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Highlights 

• QSARs of PAMPA permeability are useful to predict a chemical’s passive transport. 

• QSAR models allow a deeper insight into the mechanisms of the membrane transport. 

• Hydrophobicity and hydrogen bonding are important for membrane permeability. 

• Linear or bilinear relationships exist between PAMPA permeability and log P. 

• For passive transport predicted permeability is related to Caco-2 and in vivo data. 

 

 

 

Abstract 

Gastrointestinal absorption (GI absorption) is a key absorption, distribution, metabolism, and 

excretion (ADME) property when the biological effects of substances are evaluated. The Parallel 

Artificial Membrane Permeability Assay (PAMPA) has emerged as a primary screen for 

determining passive transcellular permeability, the dominant GI absorption mechanism for many 

drugs, thus helping with the prioritisation of the most promising lead compounds for 

pharmacokinetic studies. Recently the PAMPA assay has attracted increasing interest from various 

other industrial sectors, including cosmetics, where such non-animal models may provide a crucial 

source of information for in vitro - in vivo extrapolation. This method is also a reliable source of 

experimental data for Quantitative Structure-Activity Relationship (QSAR) modelling of GI 

absorption. In this investigation, published QSAR models for PAMPA were reviewed with the aim 

to summarise and assess critically the current state of the art. The review indicates a relatively 

small number of QSARs compared to some endpoints, but much consistency within the models. 

PAMPA permeability increases with hydrophobicity and decreases with the surface area occupied 

by hydrogen bond acceptor/donor atoms. The models can be applied to screening for bioactive 
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compounds with the potential to pass the gastrointestinal barrier as well as to design new structures 

with increased PAMPA permeability, thus with better expectations towards improved in vivo GI 

absorption.  

 

 

Keywords: PAMPA, QSAR, gastrointestinal absorption, physico-chemical properties, model, in 

silico 

 

 

Abbreviations 

AUC-ROC - area under the curve of receiver operating characteristic; ADME – absorption, 

distribution, metabolism, and excretion; ClogPoct  - calculated log Poct values from the MacLogP 

software; DS-PAMPA – Double-Sink PAMPA; DOPC – dioleoylphosphatidylcholine; F – the 

ratio between regression and residual variances; GI absorption – gastrointestinal absorption; 

HBSADA – hydrogen bonding descriptor developed via summing two Codessa Pro partial surface 

area descriptors: H-acceptors and H-donors polar surface area; HDM – hexadecane membrane; 

HDCA-2/TMSA – the area-weighted surface charge of hydrogen bonding donor atoms divided by 

the total molecular surface area; LR – linear regression; log Poct – the logarithm of the octanol-

water partition coefficient; log D – the logarithm of the apparent octanol-water distribution 

coefficient (at a particular pH); Log PDOPC
0 – intrinsic permeability coefficient measured by 

DOPC-PAMPA; Log PDS
0 – intrinsic permeability coefficient measured by DS-PAMPA; log 

PHDM
0 – intrinsic permeability coefficient measured by HDM-PAMPA; MLR – multiple linear 

regression; MSE – mean squared error; MW – molecular weight; NLR – non-linear regression; P0 

– intrinsic permeability; Pa – apparent permeability coefficient measured by PAMPA assay; 

PAMPA – parallel artificial membrane permeability assay; Pe – effective permeability coefficient 

measured by PAMPA assay; PLS – partial least squares; Ppass – passive permeability across parallel 

artificial membranes; PSA – polar surface area; q – cross-validation parameter; QSAR – 
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quantitative structure–activity relationship; r – correlation coefficient; r2
cv – cross-validated 

correlation coefficient; RMSEcv – root mean squared error of cross-validation; s – standard 

deviation; SAHA – surface area occupied by the hydrogen-bond acceptor atoms; SAHD – surface 

area occupied by the hydrogen-bond donor atoms; SASA – solvent accessible surface area; SVC 

– support vector classification; SVR – support vector regression, TPSA – topological polar surface 

area; TSA – total surface area; UWL – unstirred water layer.   
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1. Introduction 

The molecular properties defining absorption, distribution, metabolism, and excretion 

(ADME) are crucial in drug design and in risk assessment of chemicals. In the past, up to 40% of 

drug candidates failed during late stage development due to poor ADME characteristics [1,2]. 

Introduction of robust preclinical ADME studies led to a reduction of these failures [3]. 

Intestinal absorption, one of the most important ADME properties, is a complex process 

determined by certain physiological conditions (local pH, absorptive surface area), activities of 

enzymes/transporters/carriers in the gastrointestinal tract and the chemical properties (solubility, 

molecular size and stability) of a molecule [4]. Following oral administration a molecule must pass 

through intestinal cell membranes by passive diffusion, carrier-mediated uptake or active transport 

processes before reaching the systemic circulation [5]. In addition, paracellular diffusion is 

considered to be the primarily transport mechanism for very small and polar molecules. 

Membrane permeability is known to be a key property in the drug design pipeline: а drug 

intended for an intracellular target, but with poor membrane permeability, will have low efficacy. 

