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Terrestrial slugs (Mollusca: Gastropoda) share common anti-predator defence mechanisms 1 

but their expression differs between species  2 

Abstract 3 

Terrestrial slugs (Mollusca: Gastropoda) are an interesting group in which to study anti-4 

predator behaviour because few predators are mollusc-specialists. Ground beetles 5 

(Coleoptera: Carabidae) are important slug predators and slugs appear to possess general 6 

primary and secondary defence mechanisms when carabids are encountered. Slugs may avoid 7 

areas recently visited by carabids (primary defence) or, when attacked, exude highly viscous 8 

mucus (secondary defence). Slugs are, however, a polyphyletic group which are present in 9 

diverse habitats with varying exposure to potential predators. Therefore not all slugs might 10 

possess common anti-predator defences. This study examined whether avoidance of cues 11 

from Pterostichus niger, a generalist carabid predator, is a primary defence mechanism 12 

shared by a number of slug species representing different taxonomic families and varying 13 

degrees of ecological specialization. Additionally we examined whether mucus chemistry is 14 

altered in response to predation attempts, and whether this is a secondary defence common to 15 

multiple species. We found that calcium, a vital element for molluscs, is secreted in greater 16 

amounts when slugs are attacked. Choice experiments with P. niger demonstrated that 17 

calcium had no effect on beetle feeding behaviour but that high-viscosity mucus deterred 18 

feeding. We discuss how calcium secretion may contribute to mucus viscosity and represent 19 

an effective anti-predator defence mechanism common to slugs. Results from no-choice 20 

feeding trials suggest that carabid beetles can prevent slugs from exuding defensive mucus by 21 

attacking the mantle region. Overall, we show that slugs share common primary and 22 

secondary defence mechanisms but that the expression of these anti-predator defences varies 23 

between species, reflecting the natural encounter rates of each slug species to predation in the 24 

wild. Additionally, some species-specific anti-predator traits were observed which cannot be 25 

satisfactorily explained as responses to carabids alone, which highlights the importance of 26 

considering multiple predators when interpreting anti-predator behaviour in prey animals. 27 

 28 

Keywords: anti-predator adaptation, predator avoidance, chemical defence, ecological 29 

specialization, predation 30 

 31 

 32 

 33 

 34 
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Introduction 1 

Predation has long been recognised as an important selective force in the evolution and 2 

maintenance of multiple traits in prey animals. Predation directly affects both resource use 3 

and habitat choice in prey populations (Verdolin, 2006) and imposes selection for anti-4 

predator adaptations in the morphology and behaviour of prey species over evolutionary 5 

timescales (Vermeij, 1994). Terrestrial slugs (Mollusca: Gastropoda) are an interesting group 6 

in which to examine predator-prey relationships because, although very few animals appear 7 

to specialize in malacophagy (mollusc-eating), terrestrial gastropods are nevertheless killed 8 

and eaten by diverse species representative of many major terrestrial taxa (Barker, 2004). 9 

There is much evidence to suggest that ground beetles (Coleoptera: Carabidae) are important 10 

predators of terrestrial slugs (Symondson et al., 2002a). Even generalist carabids, of which 11 

slugs may form only a small part of the diversity of prey species consumed, have been shown 12 

to influence slug densities under natural field conditions (Symondson et al., 2002b). The 13 

immediate fitness consequences of predation on prey animals (i.e. death) is so severe that 14 

almost all animals must avoid predation, either via behavioural decision-making or 15 

morphological defence mechanisms, to survive and increase their reproductive success 16 

(Blumstein, 2006). Anti-predator defence mechanisms in prey animals are often broadly 17 

defined as either primary or secondary defences (Edmunds, 1974). Primary defences can be 18 

defined as behavioural responses or morphological adaptations which minimise the likelihood 19 

of a prey animal encountering potential predators, whereas secondary defences can be 20 

defined as behavioural or morphological adaptations which increase the probability of a prey 21 

animal defending itself successfully and escaping after a predation attempt.    22 

Behavioural avoidance of potential predators appears to be one of the most common primary 23 

defence strategies adopted by prey species across a number of taxa (Kats and Dill, 1998) and 24 

there is some evidence to suggest that slugs are capable of detecting and avoiding carabids in 25 

this way. For example, the terrestrial slug Deroceras reticulatum Müller, a major agricultural 26 

pest, exhibits an anti-predator response to ground beetles in general, and is capable of 27 

detecting residual chemical cues from a number of polyphagous carabid species (Armsworth 28 

et al., 2005; Bursztyka et al., 2013; Bursztyka et al., 2016). Behavioural avoidance of areas 29 

recently visited by carabids appears to be the primary defence adopted by D. reticulatum, and 30 

is also an important contributing factor to decision-making with regards to foraging 31 

behaviour (Bursztyka et al., 2016) and habitat use (Bursztyka et al., 2013) in slugs, which is 32 

especially interesting since anti-predator behaviour may not be expected to evolve in 33 

response to generalist predators (Armsworth et al., 2005). Whether this primary defence 34 
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mechanism (avoidance) is common to other terrestrial molluscs or is specific to D. 1 

reticulatum remains unknown. Recent work has shown that a variety slugs and snails 2 

(including D. reticulatum) will avoid areas inhabited by the pathogenic nematode 3 

Phasmarhabditis hermaphrodita (Schneider) (Wynne et al., 2016). Interestingly, however,  4 

Deroceras panormitanum (Lessona and Pollonera), Arion subfuscus (Draparnaud) and Arion 5 

hortensis (Férussac) will become attracted to areas inhabited by P. hermaphrodita when they 6 

are infected – an example of parasite manipulation of host behaviour (Morris et al., 2018).   7 

Detection of potential predators is intuitively an adaptive strategy insofar as it allows prey 8 

animals to avoid areas with a high probability of encountering predation. However, for slugs, 9 

escape-driven dispersal is slow relative to the speed of their predators, so slugs should 10 

possess secondary defence mechanisms when attacked by predators.  11 

A number of studies have demonstrated the importance of mucus in this regard; with the 12 

assumption that highly viscous slug mucus might deter predation by fouling the mandibles 13 

and limb-joints of attacking carabids (Pakarinen, 1994; Mair and Port, 2002; Foltan, 2004). 14 

Since mucus production is an energetically expensive process for terrestrial slugs (Denny, 15 

1980; Henderson and Triebskorn, 2002), it should not be expected that individuals can 16 

continuously produce copious, highly viscous mucus without incurring fitness costs. If the 17 

production of viscous mucus has evolved as an effective secondary defence strategy in slugs, 18 

its production and chemical composition should respond to external cues such as mechanical 19 

stimulation via predator attacks. Indeed, gastropod mucus has been reported to change 20 

consistency based on the behavioural state of the animal, such that mucus is a clear, low 21 

viscosity gel when the animal is at rest and an opaque, highly viscous glue-like substance 22 

when stressed, at least in some species (Campion, 1961; Rollo and Wellington, 1979; 23 

