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Abstract

The distributional assumption for a generalized linear model is often checked by plot-

ting the ordered deviance residuals against the quantiles of a standard normal distribution.

Such plots can be difficult to interpret, because even when the model is correct, the plot

often deviates substantially from a straight line. To rectify this problem Garcı́a Ben and

Yohai (2004, J. Comput. Graph. Stat. 13: 36-47) proposed plotting the deviance residuals

against their theoretical quantiles, under the assumption that the model is correct. Such

plots are closer to a straight line, when the model is correct, making them much more use-

ful for model checking. However the quantile computation proposed in Garcı́a Ben and

Yohai is, in general, relatively complicated to implement and computationally expensive,

so that general purpose software for these plots is only available for the Poisson and binary

cases in the R package robust. As an alternative the theoretical quantiles can efficiently

and simply be estimated by repeatedly simulating new response data from the fitted model

and computing the corresponding residuals. This method also provides reference bands for

judging the significance of departures of QQ-plots from ideal straight line form. A second

alternative is to estimate the quantiles using quantiles of the response variable distribution
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according to the estimated model. This latter alternative generally has lower computational

cost than the first, but does not yield QQ-plot reference bands. In simulations the quantiles

produced by the new methods give results indistinguishable from the original Garcı́a Ben

and Yohai quantile computations, but the scaling of computational cost with sample size is

much improved so that a 500 fold reduction in computation time was observed at sample

size 50000. Application of the methods to generalized linear models fitted to prostate can-

cer incidence data suggest that they are particularly useful in large dataset cases that might

otherwise be incorrectly viewed as zero-inflated. The new approaches are simple enough

to implement for any exponential family distribution and for several alternative types of

residual, and this has been done for all the families available for use with generalized linear

models in the basic distribution of R.

Keywords: Model checking, residuals, GLM.

1 Introduction

Consider a Generalized Linear Model (GLM) for n response variable observations yi, each with

expectation µi,

g(µi) = Xiβ, yi ∼ EF(µi, φ),

where Xi is the ith row of a model matrix, dependent on known covariates; β is a vector of

coefficients to be estimated; φ is a scale parameter; and EF(µi, φ) is some exponential family

distribution dependent on µi and a known or unknown scale parameter φ. β is estimated by

maximum likelihood or maximum penalized likelihood estimation (for example if the model

is a generalized additive model, or if some elements of β are to be treated as random effects),

while φ can be estimated independently, typically using estimates based on either the model

deviance or the Pearson statistic.

After estimation, all the information available for model checking is contained in the resid-

uals (although there is little of it in residuals for a binary response; e.g. Cox and Snell (1989,

page 73). The raw residuals are ri = yi − µ̂i, where µ̂i is the model estimate of µi. Because

the distribution of these depends in a complicated way on the fitted model they are difficult to

use for model checking unless the response is Gaussian. Therefore it is usual to standardize the
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residuals, so that they will have constant variance and near constant distribution, if the model is

correct. Two common standardizations are those used to produce Pearson and deviance residu-

als.

Pearson residuals utilize the fact that for any exponential family distribution, there exists a

known function, V such that var(yi) = V (µi)φ. In consequence the Pearson residuals,

pi = (yi − µ̂i)/
√
V (µ̂i),

will have constant variance if the model is correct.

Now consider deviance residuals. The model deviance, D, is twice the difference between

the saturated log likelihood for the model and the maximized model log likelihood, all divided

by the scale parameter (the saturated log likelihood is the maximized log likelihood for a model

with one parameter per datum). For exponential family distributions it is always possible to

write D =
∑

iDi where Di is a function of yi and µ̂i only. D is constructed to behave rather

like the residual sum of squares of a linear model, and by extension it is natural to view the

quantities

di = sign(yi − µ̂i)
√
Di

as residuals. When the model is correct, the deviance residuals, di, have constant variance, and

often have a distribution that is close to normal. The latter fact prompts the plotting of sorted

deviance residuals against the quantiles of a standard normal, for model checking purposes.

However, there are many applications of GLMs for which such plots show substantial devia-

tion from a straight line, even when the model is correct (e.g. Garcı́a Ben and Yohai, 2004).

Modelling a response consisting of low counts is the most obvious example.

Garcı́a Ben and Yohai (2004) propose avoiding the problems with normal QQ plots of

the deviance residuals, by computing the empirical cumulative distribution function, F̂D of

the deviance residuals, conditional on the fitted model. They then generate n quantiles d∗i =

F̂−1D ((i− 0.5)/n) against which the sorted deviance residuals di should be plotted. This should

always yield a plot that is ‘close’ to a straight line, if the model is correct.