Thus, various methods to determine membrane permeability are used routinely. Since the early 

1990s, cultured cell models such as human colon adenocarcinoma Caco-2 have been used to model 

the permeability of drugs across the intestinal wall and have become a standard method in the 

pharmaceutical, and other, industries [6]. More recently, the Parallel Artificial Membrane 

Permeability Assay (PAMPA) has started to emerge as a primary screen for passive transcellular 

permeability, with this route being the dominant transport mechanism in the gastrointestinal 

absorption (GI absorption) for 80%-95% of the commercially available drugs [7]. The assay is 

attractive due to its simplicity, high throughput and low cost, making it possible to test a large 

number of compounds in a short period of time. Further PAMPA has proven to have good day-to-
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day reproducibility and low variability, as well as comparable prediction accuracy to the Caco-2 

assay when predicting in vivo permeation by passive diffusion [8]  

In addition to its application in drug design, the PAMPA assay has attracted increasing 

interest from various other industrial sectors (i.e., cosmetics, industrial chemicals, biocides and 

plant protection products) and regulatory authorities where non-animal models may be crucial to 

provide a source of information for in vitro to in vivo extrapolation and internal exposure [9]. It is 

particularly important for cosmetics industry, taking into account that oral absorption is one of the 

elements for the safety assessments of cosmetic ingredients, particularly to interpret the relevance 

of oral dosing to dermal exposure. Moreover reliable in vitro methods to assist safety assessment 

are needed since the European Union has been at the forefront of the global move to ban the animal 

testing of cosmetic ingredients [10,11]. 

In addition to the attractive methodology, PAMPA is a promising source of reliable 

experimental data for the computational (in silico) evaluation of a drug’s GI absorption [12]. Such 

models, typically Quantitative Structure–Activity Relationships (QSARs), attempt to relate 

PAMPA permeability to physico-chemical properties and structural descriptors. QSARs thus 

allow for a prediction of PAMPA permeability to be made directly from chemical structure. In 

addition, the models developed are useful for screening purposes and also provide an insight into 

the structural characteristics important for better absorption thus guiding the design of new 

bioactive compounds with desirable ADME properties. Whilst many models exist, there is no 

overall consensus over the optimal modelling approach and which conclusions may be drawn [13].  

In this paper, we provide an overview of published QSAR models for PAMPA. The aim 

of this investigation was to summarise and review critically the relatively new field of QSAR 

modelling of PAMPA. It is recognised that is still a relatively new field with a limited number of 
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models available, however, there is considerable potential for further development and application. 

The particular focus of this review was the fact that PAMPA permeability has been used 

successfully to predict the GI absorption of orally administered drugs and the use of QSAR models 

accelerates this determination. The models can be applied to screen bioactive compounds for their 

potential to pass the gastrointestinal barrier as well as for the design of new structures with the 

expectation of improved in vivo GI absorption. Further, the PAMPA based in silico models may 

provide valuable quantitative information that is highly useful and applicable in the context of risk 

assessment [9]. 

 

2. The PAMPA assay 

PAMPA is an experimental model introduced by Kansy et al. [14] to predict the oral 

absorption of new therapeutic agents in a simple, reproducible and high throughput manner. The 

assay measures effective/apparent permeability and/or the fraction of the permeated test 

compound. A limitation of PAMPA is that active and efflux transporters are not modelled by the 

PAMPA membrane. Despite this, it has been shown that PAMPA permeability correlates well with 

Caco-2 cell permeability and human intestinal absorption in vivo, this undoubtedly being a result 

of the fact that most of the known drugs are absorbed via passive diffusion. The correlations were 

confirmed to be statistically reliable in studies utilising linear regression reported by Ano et al. 

[15], Fujikawa et al. [5,16], Verma et al. [17]. 

The common experimental set-up of the PAMPA (Fig. 1) consists of:  

(1) donor and acceptor compartments, containing an aqueous solution of the test molecule 

and aqueous buffer initially free of the test molecule respectively; 
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(2) an artificial membrane, which is composed of a variety of organic solvents or 

phospholipid mixtures, and used to separate the donor and acceptor compartments; and 

(3) a filter, used for immobilisation and stabilisation of the membrane. 

 

Fig. 1. A schematic diagram of the PAMPA experimental apparatus 

A number of PAMPA variants have been developed which differ in: 

(1) membrane composition;  

(2) presence of specific ingredients in the acceptor chamber; and  

(3) permeation models used for calculation of the permeability coefficients. 

The most commonly used variants for modelling of intestinal absorption are: HDM-

PAMPA (n-hexadecane membrane, [18]); egg-PAMPA (egg lecithin, [19]); DOPC-PAMPA 

(dioleoylphosphatidylcholine in dodecane membrane, [20]); BM-PAMPA (or BAMPA, 

biomimetic lipid mixture membrane, [21]), and DS-PAMPA (Double-Sink, lipid mixture 

membrane, [7]). 

According to the relationship between PAMPA permeability and GI absorption reported 

by Avdeef [7], the value of Pe ca. 1×10−6 ÷ 2×10−6 may be considered as a threshold, although 

arbitrary, above which the compounds are classified as highly permeable in the gastrointestinal 

tract whereas those with Pe values lower than these are classified as being of low permeability. 

 

3. In silico modelling of PAMPA permeability 
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The simplicity of PAMPA assay as an estimator of intestinal absorption is advantageous 

for development of computational models for membrane permeability prediction. Various QSAR 

models have been developed over the past two decades based on PAMPA permeability. The 

resulting models are particularly useful for initial screening of drugs, where they serve as an 

effective tool to guide structural modifications of the parent molecules necessary to improve 

permeability through biological barriers.  

In addition to the QSAR PAMPA models, a number of physico-chemical / physics based 

models have been proposed to predict passive membrane permeation. Although better reflecting 

the underlying physical permeation process, they are quite expensive computationally, partly due 

to the complexity of the permeation process [22,23]. 