Pakarinen, 1992). This suggests that terrestrial gastropods exhibit an attack-induced change 24 

in the chemistry of their mucus which may constitute an effective secondary defence against 25 

predators. 26 

In a recent study, Braun et al. (2013) provided evidence that calcium directly contributes to 27 

the stiffness of slug mucus. The authors demonstrated that when calcium-containing cross-28 

links of Arion subfuscus Draparnaud mucus were disrupted, the mucus became less viscous 29 

and lost its glue-like properties. Since calcium is an essential element and limiting factor for 30 

molluscs (Fournié and Chétail, 1984), it should not be expected that gastropods continuously 31 

release calcium into their mucus at a constant and elevated rate without incurring fitness 32 

costs. Instead, the release of vital elements such as calcium should be controlled by external 33 

stimuli such as predation.  34 

https://en.wikipedia.org/wiki/Mario_Lessona
https://en.wikipedia.org/wiki/Carlo_Pollonera
https://en.wikipedia.org/wiki/Andr%C3%A9_%C3%89tienne_d%27Audebert_de_F%C3%A9russac
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The behavioural ecology of predation is usually considered in terms of optimal foraging 1 

theory (Schoener, 1971). Predation time for typical “cruise foragers” (O’Brien et al., 1990), 2 

like predaceous ground beetles, is usually divided into two components: search time and 3 

handling time. Whereas there has been much theoretical and empirical research on the 4 

former, search time (for example: Charnov, 1976; Wallin, 1991), there has been less 5 

emphasis on the latter, handling time. When small predatory invertebrates like carabid beetles 6 

feed on relatively large prey like slugs, handling time can make up a significant proportion of 7 

the total foraging effort; especially if the prey animals possess effective anti-predator defence 8 

mechanisms. An understanding of the feeding strategies of generalist carabids is therefore 9 

important in relation to natural pest control (an important ecosystem service) for pestiferous 10 

slugs or when the prey are species of conservation concern, such as those examined in this 11 

study. 12 

This study aims to: (1) examine whether the detection and avoidance of residual chemical 13 

cues from carabids is a primary defence mechanism common to multiple slug species; (2) 14 

investigate, for the first time, whether predation attempts influence the defensive properties of 15 

slug mucus by altering mucus chemistry, with particular interest in the role of calcium and 16 

mucus viscosity in deterring predation by generalist carabids; and (3) examine the predatory 17 

tactics of a generalist carabid in successfully killing and consuming slugs to determine 18 

quantitatively the series of events leading to a successful kill (i.e. an analysis of the 19 

“handling” phase of predation). In a number of behavioural assays we measured the primary 20 

and secondary defence mechanisms of three terrestrial slug species representing distinct 21 

taxonomic families and different degrees of ecological specialization. By examining the 22 

multiple possible defence mechanisms from a number of habitat-specialist and generalist slug 23 

species, it was possible to determine whether anti-predator responses might reflect the natural 24 

degree of exposure to predation for each species, and the degree to which anti-predator 25 

defence mechanisms may be common or species-specific.     26 

 27 

Materials and Methods 28 

Description and collection of study organisms 29 

Primary and secondary defence mechanisms were studied in three terrestrial slug species, 30 

each reflecting different taxonomic relationships, ecological niches and body sizes. The grey 31 

field slug Deroceras reticulatum (Agriolimacidae; body length: 3-5cm) is an open habitat 32 

specialist and a major pest of crops in the northern hemisphere where it is often the most 33 

abundant slug in habitats where it occurs (Dedov et al., 2006). The tree slug Lehmannia 34 
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marginata Müller (Limacidae; body length: 6-9cm) is an arboreal forest specialist which 1 

tends to dominate the malacofauna in European woodlands (Jennings and Barkham, 1975; 2 

Rowson et al., 2014). The Kerry spotted slug Geomalacus maculosus Allman (Arionidae; 3 

body length: 6-9cm) is a globally rare and internationally protected species occurring only in 4 

the west of Ireland and north-western Iberia. It is a habitat-generalist which occurs in forests, 5 

where it appears to be ecologically analogous to L. marginata, and in open habitats such as 6 

blanket bog (Platts and Speight, 1988).  7 

Deroceras reticulatum and L. marginata were collected using 0.25m2 refuge traps 8 

(DeSangosse, France) from different locations around Co. Galway, Ireland during May-9 

August 2015 for behavioural assays and predation trials; and during May-August 2016 for 10 

collection of mucus samples for elemental analysis (described below). Deroceras reticulatum 11 

was collected from traps placed on the ground on a patch of amenity grassland on the 12 

National University of Ireland Galway (NUI Galway) campus (N53˚16ʹ45.9ʺ W9˚3ʹ31.8ʺ alt. 13 

8m), and L. marginata was collected from traps placed on European beech Fagus sylvatica L. 14 

trees at Barna Woods (N53˚15ʹ34.4ʺ W9˚8ʹ0.1ʺ alt. 32m). Geomalacus maculosus was 15 

collected from traps placed on Sitka spruce Picea sitchensis Carrière in a conifer plantation 16 

near Oughterard (N53˚22ʹ33.2ʺ W9˚24ʹ40.9ʺ alt. 173m) in December 2015 also using refuge 17 

traps, and housed in captivity with permission from the National Parks and Wildlife Service, 18 

Department of Arts, Heritage and the Gaeltacht (Licence No. C097/2015). All slugs were 19 

housed in species monocultures in plastic containers (17cm × 11cm × 6cm) holding up to 5 20 

individuals and were fed organic carrots for a minimum of one month prior to the collection 21 

and elemental analysis of mucus (September – October 2016; discussed below).   22 

The carabid beetle Pterostichus niger Schaller (body length: 1.6 – 2cm) is a generalist 23 

predator with a Holarctic distribution (Hengeveld, 1980) which readily consumes live slugs 24 

of all three species in captivity (pers. obs.). In Ireland, P. niger is highly abundant and often 25 

dominates carabid assemblages in agroecosystems (O’Sullivan and Gormally, 2002), open 26 

habitats such as mountain heath and blanket bog (McFerran et al., 1995; Day, 1987), and 27 

forested habitats (Williams and Gormally, 2010).  Beetles were collected from a lightly-28 

wooded area on the NUI Galway campus between April and August 2016 (for no-choice 29 

predation trials) and between April and August 2017 (for choice trials examining the 30 

defensive mode of slug mucus) using dry pitfall traps covered with a corriboard sheet. 31 

Beetles were then maintained in mixed-sex cultures at a density of five individuals per plastic 32 

container (17cm × 11cm × 6cm) which contained a 2cm layer of moistened compost as 33 

substrate, and a 3cm × 3cm section of corriboard as shelter. Pterostichus niger is a dark-34 
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active species (Thiele, 1977). We therefore maintained beetle colonies on a 16:8hr light:dark 1 

cycle so that predatory behaviour could be examined during the nocturnal phase of the 2 

animal. Beetles were kept in these conditions and fed dried cat food pellets twice per week 3 

for a minimum of one month before feeding trials were carried out (discussed below).        4 

 5 

Experiments 6 

(1) Slug primary defence mechanisms  7 

Deroceras reticulatum exhibits behaviour consistent with an anti-predator kinesis in response 8 

to residual cues from a number of generalist carabid beetles including Pterostichus 9 

melanarius Illiger (Armsworth et al., 2005), Carabus  nemoralis Müller (Bursztyka et al., 10 