The Garcı́a Ben and Yohai (2004) are never worse than normal QQ plots of the deviance

residuals, and offer a substantial improvement in situations in which normal QQ plots are curved

even when the model is correct. However the Garcı́a Ben and Yohai method could usefully be
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improved in two respects. Firstly, the method by which they compute the quantiles is moderately

complicated to implement, and is relatively computationally expensive for a checking method.

Specifically, in general, each evaluation of F̂D requires n evaluations of the quantile function

and cumulative distribution function for the exponential family used in the model. i.e. each

evaluation has O(n) computational cost. In the absence of analytic shortcuts, accurate compu-

tation of the d∗i will require tabulating F̂D at O(n) points. Hence in general the computational

cost of the d∗i is O(n2). Only the Poisson and binary cases seem to have been implemented in

the R package robust (Wang, et al, 2010), and it is a relatively daunting task to implement all

the other distributions routinely used with GLMs.

The second issue with the Garcı́a Ben and Yohai (2004) QQ plots is that for count data there

can be substantial random deviations from the ideal straight line, corresponding to discrepancies

between the observed and expected number of observations of each count. This is easiest to see

for binary data, where any deviation between the number of 1s observed and expected will cause

some positive residuals to be assigned to negative quantiles, or vice-versa. Since these random

discrepancies can sometimes be quite large, it would be useful for the plots to be accompanied

by reference bands, indicating deviations that are larger than expected.

The remainder of this note shows how to approximate the d∗i simply in O(kn log(n)) com-

puter time and how to compute reference bands, where k is a constant of order 10-100. The

methods will be applicable to raw, Pearson or deviance residuals.

2 Obtaining quantiles

This section describes two alternative methods for generating quantiles for QQ plots. The first

method requires only the ability to simulate new data from the fitted GLM, while the second

also requires that the quantile function of the EF distribution is convenient enough to use. In

this section the residuals are referred to as di, but the methods are general enough to employ

with the Pearson or raw residuals also. Both methods are implemented in function qq.gam of

R package mgcv.
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2.1 Simulation based quantiles and reference bands

The first method is based on direct simulation. The idea is to directly simulate from F̂D, without

forming it explicitly. µ̂ and φ̂ are the estimates of µ and φ from the original model fit.

For j in 1 to Nr repeat the following 2 steps.

1. For i = 1, . . . , n simulate new response data ỹi ∼ EF(µ̂i, φ̂).

2. Calculate the residual vector, d̃j corresponding to ỹ, from ỹ, µ̂ and φ̂.

For i = 1, . . . , n set d∗i to the (i − 0.5)/n quantile of d̃T = (d̃T
1 , d̃

T
2 , . . .). The sorted di are

then plotted against the d∗i , to yield the desired QQ-plot. Let d̂j denote the sorted version of

d̃j . Reference bands for the QQ-plot can be obtained by plotting the d̂j vectors against d∗ for

j = 1, . . . , Nr (variant 1). Alternatively upper and lower quantiles only can be plotted, with

the quantiles extracted from the sorted d̂j vectors in the obvious way (variant 2). The cost of

the quantiles here will be O(Nrn), where Nr does not depend on n, so the cost is linear in the

sample size. For both types of reference band there are Nr sets of sorting to do, where the

cost averages O(n log(n)). In addition variant 2 requires 2n quantile computations, which in

practice can be the dominant cost. Note that since it is only necessary to be able to simulate

from the model for this method, it is very easy to implement for any exponential family.

2.2 Alternative computation of quantiles

If reference bands are not required then a more efficient alternative approach to estimation of

the reference quantiles can be taken. To generate n reference quantiles via the Garcı́a Ben and

Yohai method, n quantiles of a uniform distribution ui, can be generated in any order, and then

used to obtain d′i = F̂−1D (ui), where F̂D is the estimated cumulative distribution function for

the residuals (marginalized over i). The resulting d′i are sorted to obtain the reference quantiles.

An appealing efficient alternative is to set d′i = F̂−1Di
(ui) where F̂Di

is estimated CDF of the ith

deviance residual. This alternative is computationally efficient because it simply sets d′i to the

residual corresponding to the ui quantile of yi, under the fitted model.

If the distribution of Di did not depend on i then these quantiles would be exactly those of

Garcı́a Ben and Yohai, irrespective of the ordering of the ui. However, in reality FDi
usually
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depends on i, to some extent, so it is advisable to average the quantile estimates over several

random permutations of the ui, resulting in the following method.

Let qEF(p, µ, φ) denote the quantile function of the exponential family used in the model (so

that Pr{yi < qEF(p, µi, φ)} = p).

