148 antibody (data not shown). We applied the purified anti-ACR-26 antibody to isolated muscle 

149 cells, derived both from the mid-body region and from the head. No specific staining of the body 

150 wall muscles was observed (Fig 4), but immunoreactivity was detected on the surface of the head 

151 muscle cells. This was consistent with the cloning of the acr-26 cDNA from RNA isolated from 

152 the head region of the worm. No fluorescence was observed when preparations were treated with 

153 a control goat IgG. 

154 

155 3.3 ACR-26 forms a functional nicotinic receptor 

156 The amino-acid sequence of ACR-26, specifically the conservation of residues in the loops 

157 forming the ligand-binding site with those present in vertebrate α7 subunits (Fig 1), suggested 

158 that it may be able to form a functional nAChR when expressed as a homomer. We therefore 

159 injected Xenopus oocytes with Asu-acr-26 or Hco-acr-26 cRNA and attempted to detect the 



160 formation of Ach- and nicotine-sensitive channels. Expression of Asu-ACR-26 nAChRs was 

161 sporadic and unreliable, but on occasion channels were detected in response to the application of 

162 Ach and nicotine (Fig 5). These channels were extremely sensitive to Ach, with concentrations 

163 >100μM producing maximal responses; the unreliable expression of this receptor makes an 

164 accurate estimate of the EC50 for Ach very difficult but it was between 10 and 100nM. For 

165 nicotine the EC50 was 25μM (95% confidence limits 15-42μM), with a Hill coefficient of 1.66 

166 ±1.29. Since ACR-26 is expressed on some muscle cells (Fig 4), it is possible that it co

167 assembles with other muscle nAChR subunits in vivo, but attempts to improve the reliability and 

168 reproducibility of in vitro ACR-26 expression by co-expression with Asu-unc-29 or Asu-unc-38 

169 cRNAs were unsuccessful. No functional channels were detected in oocytes injected with Hco-

170 acr-26 cRNA. 



171 4 Discussion 

172 Nematodes encode a rich variety of nAChR and these continue to be exploited as effective 

173 targets for the development of new anthelmintic drugs [5,6,7]. We report here that many animal 

174 parasitic species possess a new gene, acr-26, that is not present in C. elegans, several other free 

175 living species or the Meloidogyne genus of plant parasites. In A. suum, the ACR-26 subunit is 

176 expressed in head, but not body-wall, muscle cells, and is capable of forming a homomeric 

177 receptor – though expression of this receptor is unreliable, which might indicate that further 

178 subunits are required for full activity in vivo. Attempts to express ACR-26 homomers from a 

179 second parasitic species, H. contortus, were unsuccessful. It would be interesting to add ACR-26 

180 to the reconstituted H. contortus nAChR recently reported by Boulin et al. [13]. The 

181 pharmacology of the homomeric receptor, if it reflects that of native ACR-26 containing nAChR, 

182 would appear to be distinct from those previously reported for reconstituted levamisole receptors 

183 [12,13,14]. The ACR-26 channels were extremely sensitive to Ach, and the EC50 of between 10 

184 and 100nM was 1-2 orders of magnitude less than that of the A. suum UNC-29/UNC-38 receptor 

185 (~1μM) [12] – compare the responses to 10 and 100nm Ach with those to 10 and 30µM nicotine 

186 in Figure 5. If this reflects the pharmacology of native ACR-26 containing receptors on head 

187 muscle cells, it suggests that they may mediate responses to lower levels of cholinergic signaling 

188 than the previously characterized levamisole-sensitive receptors [12-14]. This novel 

189 pharmacology might enable it to be developed as a target for compounds that are effective 

190 against nematode parasites, but are less dangerous to free-living species in the environment. 

191 

192 The expression of ACR-26 on Ascaris head but not body-wall, muscles, is distinct from that of 

193 other nicotinic subunits, such as UNC-29 and UNC-38, that are found on both muscle types [12] 



194 and suggests that it may have a specific function there. It is tempting to relate the function of 

195 ACR-26 to the more complex movements in the nematode head - body-wall muscle permits only 

196 dorsal-ventral bends, whereas the head can also move laterally – but it is difficult to explain why 

197 the subunit would only be present in parasitic and not free-living species. We have as yet no 

198 information on the distribution of ACR-26 in nematodes other than Ascaris. The evolutionary 

199 history of this gene is interesting; it is conserved in animal parasitic species of  multiple clades 

200 [19], though not clade I, implying that it pre-dates their appearance, but is absent from free-living 

201 species of clade V and plant parasitic species of clade IV. Analysis of nematode phylogenetics 

202 has led to the conclusion that animal parasitism evolved multiple times [20,21,22,23], which is 

203 on the face of it hard to reconcile with a gene that is specifically associated with parasitic 

204 species, even if, as suggested by van Mengen et al [23], convergent evolution seems to be a 

205 feature of the Nematoda. It is probably more likely that acr-26 has been lost in the free-living 

206 and plant parasitic species; this, together with its specific expression in head muscles, raises 

207 interesting questions about its likely function. Further developments in functional genetics 

208 methods for parasitic nematodes [24,25,26] may allow us to understand that function better. The 

209 high level of amino-acid identity between ACR-26 and the molluscan D and G subunits [19] is 

210 interesting; these subunits form a small out-group on the phylogenetic tree of mollusc nAChR 

211 and are expressed only at low levels in the CNS. No functional expression of either could be 

212 detected in Xenopus oocytes [27]. ACR-26 may thus be a member of a small group of 

213 invertebrate nAChR subunits whose function has yet to be determined. 