2016), C. auratus Linnaeus, C. hispanus Fabricius and C. coriaceus Linnaeus (Bursztyka et 11 

al., 2013). Clearly D. reticulatum can detect and avoid areas treated with residual scents from 12 

diverse carabid species but the effect of such residual cues has not yet been tested on any 13 

other slug species. We therefore measured the behavioural responses of D. reticulatum, G. 14 

maculosus and L. marginata in the presence and absence of residual scents from P. niger to 15 

determine whether avoidance of potential predatory beetles is common amongst different 16 

slug species.  17 

The methods used to examine the primary defence mechanism (avoidance) of each slug 18 

species follow Armsworth et al. (2005). Trials were carried out in 21cm × 21cm wooden 19 

arenas, the floor of which was covered in a base layer of dampened paper. Two additional test 20 

papers, each measuring 10.5cm × 21cm were then prepared and placed over this base layer, 21 

effectively dividing the experimental arenas into two treatment zones of equal size. Test 22 

papers were prepared by allowing P. niger individuals (n = 5) to crawl over the moistened 23 

paper inside a plastic container for 2 hours. Control papers were also moistened and placed 24 

inside containers for 2 hours but were not exposed to any animals. Before being placed in 25 

both beetle-exposed or control containers, all paper sections were sprayed 5 times from a 26 

distance of approximately 30cm in order to standardize moisture levels across treatments. 27 

Prior to behavioural trials, slugs (n = 15 individuals of each species) were selected randomly 28 

and isolated in separate containers for two hours. The test slugs were then placed into arenas 29 

along the dividing line between the beetle-exposed and control sections of paper. The initial 30 

north-south orientation of each slug was consistent at the beginning of all trials but the left-31 

right positions of paper sections were switched before the next trial. The response of 32 

individual slugs to residual scents from P. niger was never tested more than once. Slug 33 

behaviour was recorded in trials of 2 hours duration using EthoVision® XT10 tracking 34 
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software. Beetle-exposed and test paper sections were defined in-program as zones, and slug 1 

activity was measured as the cumulative duration (in seconds) and the velocity of movement 2 

(cm/second) of individual slugs in each zone. 3 

 4 

 5 

(2) Slug secondary defence mechanisms 6 

Collection and elemental analysis of trail mucus: 7 

Slug mucus may differ chemically among species (Cook, 1987; Skingsley et al., 2000) and 8 

depending on the part of the body from which it is collected (Skingsley, 2010). Therefore, 9 

only trail mucus was examined from all three species for this study. Mucus samples were 10 

collected from slugs before and after exposure to a stimulated attack (referred to hereafter as 11 

non-stressed and stressed mucus, respectively). 12 

Non-stressed mucus was collected by allowing slugs (n = 20 individuals per species) to crawl 13 

into and within sterile glass petri dishes (diameter: 9cm). After sufficient quantities (mean 14 

weight ± SE = 5.1 ± 2.0mg) of mucus had been secreted on the floor of the petri dish 15 

(typically after a duration of 5-10 minutes), the slug was enticed out of the petri dish by 16 

presenting a chopped carrot outside the dish (slugs were not removed by hand in case this 17 

stimulated a stress response). 18 

To prepare stressed mucus samples, the same individuals were placed in sterile glass petri 19 

dishes 24 hours later and beetle attack was simulated by firmly pinching the mid-section and 20 

tail of the slug repeatedly with a forceps without breaking the skin (after: Pakarinen, 1992). 21 

This resulted in increased crawling speed and the production of highly viscous mucus in all 22 

three slug species studied. Both non-stressed and stressed mucus preparations were scraped 23 

from the petri dishes using a plastic straw and transferred into 0.5ml Eppendorf tubes. 24 

Samples were freeze-dried to remove as much liquid water as possible (molluscan mucus is 25 

composed of up to 80-99% water: Davies and Hawkins, 1998), so that they could be gold-26 

coated for SEM imaging, which is required prior to EDX analysis (discussed below). Slugs 27 

and their mucus samples were weighed before and after simulated attack events. Mucus 28 

samples were further weighed after freeze-drying to estimate the percentage water content 29 

from the mucus of each species.  30 

To investigate whether the elemental composition of mucus differs among species and 31 

between stressed and non-stressed animals, mucus samples were imaged under scanning 32 

electron microscopy and analysed using energy dispersive x-ray (SEM-EDX) spectroscopy. 33 

Samples were imaged under high (x300) magnification with acceleration voltage set to 15kV. 34 
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EDX spectra were measured from three points of each mucus sample using INCA software 1 

(Oxford). Means of these three spectra were used as an average elemental profile for each 2 

mucus sample per individual. The reflectance of gold (Au) was removed and the percentage 3 

weights of each element per sample were calculated in-program. 4 

 5 

Effect of calcium and mucus viscosity on carabid feeding behaviour: 6 

Test beetles were isolated and starved for 48hr prior to feeding trials. The sex of each beetle 7 

was noted and its weight was recorded. Individuals were then given a choice between cat 8 

food pellets (mean weight: 0.21g ± 0.03g) coated in a solution of distilled water and calcium 9 

(99% granular: Sigma) or cat food pellets coated with distilled water. The concentration of 10 

the calcium/water solution was selected based on the mean percentage weights of calcium 11 

obtained from EDX analysis of stressed mucus (3g Ca per 100ml distilled water).  Feeding 12 

trials (n = 15) were carried out over two hours using a mix of male and female P. niger. 13 

Beetle behaviour was recorded using Ethovision® XT10 software. The trials were conducted 14 

in darkness during the beetle nocturnal phase in plastic boxes (15cm × 15cm × 25cm), the 15 

floor of which was lined with damp white chromatography paper to maximise detection of 16 

beetles by the tracking software. Each food treatment was defined in Ethovision® XT10 as a 17 

zone, and feeding behaviour was assessed by beetle activity in each zone (i.e. the time spent 18 

in contact and number of interactions with each food treatment).  19 

It was observed that all three slug species exuded highly viscous mucus during the collection 20 

of stressed mucus samples for elemental analysis. We therefore carried out additional trials to 21 

test for possible effects of mucus viscosity on P. niger feeding behaviour. Artificial slug 22 

mucus was created using odourless, non-toxic Xanthan gum powder (Freee Foods, UK) to 23 

provide relatively low and high viscosity treatments. Cat food pellets (mean weight: 0.20g ± 24 

0.02g) were then coated with one of two treatments representing different mucus viscosities: 25 

low viscosity (0.5g Xanthan gum powder / 100mL distilled water), representing ‘normal’ 26 

mucus, and high viscosity (2g Xanthan gum powder / 100mL distilled water), representing 27 

‘stressed’ mucus. Both food treatments were offered to a mix of male and female P. niger 28 

individuals in n = 15 choice trials which were also recorded and tracked in darkness during 29 

the animals nocturnal phase using Ethovision® XT10 software, with each food treatment 30 

defined as a zone, and feeding behaviour assessed by beetle activity (time spent in contact 31 

and number of interactions with each food treatment) in each zone. 32 

 33 

Innate escape responses of slugs: 34 
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The innate escape behaviour of each slug species was studied as an additional measure of a 1 

possible secondary defence mechanism. Individual slugs of each species (D. reticulatum n = 2 