 

3.1. Main experimental properties estimated by the PAMPA assay which have been used as 

inputs into modelling studies 

The main permeability parameters estimated from the PAMPA assay which have been used in 

modelling studies are the apparent and effective permeability coefficients, denoted as Pa/Papp, Pe, 

P0 respectively. The permeability coefficient of the permeating molecule may be defined as a unit 

number of these molecules (mol) diffusing through a unit cross-section of the membrane (cm2) in 

a unit of time (s) under a unit of concentration gradient (mol·cm−3). Consequently, it has the 

dimensionality of cm·s−1. 

These parameters are derived from first principles and differ in some factors that influence 

the permeability [7]. The majority of models are developed using the apparent membrane 

permeability Pa as shown in Eq. 1: 
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Where: 

 rv = VD/VR, VD is the donor compartment volume of a buffer solution and VR is the receiver 

compartment volume of a buffer solution; 

CR and CD are the concentrations of the studied compound in the receiver and donor compartments, 

respectively, determined in the initial moment t = 0 and after a certain permeation time t; 

A is the area of the membrane and εa is the apparent filter porosity. 

It should be kept in mind that apparent permeability does not consider membrane retention 

and steady state time values. The parameter that takes into account these properties is the effective 

membrane permeability (Pe) thus providing a more reliable estimate in comparison to the apparent 

permeability. The Pe is defined as follows: 
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 (Eq. 2) 

 

Eqs. 1 and 2 are nearly identical with the only differences related to the (1 − RM) term (to 

reflect membrane retention − mole fraction of compound retained by the membrane RM) and the 

lag time offset τss (the time needed to saturate the membrane with solute before reaching steady 

state conditions). 

In addition to the above discussed permeability coefficients, intrinsic permeability P0 has 

been reported in some studies. It is determined for the uncharged form of the compound, and is 

therefore the maximal Pe for a range of pH values 
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Historically, instead of the permeability coefficients, the percentage flux (%F) or 

percentage transported solute (%T) were used to measure the fraction of the test compound which 

passed into the acceptor compartment over the time of experiment. Whilst being the most basic 

measured values in any PAMPA setup used for calculation of the permeability coefficients, %F 

and %T do not account for many factors in Eqs. 1 and 2, e.g.the time course of the permeation 

process, the membrane retention, etc. 

 

3.2. Main datasets of PAMPA permeability for modelling purposes 

A number of datasets with PAMPA permeability values published in the literature are 

summarised in Table 1, where the permeability parameter estimated, literature sources and the 

main experimental conditions are presented. The selected datasets in Table 1 are those with higher 

numbers of compounds (at least 40) in order to provide a solid basis for derivation of statistically 

reliable models. For instance, in order to avoid chance correlations at least five to six data points 

per variable (structural descriptors or physico-chemical properties) are required [24]. The largest 

publically available dataset has been collected by Avdeef and coworkers and summarised in [7]. 

It comprises Double-Sink PAMPA intrinsic and effective permeability coefficients determined for 

nearly 300 compounds (mostly commercial drugs) and was noted a benchmark dataset for PAMPA 

by Przybylak et al. [12]. Most of the larger datasets consist of commercial drugs as well and are 

constructed to evaluate PAMPA assay modifications.  

It should be kept in mind that the experimental conditions used for PAMPA vary e.g. lipid 

composition, donor and acceptor buffer solutions, stirring speed, etc. These variations may 

significantly affect permeability as well as in vivo predictability, thus careful selection of 

experimental conditions is needed particularly when the modelling relies on literature data. In 
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addition to the above mentioned conditions, pH may also strongly affect PAMPA permeability. 

The considerable pH gradient during the gastrointestinal transition suggests  a range of pH 

measurements should be performed and used for in vivo prediction [8].The largest dataset, noted 

in the literature (ca. 5500 compounds) is reported by Sun et al [25] but was not considered further 

as it is not publicly available. 

 
Table 1. The main datasets of PAMPA permeability existing in the literature (containing data for 
more than 40 compounds and excluding skin-PAMPA and BBB-PAMPA datasets). 
 

Source Estimatedparameter Number of 

substances 
PAMPA experimental conditions 

Kansy et al. [26] %F 94 pH 7.4, with and without 0.5% glycocolic acid 

Sugano et al. [21] Pa 80 3% BAMPA phospholipid mixture in 1,7-octadiene, 

pH 6 

Zhu et al. [27] Pa 92  1% egg lecithin in n-dodecane, pH 5.5 and 7.4 

Kerns et al. [28] Pe 72 phosphatidyl choline in dodecane, pH 4, 6.6, 7.4 and 

8.0 

Fujikawa et al. [16] Pa 97 10% lecithin in 1, 9-decadiene, pH 7.3 

Galinis-Luciani et al. 

[29] 
Pe 40 20% lecithin in decane pH 7.4 

Chen et al. [30] Pe 47 lipid/oil/lipid tri-layer artificial membrane 

(phospholipids mixture-hexadecane- phospholipids 

mixture), pH 7.4 

Avdeef [7] P0, Pe  292  Double-Sink PAMPA, pH 6.5 and 7.4, UWL-

adjusted setup 

Wang et al. [31] Pa 62 1,2-dioleoyl-sn-glycero-3-phosphocholine in 

hexadecane 

Oja and Maran [32] Pe 80 1% lecithin in dodecane , pH 3, 5, 7.4 and 9 

Oja and Maran [33] Pe 97 1% lecithin in dodecane , pH 3, 5, 7.4 and 9 

Oja and Maran [34] Pe 75 1% lecithin in dodecane , pH 3, 5, 7.4 and 9 
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Source Estimatedparameter Number of 

substances 
PAMPA experimental conditions 

Oja and Maran [35] Pe, P0 238 1% lecithin in dodecane , pH 3, 5, 7.4 and 9 

 

3.3. QSAR models of PAMPA permeability 

The usability of QSAR models for PAMPA relies on the fact that permeability (particularly 

when combined with aqueous solubility and pKa) can be applied as a predictor of GI absorption 

of orally administered drugs [7,36].  