214 
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311 Figure Legends 
312 Figure 1. Tree of C. elegans and A. suum nAChR subunits. A maximum likelihood neighbour 
313 joining bootstrapped tree of translated nAChR sequences drawn with Geneious Pro 5.4. 
314 Sequences of C. elegans nAChR subunits are shown in black. A. suum nAChR subunit sequences 
315 identified in the transcriptome [29] are shown in red, and are named after their C. elegans 
316 orthologue, with the exception of ACR-26  (red box), which has no orthologue. All orthologue 
317 pairings gave bootstrap values of 100. 
318 
319 Figure 2. Alignment of nematode ACR-26 sequences with vertebrate α7. An alignment of the 
320 ACR-26 polypeptides from A. suum and H. contortus with the murine α7 nAChR subunit was 
321 made with Clustal (http://www.ebi.ac.uk/Tools/msa/clustalw2/). Amino-acid residues conserved 
322 between the two ACR-26 subunits, and α7, are shown in bold. The yellow shading indicates the 
323 residues predicted to form the loops of the ligand-biding site, and the grey shading shows the 
324 predicted membrane-spanning regions. The underlined residues are those that were used to raise 
325 an antibody against the A. suum subunit. 
326 
327 Figure 3. Partial acr-26 sequences from nematodes of medical and agricultural importance. 
328 Full-length amino-acid sequences of ACR-26 from A. suum, B. malayi and H. contortus were 
329 aligned with the translated partial sequences from O. ostertagi, C. oncophora and T. 
330 circumcincta obtained from PCR reactions using degenerate primers designed to conserved 
331 regions. 
332 
333 Figure 4. Immunostaining of A. suum muscle cells with anti-ACR-26 antibody. Muscle cells 
334 were isolated from either A. suum body wall muscle or from the 2 cm most anterior region (in 
335 front of the nerve ring), fixed and stained. A) A representative head muscle cell in a negative 
336 control condition, treated with control goat IgG and anti-goat IgG FITC. In the experimental 
337 condition cells were treated with affinity purified anti-ACR-26 and anti-goat IgG FITC. B) A 
338 representative body wall muscle cell treated with the anti-ACR-26 antibody. C) A representative 
339 head muscle cell demonstrating a strong positive signal. D). Close-up of the muscle arm after 
340 anti-ACR-26 staining on head muscle. Confocal image of head muscle stained with affinity
341 purified anti-ACR-26 antibody. Part of the arm is out of the plane of the image. 
342 
343 Figure 5. Asu-ACR-26 is capable of forming a functional nAChR in Xenopus oocytes. A) 
344 Example dose-dependent responses to applied ACh. B) Dose response curve for nicotine at the 
345 ACR-26 receptor. C) Example dose-dependent responses to applied nicotine. 

http://www.ebi.ac.uk/Tools/msa/clustalw2/


Table 1. Distribution of acr-26 sequences in nematode species. 

Clade[19] Trophic ecology Species Acr‐26? Length of known Source 
coding sequence and 
reference numbers 

I Vertebrate 
parasite 

Trichinella spiralis No ‐ BLAST completed genome project [268] 

III Vertebrate 
parasite 

Ascaris suum Yes Full‐length (1533 bp), 
GenBank: GU135625 

EST [279], this manuscript. 

III Vertebrate Brugia malayi Yes Full‐length (1542 bp), BLAST completed genome project[2830] 
parasite NCBI: 

XM_001901191 
III Vertebrate Loa loa Yes Full‐length (1428 bp), BLAST completed genome project 

parasite NCBI: XM_003140235 (http://www.broadinstitute.org/annotation/genome/filarial_worms/Info.html) 
(LOAG_04698) 

III Vertebrate Wuchereria bancrofti Yes Partial (630 bp), Broad BLAST incomplete genome project 
parasite Institute: WUBG_13499 (http://www.broadinstitute.org/annotation/genome/filarial_worms/Info.html) 

III Vertebrate 
parasite 

Dirofilaria immitis Yes Partial (577 bp), EST 
cluster: DIC00454 

EST and completed genome project [29, 30,31,32] 

IV Phytoparasite Meloidogyne 
incognita 

No ‐ BLAST completed genome project [313] 

IV Phytoparasite Meloidogyne hapla No ‐ BLAST completed genome project [324] 

IV Vertebrate Strongyloides ratti Yes Sanger Institute, BLAST genome project 
parasite pathogen_RATTI_Contig (http://www.sanger.ac.uk/resources/downloads/helminths/strongyloides‐

74886 ratti.html) 
V Free‐living 

bacterivore 
Caenorhabditis 
elegans 

No ‐ BLAST completed genome project [335] 

V Free‐living 
omnivore 

Pristionchus pacificus No ‐ BLAST completed genome project [346] 

V Vertebrate 
parasite 

Cooperia oncophora Yes Partial (639 bp) 
GenBank: JN966889 

Cloning – this manuscript 

V Vertebrate Haemonchus Yes Full‐length (1573 bp), BLAST incomplete genome project 
parasite contortus GenBank: EU006791 (http://www.sanger.ac.uk/resources/downloads/helminths/haemonchus‐

contortus.html), Cloning – this manuscript 
V Vertebrate 

parasite 
Ostertagia ostertagi Yes Partial (597 bp) 

GenBank: JN966890 
Cloning – this manuscript 

V Vertebrate Teladorsagia Yes Partial (708 bp) Cloning – this manuscript 
parasite circumcincta GenBank: JN966888 

http://www.sanger.ac.uk/resources/downloads/helminths/haemonchus-contortus.html�
http://www.sanger.ac.uk/resources/downloads/helminths/haemonchus-contortus.html�
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