58; G. maculosus n = 108; L. marginata n = 66) were shaken in-hand for 5 seconds and then 3 

placed into the centre of a petri dish (diameter: 9cm). The duration taken to escape (i.e. to 4 

crawl completely out of the petri dish) was recorded (in seconds) with a stopwatch. Each slug 5 

species possesses specific startle responses, and the expression of these behavioural responses 6 

was recorded after the individuals were placed into the petri dish: D. reticulatum exhibits a 7 

tail-wagging behaviour, whereas G. maculosus and L. marginata each exhibit different 8 

degrees of conglobation (curling up into a ball); with G. maculosus bending its sole 9 

completely in half to form a tight ball shape, and L. marginata bending its sole to form a ‘c-10 

shape’ (Rowson et al., 2014).       11 

 12 

(3) Predation tactics of P. niger in no-choice feeding trials 13 

Pterostichus niger beetles used in no-choice feeding trials were maintained in the same 14 

conditions as those used to examine the defensive mode of slug mucus described above. 15 

Beetles were starved for one week prior to no-choice feeding trials (Symondson et al., 1997) 16 

and then placed into a Parafilm®-sealed petri dish (diameter: 9cm) with a single individual of 17 

either D. reticulatum (n = 20), G. maculosus (n = 20), or L. marginata (n = 20). The 18 

behaviour of n = 60 P. niger individuals (33 females, 27 males) and their potential slug prey 19 

was recorded in darkness for 24hours. Video files were analysed manually by point-sampling 20 

every 2 minutes and recording the behavioural states of carabids and slugs as well as specific 21 

behavioural events (mantle attacks, tail attacks and aversions) occurring within a 1-minute 22 

period following the point-sample (Table 1). Beetles and slugs were weighed immediately 23 

prior to each feeding trial. After each trial had concluded, beetles were re-weighed and it was 24 

noted whether or not slugs had been eaten. No-choice feeding trials were carried out from 25 

June to August 2016. 26 

 27 
Table 1. Descriptions of carabid and slug behavioural categories observed in no-choice feeding trials 
 
Carabid behaviour 

 
Description 

Mantle attack P. niger visibly biting the mantle or head-region of a slug 
Tail attack P. niger visibly biting distally from the mantle to the sides and tip of a slugs tail 
Aversion P. niger cleaning mucus from mandibles, antennae or limb-joints following a mantle or tail attack  
  
Slug behaviour Description 
Hunched Slug immobile in a hunched, bell-shaped posture: tentacles retracted beneath mantle 
Moving Slug actively crawling  
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Not Moving Slug body extended but immobile  
Dead Slug dead; immobile with mouthparts distended and/or slug laying laterally  
  

 1 
Statistical Analysis 2 

Paired t-tests were used to examine whether slug behaviour (mean time and mean velocity of 3 

movement) differed significantly between beetle-exposed and control zones. A one-way 4 

ANOVA was used to test whether these behavioural parameters differed significantly among 5 

slug species in both beetle-exposed and control zones. A Tukey post-hoc tests were 6 

subsequently used to examine whether each pair-wise combination of slug species differed 7 

significantly in mean time or mean movement velocity in beetle-exposed zones.  A one-way 8 

ANOVA was used to test for significant species differences in the mean percentage water 9 

content from both non-stressed and stressed mucus samples. Paired t-tests were then used to 10 

examine if the mean percentage water content differed significantly between non-stressed and 11 

stressed mucus samples for each species. Paired t-tests were also used to examine whether the 12 

mean percentage weight of each element detected via EDX differed significantly between 13 

non-stressed and stressed mucus samples from each slug species. Some elements were not 14 

normally distributed in mucus samples for each species (Supplementary Table A2) and these 15 

were instead compared using Wilcoxon’s sign-rank test. One-way ANOVAs were used to test 16 

whether the mean percentage weights of calcium differed significantly among slug species in 17 

both non-stressed and stressed mucus. Pearson’s correlation was used to test whether there 18 

was a significant relationship between slug weight and the percentage weights of calcium 19 

expressed in stressed mucus samples.     20 

Potential differences in feeding behaviour (i.e. time in contact with, and number of 21 

interactions with food treatments) between male and female P. niger beetles were examined 22 

using a Mann-Whitney U-test. When no significant difference was observed between male 23 

and female P. niger beetles, data were pooled to examine whether feeding behaviour differed 24 

significantly between calcium-treated and control food treatments; and between low- and 25 

high-viscosity food treatments, also using Mann-Whitney’s U-tests.   26 

Species differences in mean escape times were examined using a one-way ANOVA and 27 

Tukey’s post-hoc tests were performed on each pair-wise species combination. Pearson’s 28 

correlation was used to test for significant relationships between slug weights and escape 29 

times.   30 

Binary logistic regression was performed to assess the impact of multiple factors on the 31 

likelihood of predation occurring in n = 60 no-choice feeding trials. The model contained 32 
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seven independent variables (the frequency of tail attacks per 24 hour predation trial, the 1 

frequency of mantle attacks per 24 hour predation trial, the weight difference between beetles 2 

and slugs per trial, the species identity of slugs, and the sex of each beetle). 3 

Data from trials where successful predation occurred (i.e. n = 25 trials where slugs were 4 

successfully killed and consumed) were subsequently pooled to characterize the general 5 

predation behaviour of P. niger in further detail. A General Linear Model (GLM) was 6 

performed to assess the impacts of multiple independent variables on the duration taken until 7 

a slug was killed and consumed by P. niger. The GLM examined the effects of the frequency 8 

of tail and mantle attacks, the species identity of the slugs, and the sex of the beetles on the 9 

duration taken until a slug was killed and consumed. The interaction between the sex of P. 10 

niger and the species identity of the slugs was included in the GLM.    11 

Spearman’s correlation was used to test whether the frequency of mantle and tail attacks 12 

(both normally distributed, continuous variables) were significantly associated with the 13 

duration taken until a slug died (an ordinal variable). Pearson’s correlation was used to 14 

examine whether tail and mantle attacks were significantly correlated with the numbers of 15 

aversive behavioural responses. A Student’s t-test was used to test whether P. niger differed 16 

significantly in the mean frequency of tail or mantle attacks performed on slugs.           17 

 18 

Results 19 

(1) Slug primary defence mechanisms 20 

All slug species spent significantly less time and exhibited significantly greater velocities 21 

(cm/second) in areas exposed to P. niger compared to control areas (Table 2). There was no 22 

significant difference among slug species in the mean time spent in control zones (F(2, 42) = 23 

2.432, P = 0.10), or in mean movement velocities in control zones (F(2, 42) = 2.387, P = 24 

0.104). Mean time spent in beetle-exposed zones did not differ significantly among species 25 

(F(2, 42) = 2.527, P = 0.092). However, mean movement velocities in beetle-exposed zones 26 

did differ significantly among species (F(2, 42) = 4.95, P = 0.012). A Tukey post-hoc test 27 

revealed that D. reticulatum velocity in beetle-exposed zones was significantly greater than 28 

that of L. marginata (P = 0.009) but there were no significant differences in mean velocity 29 

between D. reticulatum and G. maculosus (P = 0.368), or between G. maculosus and L. 30 

marginata (P = 0.191) in beetle-exposed zones.  31 

 
Table 2. Behaviour of each slug species in zones exposed to P. niger or control zones (s = seconds)  