The models reported in the literature follow the classical QSAR approach employing 

experimental and/or theoretical structural descriptors to formulate a relationship with permeability. 

Most models are based on MLR or PLS statistical methods. Only a small number of models apply 

artificial neural networks to incorporate nonlinear dependencies. Generally, simple models based 

on few descriptors are easier to interpret than models based on many descriptors relating 

permeability in a complex way [37]. In addition the main requirements for good QSAR practice 

have to be followed, including thorough model validation and applicability domain analysis [38]. 

QSAR models for PAMPA relate the relevant permeability parameter, e.g. Pa, Kp or flux, 

with physico-chemical properties such as the logarithm of the octanol-water partition coefficient 

(log P), the negative logarithm of the acid dissociation constant (pKa) and the logarithm of the 

octanol-water distribution coefficient (log D) or structural descriptors including the polar surface 

area (PSA), the surface area of hydrogen bond donors or acceptors; Abraham solute descriptors; 

indicator variables for specific functional groups; VolSurf parameters, etc (Table 2). 

In related studies QSAR models for PAMPA data of peptide derivatives and other 

structures were developed [5,15,16] using classical structural properties (log P, pKa and hydrogen-
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bonding potential) and VolSurf parameters. The models were based on Multiple Linear Regression 

(MLR) and/or Partial Least Squares (PLS) (Table 2). 

Specifically, Ano et al. [15] analysed the absorption of peptide-related compounds across 

the membrane via a transcellular route, using the PAMPA assay. Although Caco-2 cells were 

extensively utilised to evaluate metabolism and absorption of compounds, it was shown that many 

peptide derivatives were hydrolysed by both extra- and intracellular enzymes produced by Caco-

2 cells during permeation. In this case, the PAMPA assay is especially valuable as it enables the 

measurement and understanding of the passive diffusion properties of these compounds. Log Pa 

values were measured at pH 7.3 and 6.3 and predictive models were built for both experimental 

conditions, using classical and VolSurf [39] parameters. The results from both methods showed 

that the most significant physico-chemical features to determine variations in PAMPA 

permeability were the hydrogen bonding ability of molecules in addition to hydrophobicity at a 

particular pH. According to the models, an increase in apparent hydrophobicity at a particular pH 

increases permeation across the membrane whereas larger surface area occupied by hydrogen bond 

acceptor atoms is unfavourable for permeation through membranes. A plot of Caco-2 versus 

PAMPA permeability coefficients was derived for the compounds tested and provided a means to 

arrange compounds according to their absorption pathway. 

Fujikawa et al. [5] measured and analysed PAMPA permeability of various drugs, in 

addition to the already reported peptide-related compounds. The predictive models derived by the 

same modelling approach revealed that the hydrogen-donating ability, in addition to hydrogen-

accepting ability, is significant in determining the PAMPA permeability of compounds with more 

diverse structures. An equation with acceptable statistical quality was reported which employed 

calculated physicochemical parameters. The equation implied it may be possible to predict passive 
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transport using calculated values. An in silico stepwise procedure that takes into account the 

contribution of both active and passive transport mechanisms was proposed for prediction of 

intestinal absorption based on the correlation between PAMPA and Caco-2 permeability 

coefficients and human intestinal absorption. 

In an even more extensive study, Fujikawa et al. [16] experimentally measured the Pa of 

more compounds with high apparent hydrophobicity, including several pesticides. In the previous 

study [5] compounds such as desipramine, imipramine, and testosterone were excluded from the 

analyses as their measured Pa values were lower than calculated. In order to address this 

phenomenon, the role of the unstirred water layer (UWL) on membrane surfaces and the membrane 

retention was examined and the influence of these factors on PAMPA permeability of hydrophobic 

compounds was clarified. It was determined that the UWL in a typical unstirred PAMPA setup is 

about an order of magnitude thicker than that in the intestine (mainly due to the intestinal microvilli 

movements) and acts as a rate-limiting barrier for PAMPA permeability of hydrophobic 

compounds. Taking this into account, the PAMPA permeability of the whole dataset of hydrophilic 

and hydrophobic compounds was explained by a bilinear QSAR model, which includes the same 

parameters used in the previously reported equations. Since many chemicals have toxic effects, 

the proposed model can be used to support the safety assessment of chemicals to which humans 

are inadvertently exposed, in addition to screening for drug candidates. 