1. Set ui = (i− 0.5)/n, for i = 1 . . . n.

2. Repeat steps 3-5 for j = 1 . . . Ns:

3. Randomly re-shuffle the ui.

4. For i = 1, . . . , n set ỹi = qEF(ui, µ̂i, φ̂).

5. Compute residuals d̃ij from ỹi, µ̂i and φ̂, sorting the set {d̃ij : i = 1 . . . n} into order.

6. The reference quantiles are now d∗i =
∑Ns

j=1 d̃ij/Ns, or are obtained as observed quantiles

of the the complete set of d̃ij .

Computational cost here is dominated either by the O(Nsn log(n)) of sorting, or the O(Nsn)

response quantile evaluations. The direct simulation method of the previous section can be

viewed as a more variable version of this method, in which the ui are replaced by U(0, 1)

random deviates. Notice also that if FDi
is the same for all i then the quantiles estimated by this

method have zero variance (and Ns = 1 could have been used).

3 Simulation comparison with Garcı́a Ben and Yohai plots

The approach was briefly compared to the Garcı́a Ben and Yohai (2004) method as implemented

in function qqplot.glmRob of R package robust (Wang et al. 2010). Data were simulated

independently from yi ∼ binom(µi, ni) where i = 1 . . . N and for each i, ni was randomly

chosen to be 1, 2 or 3 with equal probability.

logit(µi) = f1(x1i) + f2(x2i) + f3(x3i)

where the xji were i.i.d. U(0, 1). The fj are shown in figure 1a-c. The generalized additive

model yi ∼ Poi(µi), where

log(µi) = f1(x1i) + f2(x2i) + f3(x3i) + f4(x4i),
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was fit to each replicate, using the R package mgcv (Wood, 2006), and the deviance residuals

extracted. This setup was chosen because the fitted model mis-specification is not detectable

from plots of residuals versus fitted values. Reference quantiles were computed by each of the

3 alternative methods (using Nr = 100, for direct simulation and Ns = 10 for the alternative).

Section 2 reference quantiles were compared to the Garcı́a Ben and Yohai quantiles using the

p-value of a two sample Kolmogorov-Smirnov test as the metric.
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Figure 1: a-c: bold curves are the true f1 to f3 used in the section 3 simulations. The thin

curves with dashed confidence limits show typical reconstructions for sample size 1000 us-

ing the wrong model as in section 3. d: Typical section 3 replicate QQ-plot with reference

bands, produced by the method of section 2.1, showing that the plot detects the model mis-

specification. e: QQ-plots produced by the methods of Garcı́a Ben and Yohai (2004), section

2.1 and section 2.2, plotted with different line styles: they are practically indistinguishable. f:

Plots of log10 computation time against sample size N = 100 × 2k. In ascending order at the

right hand end of the plot: dash-dot is the section 2.2 method; dotted is the section 2.1 method,

variant 1; long dashed is the time taken to fit the model itself; short dashed is the section 2.1

method, variant 2; continuous is the Garcı́a Ben and Yohai (2004) method from the robust

package.

For sample sizes N = 100, 400 and 1000 this experiment was repeated for 100 repli-

cates. The methods produced such similar quantiles that the Kolmogorov-Smirnov p-value

was 1 (to one part in 107) for all 600 comparisons. Figure 1d shows a QQ plot with 90% ref-

erence bands for a typical replicate (N = 1000), illustrating that the plots can detect the model

mis-specification. Figure 1e compares the QQ plots produced by the 3 methods for the same
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replicate. They are practically indistinguishable. This is typical, although for some replicates

the plots are just distinguishable in the extreme tails. In contrast the computational times are

very different between the methods. 11 further replicates were run with N = 100 × 2k for

k = 0 . . . 10, and the execution time for each method was recorded (the Kolmogorov-Smirnov

p-value was again used to measure similarity of the quantiles estimated by the alternative meth-

ods and again the p-value was 1 for all replicates). The timing results are plotted in Figure

1f. For large sample sizes, the original Garcı́a Ben and Yohai quantiles cost substantially more

computer time than model fitting. Note that the cost of the section 2.1 variant 2 method was

dominated by the cost of evaluating empirical quantiles, so timings for the more efficient variant

1 are also included (with Nr = 50).

These simulations suggest that the section 2.2 method is much more efficient than the origi-

nal Garcı́a Ben and Yohai method, at no detectable statistical performance cost. At N = 50000

the Garcı́a Ben and Yohai method required over 1000 seconds of computer time, compared to 2

seconds for the section 2.2 method. The section 2.1 methods are also much more efficient than

Garcı́a Ben and Yohai for large data sets, and are at worst of comparable cost to model fitting:

they offer the substantial advantage of also computing reference bands for the QQ-plots.