  Beetle-exposed  Control     
 Species Mean SD  Mean SD  Mean Diff. t (14) P 
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Time in zone (s) 
D. reticulatum 1937.13 1163.90  5262.87 1163.90  -3325.73 -5.53 <0.001 
G. maculosus 2502.53 1139.56  4644.00 1144.19  -2141.47 -3.64 0.003 
L. marginata 2874.73 1212.45  4317.80 1199.91  -1443.07 -2.32 0.036 

           

Velocity in zone 
(cm/s) 

D. reticulatum 0.09 0.01  0.06 0.02  0.03 4.75 <0.001 
G. maculosus 0.08 0.02  0.05 0.02  0.03 3.35 0.005 
L. marginata 0.07 0.02  0.04 0.01  0.04 4.92 <0.001 

 
 
 

(2) Slug secondary defence mechanisms 1 

Elemental analysis of trail mucus: 2 

There was no significant difference among the slug species studied in mean percentage water 3 

content for either non-stressed or stressed mucus (Appendix: Table A1). In addition, there 4 

was no significant difference in mean percentage water content between non-stressed and 5 

stressed mucus for each slug species (Appendix: Table A2). 6 

In total, 10 elements were detected from both stressed and non-stressed mucus samples of all 7 

three slug species studied (Appendix: Table A2). Attack stimulus resulted in a significant 8 

increase in the mean percentage weight of calcium in stressed mucus of all three slug species 9 

(Fig. 1).  The mean percentage weights of calcium in stressed mucus samples differed 10 

significantly among slug species (F(2, 57) = 16.01, P < 0.001). Tukey post-hoc test revealed 11 

that stressed mucus of G. maculosus contained significantly greater mean percentage weights 12 

of calcium than both D. reticulatum (P = 0.03) and L. marginata (P < 0.01); and that stressed 13 

mucus of D. reticulatum contained significantly greater mean percentage weights of calcium 14 

than L. marginata (P = 0.01).       15 

There was no significant correlation between slug weight and the percentage weights of 16 

calcium recorded in mucus samples from stressed individuals (r = 0.196, P = 0.133). The 17 

mean percentage weights of carbon and oxygen were also greater in stressed mucus samples 18 

for D. reticulatum and G. maculosus (Appendix: Table A2); and were significantly greater 19 

for L. marginata (carbon: t(19) = -2.323, P = 0.031; oxygen: t(19) = -2.351, P = 0.029). 20 

There were no significant differences in any other elements between non-stressed and 21 

stressed mucus samples for any of the slug species studied (Appendix: Table A2).  22 

 23 
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  1 
Figure 1. The percentage weights of calcium were significantly greater in stressed mucus 2 

(dark grey bars) for all three slug species studied (D. reticulatum: t(19) = -7.571, P < 0.001; 3 
G. maculosus: t(19) = -9.724, P < 0.001; L. marginata: t(19) = -7.361, P < 0.001). Bars show 4 

mean percentage weights ± SE 5 
 6 
Effect of calcium and viscosity on beetle feeding behaviour: 7 

Data from female and male P. niger were pooled since no significant difference was detected 8 

between male and female P. niger feeding behaviour in calcium-treatment or mucus viscosity 9 

trials (i.e. frequency of interactions: U = 104.5, P = 0.759; U = 87.5, P = 0.313 respectively 10 

and time spent interacting with each food treatment: U = 101, P = 0.667; U = 98.5, P = 0.580 11 

respectively).  12 

Beetles visited food treated with low viscosity gel significantly more often and spent 13 

significantly more time feeding than food treated with high viscosity gel (Table 3). No 14 

significant difference was found, however, in beetle feeding behaviour (frequency of visits 15 

and time spent interacting with food) between food treated with 3% calcium and food treated 16 

with distilled water. 17 

 18 

Table 3. Effects of calcium and gel viscosity on beetle feeding behaviour. Median frequencies of 
interaction, and median times interacting with either treatment per 2 hour trial are shown with inter-
quartile ranges presented in brackets. Results from significance tests (Mann Whitney U) are shown 
between food treatments (s = seconds) 
Effect of calcium Distilled water 3% calcium solution Mann-Whitney U P 
Median frequency of interactions 25.50 (23) 31.50 (35) 104.5 0.744 
Median time spent interacting (s) 1636.50 (1085) 1980.00 (2162) 106.5 0.806 
     
Effect of viscosity 0.5% gel 2% gel Mann-Whitney U P 
Median frequency of interactions 36.00 (40) 11.00 (23) 53.0 0.013 
Median time spent interacting (s) 1241.00 (2109)  88.00 (935) 56.5 0.019 
 19 
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Innate escape responses of slugs: 1 

Each slug species differed significantly in the time taken to escape from a petri dish (F(2, 2 

229) = 10.61, P < 0.001; Fig. 2) following handling for five seconds. A Tukey post-hoc test 3 

revealed that D. reticulatum exhibited a faster mean escape time than both G. maculosus (P = 4 

0.018) and L. marginata (P < 0.001), and that G. maculosus exhibited a faster mean escape 5 

time than L. marginata (P = 0.041).      6 

A significant but weak negative correlation was found between escape time and slug weight 7 

for L. marginata (r = -0.266, P = 0.031). Escape time was not significantly correlated with 8 

weight for either D. reticulatum (r = 0.255, P = 0.053) or G. maculosus (r = 0.014, P = 9 

0.887). Intra-specific behavioural differences in escape response were observed in D. 10 

reticulatum, with 24 out of 58 individuals (41%) exhibiting a ‘tail-wagging’ response prior to 11 

escape. Conglobation (curling into a ball or ‘c-shape’) was observed prior to escape in 100% 12 

of G. maculosus and L. marginata individuals tested.  13 

 14 
Figure 2. Each slug species differed significantly in the duration taken to escape after 15 

handling. Bars show mean escape times ± SE 16 
 17 

(3) Predation tactics of Pterostichus niger in no-choice feeding trials  18 

The null model containing all predictors was statistically significant, χ2 (6, n = 60) = 51.90, P 19 

< 0.001, indicating that the model successfully distinguished between trials where slugs were 20 

and were not killed and eaten by P. niger. The model explained between 58% (Cox and Snell 21 

R square) and 78% (Nagelkerke R square) of the variance in predation success, and correctly 22 

classified 91.7% of cases. Three of the independent variables made a significant contribution 23 

to the model (the frequency of tail attacks per 24 hour predation trial [P = 0.004], the 24 

frequency of mantle attacks per 24 hour predation trial [P = 0.003], and the species identity of 25 

slugs [D. reticulatum: P = 0.007; G. maculosus: P = 0.025; L. marginata: P = 0.002]; Table 26 

n = 58 n = 108 n = 66 
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4). The frequency of tail and mantle attacks were both the strongest predictors of predation 1 

success, recording almost equal odds ratios (tail attacks: 1.06; mantle attacks: 1.09).  2 

 3 
Table 4. Logistic regression predicting the likelihood of successful predation by P. niger. 4 

 B SE Wald df P Odds Ratio 95% CI for Odds ratio 
Independent variables       Lower Upper 