Wang et al. [31] correlated permeability through PAMPA with experimentally measured 

parameters of cyclic peptides obtained by using rapid assays based on chromatography and nuclear 

magnetic resonance spectroscopy. A bilinear model was derived where HPLC capacity factor and 

amide temperature coefficients were shown to contribute to cyclic peptides PAMPA permeability.  
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The first modelling studies that account for pH differences in the intestine using QSAR 

modelling were recently performed by Maran and co-authors. Their first publication [32] 

considered the diversity of pH in the gastrointestinal tract that occurs depending on the diet 

(fasted/fed state) and motivated them to measure and analyse PAMPA permeabilities at different 

pH values between 3 and 9. The QSAR models developed based on drugs and drug-like compounds 

with various pKa values used the highest permeability value of a compound from all pHs thus 

provided a good starting point for estimation of maximum GI absorption. The best model included 

only two mechanistically relevant descriptors, logP and hydrogen bonding surface area. In the 

subsequent studies chemical class-specific QSAR analyses were performed and pH-permeability 

profile modelling is proposed by development of a series of equations for different pH. In [33]two 

groups of models were developed – for acidic and basic compounds respectively. It has been 

observed that the permeability of acidic compounds is influenced mainly by hydrogen bond donor 

properties, and the permeability of basic compounds is more dependent on partition properties. A 

further modelling study focused on neutral and amphoteric compounds [34]. The results showed 

that the membrane permeability of neutral compounds is influenced mainly by the hydrogen bond 

donor ability while logP is not a suitable descriptor. Amphoteric compounds have complex 

chemical constitution and require three-parameter models to predict membrane permeability, the 

parameters being log P, hydrogen bond properties and the shape of the molecules. Considering 

molecular size, the authors concluded that more compact molecules typically have higher 

membrane permeability. Further investigations by the same group [35] demonstrated that 

replacement of log P with log D considerably improves correlations with membrane permeability. 

Further, from a comparison with human GI absorption the authors introduced a cutoff value (log 

Pe = −6.20) to distinguish between high and low membrane permeability. Based on this cutoff 
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value, classification predictions by the QSAR models were performed. Good discriminative ability 

between compounds with high and low permeability was demonstrated. In this study, in addition 

to the pH-permeability profile predictive models, models were also derived for the highest 

permeability and intrinsic permeability. All QSAR models developed within these studies have 

been validated on external datasets and, together with the experimental data, are available through 

the QsarDB repository [40] (http://dx.doi.org/10.15152/QDB.137 [32]; 

http://dx.doi.org/10.15152/QDB.166 [33]; http://dx.doi.org/10.15152/QDB.184 [34]; 

http://dx.doi.org/10.15152/QDB.203 [35]). 

Several studies that use calculated descriptors only, as opposed to measured properties, 

were reported as many commercially available programs can calculate the common physico-

chemical properties that have been shown to be useful for the prediction of PAMPA permeability. 

The study reported by Verma et al. [17] presents various QSAR models of membrane 

permeability measured by PAMPA and modified PAMPA assays. Linear and bilinear relationships 

were obtained, in all of which the hydrophobicity of the compounds represented by ClogP plays a 

significant role. The bilinear dependence between hydrophobicity and PAMPA permeability is 

confirmed and indicator variables that reflect the importance of functional groups with hydrogen 

bonding capacity were identified. 

The analysis of Fischer et al. [41] was focused on the permeability of charged molecules, 

in this case quaternary amines. Contrary to most theories, their results indicated that the 

permeability of permanently charged compounds can cover a wide range of values and they 

hypothesised that the distribution of the charge over aromatic ring systems may play a crucial role 

in the variations in permeability. Computational models were built for the PAMPA permeability 

http://dx.doi.org/10.15152/QDB.137
http://dx.doi.org/10.15152/QDB.166
http://dx.doi.org/10.15152/QDB.184
http://dx.doi.org/10.15152/QDB.203
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of 20 compounds using calculated descriptors that reflect hydrophobic, H-bonding, electronic 

properties and shape of the molecules. 

With regard to the need for effective methods for the selection of compounds with desired 

permeability from compound libraries, Nakao et al. [42] developed a number of PAMPA models 

using only in silico descriptors for the estimation of the permeability of compounds before they 

are synthesised. They proposed an in silico permeability prediction system, which is based on 

computed logP, pKa (in the form of |pKa – pH|) and PSA to predict the permeability of chemically 

diverse structures. A number of software programs were employed to calculate these descriptors 

and the best predictions were obtained with ClogP, ACD/pKa, and TPSA (calculated with Biobyte, 

ACD/Labs and Molinspiration software, respectively). 

An MLR model with descriptors similar to those suggested by Kansy et al. [26], namely 

log D and the ratio of polar to total molecular surface area (PSA/TSA), was developed recently by 

the authors of this review [43]. Substitution of the PSA/TSA ratio was considered to facilitate 

calculations: PSA was substituted by topological polar surface area (TPSA) [44], TSA was 

substituted by molecular weight, the most fundamental descriptor of the molecular size. For the 

purposes of modelling, PAMPA permeability coefficients measured by the Double-Sink, UWL-

adjusted PAMPA assay for 276 compounds from the dataset reported by Avdeef [7] were used. 

The sink conditions (lowering the active concentration of free permeant in the acceptor 

compartment) together with the UWL control (achieved by in-well stirring) allowed for 

elimination of non-linearity of the Pe data across a broad range of lipophilicity. The models derived 

proved to have high predictivity (external validation q2 = 0.77 ÷ 0.79) and were implemented in 

the open source knowledge-mining platform KNIME [45] where can be easily applied for 

screening of chemical libraries to select compounds with suitable permeability [46].  
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More QSAR models with calculated descriptors were reported by Karelson et al. [47] and 

Tulp et al. [48]. Charge distribution, polarisability, hydrogen acceptor/donor potentials, molecular 

shape and surface area were considered as descriptors in the equations. The models from both 

analyses [47,48] exhibit reasonable prediction capabilities. 