4 Example

The proposed QQ-plots were applied to deviance residuals of a generalised linear model fitted

to prostate cancer incidence. The data were collected by the Cancer Registry of Haut-Rhin,

France. This Registry covers the population of a region in the north-east of France. Prostate

cancer is the most common of all cancers in France. Its incidence has increased by 8.5% be-

tween 2000 and 2005 and mortality decreased by 2.5%, in particular due to the introduction of

screening. Screening is used to detect subclinical cancers but also generates over-diagnosis (ar-

tificially increases the incidence) and eventually over-treatment. The dataset contains all cases

of prostate cancer (C61 in the ICD-10 classification) diagnosed between 1st January 1988 and

31st December 2005. Counts of prostate cancer are available by age, year of diagnosis and

geographical unit. Age is categorized into 18, 5-year intervals, up to 85 years or more.

Let O be the number of observed cases and E the number of expected cases, and identify
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each of these by Oatr and Eatr with cases indexed by the covariates age category a (1 up to

A = 18), year of diagnosis t (1 up to T = 18) and geographical unit r (from 1 to R =

377). Population counts by age and geographical unit are known for censuses and interpolated

and extrapolated for other years. Letting Natr denote the population counts, the corresponding

expected counts are obtained as Eatr = p̂Natr where p̂ is the internally estimated global risk:

p̂ =
∑

a=1

∑
t=1

∑
r=1Oatr/

∑∑∑
Natr. The total number of incidences is 6,901 and the

population at risk during the 18 years is estimated at 6,169,586. By geographical unit, this

population varies from about 22 to about 54,109 by year. Due to covariates, the data set counts

are spread over 122,148 cells.

Exploring the marginal distribution of the standardised incidence ratios (SIRs) shows that

there are some trends in age category, time and space. Figure 2 shows the SIR at geographical

unit r, for example the SIR at geographical unit r is: SIRr =
∑

a=0

∑
tOatr/

∑∑
Eatr with

95% confidence intervals estimated according to Breslow and Day (1987). The geographic

distribution of the SIRs and their confidence intervals shows that there may be some East - West

trend, with higher SIRs in the West, and a number of communes exhibiting a SIR significantly

above 1. Marginal plots of SIRS in time show that the SIRs increase in time, with a marked

increase after 2000. Investigating the SIRs by age category shows that there is very little or

no prostate cancer observed in age categories below 45 years and from 45 years there is an

increase in the SIRs. Hence the data were aggregated for all age categories below 45 years

into one category. This still leaves an extremely sparse data set with 96% of zeros in a total of

67,860 cells.

The observed counts can be represented with a multiplicative model (see for example Lawson,

2009)

E[Oatr] = µatr = Eatr × SIRatr,

leading to the GLM

log(µatr) = log(Eatr) + xTatrβ, (1)

where log(Eatr) is assumed to be a constant and fitted as an offset (see above). The observed

incidencesOatr are assumed to be independently distributed and to follow a Poisson distribution
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Figure 2: Standardized incidence ratio by year (left) and geographical unit (right). In the right

plot discretisation is according to whether the 95% confidence interval of the SIRr is entirely

above 1, containing 1 or entirely below 1.

with mean µatr. Exploratory analysis suggests that the following terms could plausibly be

included in the model: xatr contains longitude, age and year with polynomials of age and year

up to cubic and single order interaction between age and year. Model 1 is compared with two

alternatives: model (2) where longitude is dropped and model (3) where all terms related to

year are omitted. The dispersion parameter estimated by quasi-likelihood for model 1 is close

to one indicating that the Poisson distribution is adequate. Investigating the normal QQ-plots

in the top of Figure 3 for these models shows that due to the extreme sparsity of these data the

residuals do not follow a normal distribution and these standard residuals plots are very difficult

to interpret. In comparison the proposed QQ plots in Figure 3 (bottom) give a clearer picture.

They show that model 3 clearly does not fit. The difference between model 1 and 2 is marginal.

Model inference confirms this as well: Dropping longitude (model 2) is just significant with a

p-value 0.05 from a χ2-test and dropping all terms related to year (model 3) has a big effect with

a p-value smaller than 2.2e-16. Notice that, without the lower plots, there would be a danger of

incorrectly concluding that non of the models fit, and that a zero inflated distribution is needed

in place of the Poisson.
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Figure 3: Residual models for model 1 to 3 (M1, M2, M3). Top: Plot of normal QQ plots

of deviance residuals. Bottom: New proposed QQ plots of deviance residuals against their

simulated quantiles assuming the model is correct with 90% reference band as described in

section 2.1. Section 2.2 plots are graphically indistinguishable (but lack reference bands).
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