         
Tail attacks 0.06 0.02 8.15 1 0.004 1.06 1.02 1.11 
         
Mantle attacks 0.09 0.03 8.64 1 0.003 1.09 1.03 1.16 
         
Weight difference -1.20 1.16 1.09 1 0.297 0.30 0.03 0.29 
         
D. reticulatum   9.83 2 0.007    
         
G. maculosus* -4.64 2.07 5.02 1 0.025 0.01 0.00 0.56 
         
L. marginata* -8.52 2.73 9.73 1 0.002 0.00 0.00 0.04 
         
Sex of beetle -0.22 1.22 0.03 1 0.855 0.80 0.07 8.77 
         
Constant -4.58 1.64 7.80 1 0.005 0.01   
*The coefficients for G. maculosus and L. marginata are set relative to the effects of D. reticulatum 5 

 6 
Of the variables examined in GLM analysis, the frequency of mantle attacks was the only 7 

significant predictor of the time taken for a prey slug to be killed and consumed by P. niger 8 

(P = 0.001). Species identity of the slugs was marginally non-significant (P = 0.063; Table 9 

5). 10 

 11 
Table 5. General Linear Model assessing the contribution of multiple factors to the duration 12 
taken until slugs were successfully killed and consumed by P. niger.  13 
 Sum of squares df Mean square F P 
Main effects      
      
Tail attacks 4.36 1 4.36 0.53 0.477 
      
Mantle attacks 146.58 1 146.58 17.75 0.001 
      
Sex of beetle 5.15 1 5.15 0.62 0.440 
      
Slug species 53.61 2 26.81 3.25 0.063 
      
      
Interaction terms      
      
Sex of beetle × slug species 18.79 1 18.79 2.28 0.149 
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 1 
The frequency of mantle attacks was significantly and negatively correlated with the time 2 

taken for a prey slug to be killed (Spearman’s r = -0.633, P < 0.01; Fig. 3a). There was a 3 

significant and positive correlation between tail attacks by P. niger and time until death for 4 

slugs across each successful feeding trial (Spearman’s r = 0.697, P < 0.01). The frequency of 5 

tail attacks was also significantly and positively correlated with the frequency of aversive 6 

behavioural events displayed by P. niger (Pearson’s r = 0.855, P < 0.01; Fig. 3b). There was 7 

no significant correlation between the frequency of mantle attacks and aversive behavioural 8 

events (Pearson’s r = -0.354, P = 0.083). There was no significant difference between the 9 

mean number of mantle attacks and tail attacks performed by P. niger over n = 25 feeding 10 

trials where predation was successful (t = 1.395., P = 0.171).    11 

 12 
Figure 3 (a) The frequency of mantle attacks performed on slugs by Pterostichus niger was 13 
negatively correlated with the time taken until death for slugs; and (b) the frequency of tail 14 

attacks by Pterostichus niger was positively correlated with the number of aversive 15 
behavioural events in no-choice feeding trials where predation was successful. Dotted lines = 16 
95% CI; Symbols: ο = Deroceras reticulatum; × = Geomalacus maculosus; ∆ = Lehmannia 17 

marginata 18 
 19 
Discussion 20 

Primary defence mechanisms 21 

All three slug species spent less time and exhibited greater velocities in areas exposed to P. 22 

niger. This is in agreement with previous studies which have demonstrated that the behaviour 23 

of D. reticulatum is modified in the presence of residual scents from carabid beetles 24 

(Armsworth et al., 2005; Bursztyka et al., 2013; Bursztyka et al., 2016), but the current study 25 

is the first demonstration that this primary defence mechanism is a common response in 26 

terrestrial slugs. Anti-predator behaviour in prey species may not be expected to evolve in 27 

response to the presumably weak selective pressure imposed by generalist predators unless 28 
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the prey class constitutes a major proportion of the diet of a predator species (Armsworth et 1 

al., 2005). Since avoidance of zones where P. niger had recently visited was a shared 2 

response among all slug species examined, this suggests that terrestrial slugs form a major 3 

component of the diet of many carabid species generally. Recent work has pointed to the 4 

seasonal importance of terrestrial slugs as a food source for generalist carabids during periods 5 

when alternative prey is unavailable but when slugs occur at high densities, such as in 6 

Autumn and early Spring (Jelaska et al., 2014). Generalist ground beetles could therefore be 7 

considered a trophic species (Sih et al., 1998) insofar as multiple carabid species may elicit 8 

similar behavioural responses in multiple slug species, which may have led to the evolution 9 

of general avoidance behaviour observed in each slug species in this study. Deroceras 10 

reticulatum appeared to show the strongest avoidance of P. niger (i.e. spent the least amount 11 

of time and exhibited the greatest velocity in beetle-exposed zones), followed by G. 12 

maculosus and L. marginata, in turn. This may reflect the average exposure of D. reticulatum 13 

to predation by multiple generalist carabids in open habitats, relative to G. maculosus, a 14 

habitat generalist which occurs in both open habitats and forested areas, and L. marginata 15 

which is an arboreal forest specialist.  16 

 17 

Secondary defence mechanisms 18 

The importance of slug mucus as a defence against generalist predators such as carabids has 19 

been examined in multiple studies to date (Pakarinen, 1994; Mair and Port, 2002; Foltan, 20 

2004) but the current study is the first demonstration that terrestrial slug mucus changes 21 

chemically after exposure to predation and highlights the apparent important contribution of 22 

calcium secretion as a secondary defence mechanism which is common to slugs. Simulated 23 

predation resulted in a significant increase in the percentage weight of calcium measured 24 

from the mucus of all three slug species studied. The percentage weights of calcium differed 25 

significantly among slug species in both non-stressed and stressed samples, despite slug size 26 

showing no correlation with the concentrations of calcium in stressed mucus samples. This 27 

suggests that defensive capabilities differ with slug species to some extent, as had been 28 

previously suggested (Rollo and Wellington, 1979; Pakarinen, 1994; Foltan, 2004), but that 29 

the general anti-predator response (i.e. elevated levels of calcium secretion and increased 30 

mucus viscosity) is probably consistent across terrestrial slugs in general. Mucus production 31 

is energetically expensive (Denny, 1980) and, given that calcium is a vital element for 32 

molluscs (Fournié and Chétail, 1984), it follows that slugs should possess a behavioural 33 

mechanism to regulate calcium secretion. It is possible that mechanical stimulation causes 34 
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calcium glands in the slug epithelium to rupture and release calcium into a defensive mucus 1 

cocktail in response to predator attack. Dreyup-Olsen and Martin (1982) demonstrated that 2 

mechanical stimulation resulted in increased calcium concentrations in sac preparations of 3 

slug body wall, on which basis they suggested that slugs possess a calcium secretory process. 4 

Calcium release was a general response to simulated predation attempts in all three slug 5 

species in this study and there are many previous studies which suggest that this may be an 6 

important secondary defence mechanism common to many terrestrial molluscs. Dexheimer 7 

(1951) recorded two mucus consistencies in the snail Helix pomatia Linnaeus, which 8 

appeared to be dependent on the behavioural state of the animal: a clear secretion was 9 

produced under normal conditions whereas irritated snails produced more viscous, ‘creamy’ 10 

secretions. Campion (1961) similarly noted that the mucus of the snail Cornu aspersum 11 