Sun et al. [25] reported a support vector regression (SVR) model with high predictive 

ability based on a dataset obtained from the National Center for Advancing Translational Sciences 

(NCATS). The dataset included 4071 compounds with quantitative permeability data which acted 

as the training set and 1364 compounds with qualitative permeability data which acted as the test 

set. The predictive ability of the model was estimated by the area under the curve of receiver 

operating characteristic (AUC-ROC) parameter. The AUC-ROC value of 0.90 indicated high 

predictivity of the SVR PAMPA model. The key features influencing the permeability of a 

compound identified by the model were PSA, counts of HBD and HBA, MW and the occurrence 

of an acidic group in the molecule. On line PAMPA permeability predictor based on the developed 

models is available (https://tripod.nih.gov/adme/pampar/ppp.html). 

A small number of QSPR models relate PAMPA permeability parameters to the Abraham 

linear free energy solvation descriptors [49] in order to shed light on important relationships 

between permeability values measured by different PAMPA assays. 

Ruell et al. [50] reported a UV-detection PAMPA cosolvent procedure based on the use of 

20% v/v acetonitrile in the aqueous buffer. Cosolvents [21] as well as bile salts [26] and other 

solubilising agents [51] are known to improve the permeability assay of poorly soluble 

compounds, which is especially valuable to measure the intrinsic permeability of weakly soluble 

molecules. A training set of 32 drugs was studied both in aqueous buffer and in cosolvent-buffer 

solution and the intrinsic permeability coefficients were determined by the pKa
flux method. A 
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unified acid-base in silico permeability model was derived which revealed the dependence of the 

intrinsic permeability coefficients on the properties of the two solvent systems. The best MLR 

equation included Abraham’s H-bond acidity (α) and basicity (β) and the intrinsic permeability 

value measured in cosolvent solution, Po
COS. The model was used to calculate the aqueous intrinsic 

permeability, P0, of five widely used drugs with low solubility, which could not be characterised 

without cosolvent. 

The study of Avdeef and Tsinman [52] compared the intrinsic permeability coefficients 

(Log PHDM
0, Log PDOPC

0 and Log PDS
0) of drug molecules, obtained by three variants of the 

PAMPA assay, namely HDM-, DOPC- and DS-PAMPA. It was shown that permeability 

parameters measured by these assay variants differ substantially, with up to 1000-fold difference 

between values derived from DS- and HDM-PAMPA models. Therefore, an in combo approach 

was adopted where a measured descriptor (DS-PAMPA) is “combined” with in silico descriptors 

to predict the other permeability models (HDM or DOPC) to explain the relationships between the 

models. Two Abraham descriptors are identified as being significant – the solute H-bond acidity 

(α) and the solute H-bond basicity (β) in explanation of P0. 

One advantage of QSAR modelling for PAMPA is its ability to guide structural 

modifications within a series of structural analogues needed for improvement of permeability. This 

is well illustrated in the study of Savić et al. [53] where the permeability of 13 newly synthesised 

β-hydroxy-β-arylalkanoic acids (HAA) was measured in PAMPA followed by QSAR modelling 

with the final aim to propose novel HAA structures with improved GI absorption. Despite the 

limitation in the training set (it being only 8 compounds), the results indicated some significant 

trends: the introduction of branched side chains, as well as introduction of substituents on one 
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phenyl ring (which disturbs symmetry of the molecule) have positive impact on the permeability 

and thus on GI absorption. 

 

4. Conclusions 

PAMPA is a convenient assay for the estimation of intestinal absorption of drugs and 

related compounds. Data from the PAMPA assay have been used to develop in silico models for 

the prediction of membrane permeability. This review has demonstrated that QSAR models of 

PAMPA permeability may be a valuable tool, particularly in the initial steps of drug design. They 

may assist drug designers in the estimation of the passive intestinal permeability of drugs and other 

bioactive compounds thus saving time and reducing costs as by the potential elimination of in vivo 

and /or in vitro experiments. 

Analysis of the QSAR models in this review has shown that PAMPA permeability 

generally increases with hydrophobicity and decreases with the surface area occupied by hydrogen 

bond acceptor/donor atoms. This confirmed that passive diffusion is the more probable mechanism 

for smaller molecules with low PSA. With regard to hydrophobicity, linear QSARs with log P are 

reliable when UWL adjustment is provided in the assay. Alternatively, for assays without UWL 

adjustment, bilinear QSARs are more appropriate for predictive purposes. 

A significant number of studies investigated the correlations between permeability in 

PAMPA and Caco-2 cells as well as GI absorption. In general, good correlations were identified 

for passively transported molecules whereas molecules where active transport may be important 

were shown to be poorly predicted. Therefore, analysis of such relationships is useful to identify 

actively transported molecules. Such types of combined approaches may be synergistically 

effective in covering different transport mechanisms and thus useful for in vivo prediction [8]. 
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The accuracy of the predictions for PAMPA from QSAR follows the usual limitations of 

modelling when statistical models are being developed: accuracy depends strongly on the size, 

quality and representativeness of the training set used to derive the model. The current trend in the 

QSAR modelling field is to construct larger training sets of structures that are necessary to 

elucidate the proper functional relationship between molecular descriptors and experimentally 

determined membrane permeability rates. Concerning PAMPA modelling, only a small number of 

large datasets are available in the public domain. More work is needed in this direction to provide 

access to large diverse compounds datasets that would be useful for development of reliable and 

highly predictable models with a broader applicability domain. In addition, experimental 

conditions should be carefully considered when QSAR analysis is performed. This was shown to 

be particularly important if heterogeneous compilations of data are used. In particular membrane 

permeability measurements over wider pH ranges provide more information about passive 

transport and thus are a good basis for modelling. 

Most of the published PAMPA, as well as GI absorption data are related to commercial 

drugs and drug-like molecules. Most of them have high or medium permeability that limits the 

predictions as a good spread of values is not always obtained. Thus further work is needed in this 

direction to expand the chemical space and thus the applicability domain of the developed models. 

This is particularly important in the light of the potential applications of these models in chemical 

safety assessment processes relevant to different industrial sectors such as cosmetics, industrial 

chemicals, biocides and plant protection products. 
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Table 2. A summary of QSAR models for permeability measured in PAMPA assay in chronological order. 
 
Model, 
Reference 

Dependent 
variable  

Class(es) 
studied 

Statistical 
method/ 
Software 

Training set Significant parameters Statistical parameters 

Ruell at al. 
[50] 

Log Po 
(intrinsic 
permeability 
value under 
cosolvent-free 
conditions) 

Ionisible drugs 
(17 bases, 
13 acids,  
2 ampholytes) 

MLR 32 log Po
COS (intrinsic permeability values 

measured in cosolvent solution); 
Abraham’s H-bond acidity (α) and 
basicity (β) 

r = 0.97,  
s = 0.38,  
F = 279,  
q2 = 0.96 

Ano et al. [15] Log Pa at pH 
7.3 and 6.3 

Peptide 
derivatives and 
related 
compounds 

MLR 22 MLR: log Poct, |pKa – pH|, SAHA pH 6.3:  
s = 0.28,  
r2 = 0.85; 

PLS (VolSurf 
analysis) 

22 PLS pH 6.3: number of components = 4;  
SEcalc = 0.24; 
r2 = 0.89; 
SEpred = 0.49; 
r2

pred = 0.55  
pH 7.3: number of components = 4;  
SEcalc = 0.26; 
r2 = 0.87; 
SEpred = 0.43; 
r2

pred = 0.65 
Fujikawa et al. 
[5] 

Log Pa at pH 
7.3 

35 commercial 
drugs and 22 
peptide-related 
compounds 

MLR 57 Log Poct, |pKa – pH|, SAHA, SAHD s = 0.32;  
r2 = 0.78;  
q2 = 0.74 

PLS (Volsurf 
program/ 
analysis) 

 Number of components = 6;  
SEcalc = 0.39; 
r2 = 0.69; 
SEpred = 0.56; 
q2 = 0.37  

MLR Calculated physicochemical 
parameters: ClogPoct, |calcd pKa – pH| 

s = 0.36;  
r2 = 0.72;  
q2 = 0.67 

Avdeef and 
Tsinman [52] 

Log PHDM
0 Commercial 

drugs and 
some organic 
acids 

MLR  31  log PDS
0, Abraham solvation 

descriptors:  
α (solute H-bond acidity) and  
β (solute H-bond basicity) 

r2 = 0.89;  
s = 0.60;  
F = 75;  
q2 = 0.86 
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Model, 
Reference 

Dependent 
variable  

Class(es) 
studied 

Statistical 
method/ 
Software 

Training set Significant parameters Statistical parameters 

log PDOPC
0 42 r2 = 0.84;  

s= 0.89;  
F = 64;  
q2 = 0.81 

Verma et al. 
[17] 

Log Pa, F  MLR, NLR 13 - 94 in 
different 
datasets 

CLOGP; four indicator variables  

Fischer et al. 
[41] 

log Pe  Permanently 
positive 
charged 
compounds 

PLS 20 Electronic properties and shape 
parameters 

Best model:  
r2 = 0.89;  
 r2X = 0.71;  
q2 = 0.72;  
RMSE = 0.52;  
number of components = 3 

Fujikawa et al. 
[16] 

Log Pa at pH 
7.3 

37 chemicals,  
38 commercial 
drugs,  
22 peptides 
and related 
compounds 

MLR 71 MLR (model for hydrophilic 
compounds):  
log P, |pKa - pH|, SAHA, SAHD 

s = 0.35;  
r2 = 0.76;  
q2 = 0.72  

26 MLR (model for hydrophobic 
compounds):  
logP, |pKa - pH| 

s = 0.30;  
r2 = 0.54;  
q2 = 0.42  

NLR 97 NLR (combined model): log Papp, 
SAHA, SAHD 

s = 0.36;  
r2 = 0.72;  
q2 = 0.68 

Nakao et al. 
[42] 

Log Pa at pH 
7.3 

Diverse 
compounds 
including 
peptide related 
compounds, 
drugs, and 
other 
chemicals 

MLR 60 logP, pKa, and PSA – experimentally 
determined or calculated 

Best model: 
SD = 0.389;  
r2 = 0.699; 
F3,56 = 43.428; 
r2

cv = 0.653; 
RMSEcv = 0.404 

Karelson et al. 
[47] 

Log Pa at pH 
5.5 and pH 7.4 

Various drugs 
and drug-
related 
compounds 

MLR models 47 MLR models: Descriptors related to 
charge, hydrogen acceptor and donor 
potentials, polar molecular surface 
area, electrophilicity and 
nucleophilicity of the compounds. 