Müller (= Helix aspersa) became more opaque and ‘milky’ when the animal was stressed, 12 

possibly due to calcium secretions which also increased mucus viscosity, and suggested a 13 

defensive role for this change in mucus consistency. In this study, calcium alone did not 14 

negatively impact on the feeding behaviour of P. niger; rather, levels of viscosity appeared to 15 

be the determining factor in deterring beetle feeding activity. The defensive properties of slug 16 

mucus therefore appear to be enhanced in response to predator attack, such that the calcium 17 

content of mucus rapidly increases when slugs are exposed to periods of acute stress (e.g. 18 

predation attempts). The elevated level of calcium in slug mucus post-attack probably 19 

increases the viscosity of mucus. Braun et al. (2013) demonstrated the importance of calcium 20 

in determining mucus viscosity from the slug Arion subfuscus Draparnaud, and the results 21 

from this current study demonstrate that calcium levels in mucus are elevated when slugs are 22 

exposed to mechanical stimulation which imitates predator attack. 23 

Although all slug species examined in this study exuded significantly greater percentage 24 

weights of calcium when stressed, G. maculosus exuded the greatest percentage weight of 25 

calcium in stressed mucus samples. This may reflect the likely greater diversity of potential 26 

predators faced by G. maculosus, which lives in both open and forested habitats. It is known 27 

from other taxa, for example, that predation from multiple sources can impose stronger 28 

selection for antipredator behaviour than would be expected from a single predator class (e.g. 29 

in birds: Morosinotto et al. [2010]; in fish: Templeton and Shriner [2004]). Alternatively, the 30 

high percentage weights of calcium recorded in stressed G. maculosus mucus could be related 31 

to skin thickness. As a medium-large sized arionid slug, G. maculosus possesses thicker skin 32 

than limacid (e.g. L. marginata) or agriolimacid (e.g. D. reticulatum) slugs, and may 33 

therefore possess a relatively higher proportion of epithelial mucus and calcium glands. 34 
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Pakarinen (1994) and Foltan (2004) both found that generalist carabids (P. niger and P. 1 

melanarius, respectively) preferred slug species which possess thin skin. Pakarinen (1994) 2 

found that P. niger predation was successful on the thick-skinned arionid slug Arion fasciatus 3 

Nilsson only once the mucus supply of the slug had been exhausted after prolonged exposure 4 

to a stressful stimulus. Species differences in calcium secretion may therefore afford slugs 5 

different degrees of protection against predators and ultimately influence prey choice by 6 

generalist predators in the field.  7 

Two other elements, carbon and oxygen, which were detected in all mucus samples, were in 8 

greater concentrations in stressed mucus samples for all slug species, and were significantly 9 

greater for L. marginata. This may correspond to the production and secretion of species-10 

specific molecules signalling stress, which conspecific slugs have been shown to avoid 11 

(Pakarinen, 1992). It is also possible that the increases in carbon and oxygen are linked to the 12 

significant increase in calcium for all slug species examined through the secretion of calcium 13 

carbonate granules, which Campion (1961) attributed to the white colour of irritated mucus 14 

from the snail Cornu aspersum.     15 

Escape times also varied significantly among species, with D. reticulatum possessing the 16 

fastest escape time, followed by G. maculosus and L. marginata, respectively. Species-17 

specific escape responses were also recorded in each slug species. Intra-specific behavioural 18 

variation was observed in D. reticulatum, in which a ‘tail-wagging’ response was recorded in 19 

41% of the slugs examined. Rollo and Wellington (1979) found that tail-wagging in D. 20 

reticulatum was an effective strategy in defending against attacks from con- and 21 

heterospecific slugs, which would retreat after receiving a blow from the tail. Tail-wagging 22 

may have a similar effect on predaceous carabids and function by focusing predator attention 23 

towards the tail region of the slug, thereby limiting the amount of predator attacks targeted at 24 

the vulnerable mantle region. Conglobation was a response recorded in 100% of all G. 25 

maculosus and L. marginata individuals examined. Conglobation might be an adaptation to 26 

avoid predation by birds, as it is only expressed when the slugs are removed from their 27 

substrate. Additionally, G. maculosus possesses background matching camouflage (O’Hanlon 28 

et al., 2017) and L. marginata also closely resembles the visual properties of tree trunks (i.e. 29 

it is brown with dark lateral bands and mottling) which is consistent with evolution by 30 

selection from visual predators such as birds. This might also explain the slow escape times 31 

of these two species relative to D. reticulatum in that slow-moving, camouflaged prey should 32 

be less detectable than conspicuous highly mobile alternative prey (Hall et al., 2013).    33 

 34 
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Predation tactics of Pterostichus niger in no-choice feeding trials 1 

In no-choice feeding trials, the frequency of mantle attacks was the only variable examined 2 

which significantly predicted the duration taken for a prey slug to be killed and consumed by 3 

P. niger. Furthermore, the frequency of mantle attacks was strongly and negatively correlated 4 

with the time it took a slug to be killed. Carabid beetles which are specialist gastropod-5 

feeders are capable of overcoming the defensive mucus of even large, thick-skinned arionid 6 

slugs. Pakarinen (1994) noted that Carabus violaceus Linnaeus and Cychrus caraboides 7 

Linnaeus, both of which were described as mollusc-specialists, prevented the slug A. 8 

fasciatus from exuding defensive mucus by stabbing the mantle region of the slug with their 9 

mandibles, which may paralyze the slugs either by delivering a toxin or by mechanically 10 

destroying the cerebral ganglia. Larvae of the slug-killing fly Tetanocera elata Fabricius also 11 

appear to feed most often at the head-region of slugs, or by burrowing beneath the slug 12 

mantle (Knutson et al., 1965, Hynes et al., 2014) and may additionally inject an immobilizing 13 

toxin (Knutson and Vala, 2011). Knutson et al. (1965) also reported that the defensive mucus 14 

exuded by Deroceras (=Agriolimax) slugs did not deter attack from the malacophagous fly 15 

larvae. Pakarinen (1994) found that the generalist carabid P. niger did not target a specific 16 

region of the body of the slug, and the results from the present study similarly found that P. 17 

niger did not show a preference for attacking either the mantle or tail region of a slug. The 18 

frequency of tail attacks was positively correlated with the number of aversions displayed by 19 

P. niger in feeding trials, which is probably due to the production of defensive mucus by the 20 

slugs. This indicates that the defensive mucus of slugs may be an adaptation to predation 21 

attempts from multiple generalist predators but not to malacophagous specialists. Many 22 

carabid beetles which prey upon slugs also feed on a host of other invertebrate species such 23 

as earthworms, lepidopteran larvae and woodlice (Jelaska et al., 2014). The release of highly 24 

viscous mucus may afford attacked slugs sufficient time to escape by causing attacking 25 

carabids to increase the frequency of non-predatory behaviour (e.g. cleaning), and may 26 

therefore represent a useful strategy to avoid predation by generalists which could 27 

subsequently switch their attention to alternative prey.    28 

The species identity of prey slugs was a significant predictor of predation success in no-29 

choice feeding trials. Deroceras reticulatum was the most frequently killed slug species in 30 

no-choice feeding trials and was successfully killed and eaten by P. niger in 60% of these 31 

trials. It is interesting that, despite their relatively low calcium secretions and slow escape 32 

responses, L. marginata  indviduals were eaten least often (in only 20% of trials) by P. niger. 33 