Log Pa  at pH 5.5:  
r2 = 0.653  ÷ 0.709; 
r2

cv = 0.539  ÷ 0.591; 
external validation  
q² = 0.519 ÷  0.577 
next = 23/24 
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Model, 
Reference 

Dependent 
variable  

Class(es) 
studied 

Statistical 
method/ 
Software 

Training set Significant parameters Statistical parameters 

54 Log Pa  at pH 7.4:  
r2 = 0.752  ÷ 0.814; 
r2

cv = 0.601  ÷ 0.694; 
external validation  
q² = 0.444 ÷  0.630 
next = 42/43 

ANN models 61  Log Pa  at pH 5.5:  
r2

train = 0.820; 
r2

test = 0.740 
52 Log Pa  at pH 7.4:  

r2
train = 0.801; 

r2
test = 0.791 

next ≤ 10 
Tulp et al. [48] Log Pa at pH 

7.3 
Peptidic 
compounds 
and 
commercially 
available drugs 

MLR 60 5 descriptors that account for hydrogen 
bonding ability, charge distribution, 
polarisability, and shape of molecules 

r2 = 0.707; 
r2

cv = 0.631; 
F = 18.8;  
s2 = 0.143 

Wang et al. 
[31] 

Log Pa Cyclic peptides NLR 26 Log k’ (HPLC capacity factor) and 
ƩΔδNH/ΔT values (amide temperature 
coefficients) 

s = 0.30;  
r2 = 0.63;  
q2 = 0.52 

Oja and Maran 
[32] 

Log Pe at four 
pHs (3, 5, 7.4, 
9) 

Drugs and 
drug-like 
compounds 

MLR 44 Log P and HBSADA r2 = 0.8250;  
F = 96.6589; 
r2

cv = 0.7984; 
r2

scr = 0:0489; 
s2 = 0.2124 
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Model, 
Reference 

Dependent 
variable  

Class(es) 
studied 

Statistical 
method/ 
Software 

Training set Significant parameters Statistical parameters 

Oja and Maran 
[33] 

Log Pe at four 
pHs (3, 5, 7.4, 
9) 

Acidic and 
basic drugs and 
drug-like 
compounds 

MLR 28 acidic 
compounds 
 
46 basic 
compounds  

Acidic compounds: HDCA-2/TMSA 
 
Basic compounds: log DpH7.4 and log 
DpH9: 
 

Best models for acidic compounds:  
r2 > 0.8 for  
pH 3 and pH 5 
external validation  
q² = 0.31/0.64 
next = 8 
 
Best models for basic compounds: r2 > 
0.7 for pH 7.4 and pH 9 
external validation  
q² = 0.72/0.85 
next = 15 

Oja and Maran 
[34] 

Log Pe at four 
pHs (3, 5, 7.4, 
9) 

Neutral and 
amphoteric 
Drugs and 
drug-like 
compounds 

MLR 12 neutral 
compounds 
46 amphoteric 
compounds 

Neutral compounds:  HDCA-2 
Amphoteric compounds: log P; HDCA 

Neutral compounds models: 
r2 =  0.95 ÷ 0.96 
external validation  
q² = 0.96  ÷ 0.99 
next = 3 
 
Amphoteric compounds: 
r2 =  0.64 ÷ 0.77 
external validation  
q² = 0.67  ÷ 0.73 (after 2 outliers 
removed) 
next = 14 

Oja and Maran 
[35] 

Log Pe at four 
pHs (3, 5, 7.4, 
9), 
logPe_highest, 
and logPo 
calculated 
from pH-s and 
pKa 

238 drug 
substances 

MLR and 
threshold  
based 
classification 

134 Log D and  additional CODESSA 
descriptors to capture additional 
important structural characteristics 

Six MLR and six classification models 
Model for logPe – highest: 
r2 = 0.75; 
q2  = 0.74; 
s2 = 0.34; 
external validation q² = 0.60 
next = 60 
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Model, 
Reference 

Dependent 
variable  

Class(es) 
studied 

Statistical 
method/ 
Software 

Training set Significant parameters Statistical parameters 

Sun et al. [25] Log Pe Mostly drug-
like molecules 

SVR, SVC SVR: 4079 
 
SVC: 2346 

PSA, counts of hydrogen bond donors 
(HBD) and acceptors (HBA), count of 
aromatic rings, molecular weight, 
hydroxyl oxygen and hydrogen in an 
acidic group 

Regression model:  
r2 = 0.90; 
MSE – 0.07 log units. 
AUC-ROC = 0.90 
 
Classification model: 
AUC-ROC = 0.88 

Savić et al. 
[53] 

Pa, %T Newly 
synthesised β-
hydroxy-β-
arylalkanoic 
acids 

MLR, PLS and  
ANN;  

8 Dragon descriptors (TALETE slr, 
2010) indicating that introduction of 
branched side chain and introduction of 
substituents on the one phenyl ring 
could have positive impact 
 

Best (MLR) models 
MLR (%T): 
r² = 0.990; 
SEE = 0.916; 
F = 209.16; 
LOO q² = 0.942; 
external validation 
q² = 0.976. 
 
MLR (Papp): 
r² = 0.852; 
SEE = 0.248; 
F = 209.16; 
LOO q² = 0.645; 
external validation  
q² = 0.901 
next = 5 

Diukendjieva 
et al. [43] 

Pe Drugs and 
drug-like 
compounds 

MLR 251 Log D, TPSA/MW ACD/Percepta log D model: 
r² = 0.75; 
SEE = 1.10; 
F = 371.3; 
LOO q² = 0.74; 
external validation q² = 0.79 
(ntrain / next  = 200 / 51) 
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Model, 
Reference 

Dependent 
variable  

Class(es) 
studied 

Statistical 
method/ 
Software 

Training set Significant parameters Statistical parameters 

248 ChemAxon log D model: 
r² = 0.74; 
SEE = 1.11; 
F = 345.1; 
LOO q² = 0.73; 
external validation q² = 0.77  
(ntrain / next  = 198 / 50) 
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