Anti-predator adaptations which are costly or are no longer beneficial are predicted to be lost 34 
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rapidly following isolation (Blumstein, 2006). The relatively weak expression of primary and 1 

secondary defence mechanisms observed may therefore reflect the likely low encounter rates 2 

of the arboreal L. marginata with ground beetles in forested habitats. These results are 3 

broadly in agreement with recent experimental work by Saeki et al. (2017) who demonstrated 4 

that seasonal migration into tree canopies by the land snail Euhadra brandtii sapporo Ijima is 5 

directly influenced by ground beetle predation. Intense selection by ground beetles in the past 6 

may have similarly contributed to the evolution of arboreality in L. marginata and G. 7 

maculosus. Alternatively, it is possible that L. marginata may contain toxins which are 8 

noxious to carabids, as was suggested for Tandonia budapestensis Hazay by Symondson 9 

(1997).  10 

 11 

Conclusions 12 

The results of this study indicate that different slug species possess common primary and 13 

secondary anti-predator defences. However, the expression of these defence mechanisms 14 

varies among species. This appears to reflect the ecology of each slug species examined: D. 15 

reticulatum, as a numerically dominant open habitat-specialist probably encounters carabids 16 

frequently and, as such, it appears to possess the strongest primary defence, and the fastest 17 

escape time. Lehmannia marginata, as an arboreal forest specialist, likely encounters 18 

predation from ground beetles only relatively rarely. Geolamacus maculosus, as a niche 19 

generalist, is likely exposed to a greater number of potential predators from both open and 20 

forested habitats, explaining its intermediate primary and secondary defences. Highly 21 

viscous, calcium-enriched mucus secretions from attacked G. maculosus may be reflective of 22 

a greater diversity of potential predator species encountered in both open and forested 23 

habitats.   24 

Most of our knowledge about predator-prey evolutionary ecology comes from considering 25 

single species pairings. Although the common secondary and primary responses observed in 26 

this study can be explained as adaptations to avoid a single trophic species (generalist 27 

carabids), species-specific primary (camouflage) and secondary (conglobation) defence 28 

mechanisms of both G. maculosus and L. marginata cannot be satisfactorily explained by 29 

considering a single predator class, and instead point to the role of visual predators such as 30 

birds. This highlights the importance of considering predation from multiple sources when 31 

investigating anti-predator adaptations, and adds to the growing body of evidence that 32 

multiple predators have effects on the expression of behaviour, morphology and ecology of 33 

species over evolutionary timescales.         34 
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Appendix 26 
 27 

Table A1 Results of one-way ANOVA tests comparing mean percentage water content in non-
stressed and stressed mucus samples 

   Between-groups ANOVA 
Mucus treatment Species Mean % water content ± SD F(2, 57) P 

 D. reticulatum 89.82 ± 8.44 
1.193 0.311 Non-stressed G. maculosus 92.19 ± 4.96 

 L. marginata 88.95 ± 6.69 
     
 D. reticulatum 92.89 ± 7.56 

0.301 0.741 Stressed G. maculosus 91.36 ± 14.97 
 L. marginata 93.89 ± 6.84 

 28 



29 
 

 
 
Table A2 Results of hypothesis tests examining percentage water content and percentage weights of 
all elements before and after attack stimulus for all slug species.  

     
 Species Non-stressed  Stressed Test statistic* P 
 D. reticulatum 89.82 ± 8.44  92.89 ± 7.56 t(19) = -1.09 0.287 

Mean % water content G. maculosus 92.19 ± 4.96  91.36 ± 14.97 t(19) =  0.22 0.830 
 L. marginata 88.95 ± 6.69  93.89 ± 6.84 t(19) = -2.05 0.054 
       
 D. reticulatum 45.69 ± 5.44  47.52 ± 2.32 t(19) = -1.32 0.202 

Mean % weight C G. maculosus 48.81 ± 3.86  49.88 ± 3.31 t(19) = -0.87 0.396 
 L. marginata 46.68 ± 2.94  50.43 ± 5.74 t(19) = -2.32 0.031 
       
 D. reticulatum 35.74 ± 2.36  36.76 ± 3.89 t(19) = -0.96 0.348 

Mean % weight O G. maculosus 36.07 ± 2.22  37.38 ± 4.29 t(19) = -1.20 0.244 
 L. marginata 37.89 ± 3.20  39.63 ± 2.59 t(19) = -2.35 0.029 
       
 D. reticulatum 1.96 ± 1.12  1.67 ± 0.76 t(19) = 1.06 0.303 

Mean % weight Na G. maculosus 0.51 ± 0.67  0.43 ± 0.76 Z = -0.39 0.695 
 L. marginata 1.38 ± 0.94  1.05 ± 0.76 t(19) = 1.04 0.311 
       
 D. reticulatum 0.56 ± 0.73  0.54 ± 0.44 Z = -0.36 0.723 

Mean % weight Mg G. maculosus 0.65 ± 0.38  0.65 ± 0.46 t(19) = -0.04 0.997 
 L. marginata 0.81 ± 0.12  1.14 ± 0.09 Z = -1.76 0.079 
       
 D. reticulatum 2.46 ± 2.75  1.59 ± 2.59 Z = -1.35 0.177 

Mean % weight Al G. maculosus 0.12 ± 0.06  undetected** n/a** n/a** 
 L. marginata 0.54 ± 0.28  undetected** n/a** n/a** 
       
 D. reticulatum undetected**  undetected** n/a** n/a** 

Mean % weight P G. maculosus 1.84 ± 1.69  1.90 ± 1.41 t(19) = 0.893 
 L. marginata 1.84 ± 1.51  1.09 ± 1.36 t(19) = 1.50 0.150 
       
 D. reticulatum 4.06 ± 1.09  4.13 ± 1.49 t(19) = -0.18 0.863 

Mean % weight Cl G. maculosus 1.98 ± 1.48  2.04 ± 1.21 t(19) = -0.13 0.898 
 L. marginata 2.66 ± 2.05  2.69 ± 1.49 t(19) = -0.05 0.960 
       
 D. reticulatum 4.81 ± 1.96  5.40 ± 1.23 t(19) = -1.29 0.212 

Mean % weight K G. maculosus 2.95 ± 1.63  2.36 ± 1.04 t(19) = -0.14 0.893 
 L. marginata 4.71 ± 1.43  4.86 ± 2.26 t(19) = -0.25 0.809 
       
 D. reticulatum 2.88 ± 0.92  4.83 ± 0.97 t(19) = -7.57 <0.001 

Mean % weight Ca G. maculosus 2.17 ± 1.11  5.87 ± 1.45 t(19) = -9.72 <0.001 
 L. marginata 1.49 ± 0.59  3.62 ± 1.32 t(19) = -7.36 <0.001 
       
 D. reticulatum undetected**  undetected** n/a** n/a** 

Mean % weight S G. maculosus undetected**  undetected** n/a** n/a** 
 L. marginata** 0.06 ± 0.06**  0.42 ± 0.16** n/a** n/a** 

*paired t-test results are shown for before-after comparisons of mean values where data are normally distributed;  
Wilcoxons rank test results are shown for before-after comparisons of non-normal data. Tests performed are denoted by t 
and Z where paired t-test or Wilcoxon’s tests were used, respectively 
 
** Significance test not performed due to element not being detected in either non-stressed or stressed mucus samples (or 
both), or detected only once (as in S for L. marginata non-stressed mucus) 
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