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SUMMARY  

This paper presents a subjective safety and cost based modelling approach for evaluating safety 

requirements specifications in the study of safety-critical software. In the approach fuzzy set 

modelling and evidential reasoning are combined to assess both the safety associated with and the 

cost incurred in each option of safety requirements specifications. Both safety and cost estimates 

are combined to obtain the preference degree associated with each option of safety requirements 

specifications for selecting the best one. An example is presented to demonstrate the proposed 

approach for safety based decision making in safety requirements analysis of safety critical 

software development.  

 

1. Introduction 

It has been recognized in recent years that similar to safety analysis of engineering systems software 

safety analysis should also be integrated into the initial stages of the product development, more 

specifically into the early stages of the safety-critical software development, so that safety-related 

concerns can be addressed early to avoid the costs and delays due to major re-work of designs at the 

later stages. Safety analysis in the development of safety-critical software includes several stages, 

such as analysis of safety requirements; safety analysis of architectural and detail designs; and safety 

analysis of code. Safety analysis of architectural and detail designs and safety analysis of code have 

been extensively studied using various safety analysis approaches [4][5][6][7]. In the above, the 

                                                      
 Manuscript submitted to International Journal of Reliability, Quality and Safety Engineering. 



 

analysis of safety requirements plays the most vital role since any faults introduced in this phase 

may corrupt the subsequent phases [1][11]. The analysis includes safety requirements analysis and 

safety analysis of the safety requirements specifications where the former produces the safety 

requirements specifications and the latter aims to reduce risks to a reasonable and acceptable level 

and provides evidence to support certification [11]. The importance of safety analysis of safety 

requirements specifications has been well recognised by software safety researchers. Both 

qualitative and quantitative safety assessment techniques have been used to deal with this issue. It 

has been recognised that in many circumstances it is difficult to employ traditional safety assessment 

techniques with confidence mainly due to the fact that software fails differently from hardware and 

there is a lack of safety data. Therefore, more flexible safety assessment techniques are required to 

assess the safety associated with safety requirements specifications effectively and efficiently. A 

novel subjective approach has been developed to deal with safety analysis of safety requirements 

specifications in a rational way [11]. Using that approach, safety requirement specifications can be 

analysed on a subjective basis.  

In the safety-critical software development process, there may be several options of safety 

requirements specifications, each of which corresponds to certain levels of safety and cost. To select 

the most desirable option, it is required to model the cost incurred in each option and also to 

synthesise the cost and safety associated with each option to select the best one. This paper presents 

a framework that can be used to synthesise both the cost and safety aspects for each option of safety 

requirements specifications. The approach may be used to select a particular option of safety 

requirements specifications in situations where the level of uncertainty for safety based decision-

making is high. 

 

2. Subjective Safety Analysis 

The modelling approach for subjective safety analysis, presented in this paper, partitions the analysis 

into smaller phases. Each phase corresponds to a domain of analysis in which requirements analysis 

and safety analysis are conducted in parallel [1]. The results generated using the approach are 

encoded in an information model, that is, the Safety Specification Hierarchy (SSH), which records 

the safety requirements specifications obtained during each phase with respect to an accident, 

hazard, safety constraint (a condition that negates a hazard) and safety strategy (a scheme to 

maintain a safety constraint), and their logical relationships. 



 

In the analysis of safety requirements specifications, in many cases, it may be difficult or even 

impossible to apply traditional safety assessment methods such as fault tree analysis to deal with 

safety issues due to the nature of software failure. Therefore, analysts may have to describe a failure 

event in terms of vague and imprecise descriptors like “reasonably low” or “low” [11]. This kind of 

judgment is fuzzy in nature and may be more naturally treated using fuzzy set theory. The subjective 

safety assessment framework for safety requirements specifications presented in this paper combines 

safety modelling of safety requirements specifications at the bottom level using fuzzy set theory and 

safety synthesis in a hierarchical process using the evidential reasoning approach [12][13]. The 

reason why the evidential reasoning approach is used to deal with hierarchical evaluation is that it 

does not suffer from data loss in subjective information aggregation, which has been experienced by 

many safety researchers/engineers in traditional subjective safety analysis. The detailed description 

of the evidential reasoning approach can be founded in [12][13]. It will be briefly described in the 

context of its application to safety analysis of requirements specifications in the software domain 

later in this paper. The subjective safety assessment model is shown in Fig. 1 where an ellipse 

represents the safety evaluation of the named specification and an arrow gives the propagation 

direction of safety analysis from one level to another. The safety evaluations associated with safety 

rules at level 5 determine the safety evaluations associated with the safety strategies at level 4 which 

further determine the safety evaluations associated with the corresponding safety constraints. 

Furthermore, the safety evaluations associated with the safety constraints at level 3 determine the 

safety evaluations on hazard modelling that in turn determine safety evaluations on accident 

modelling (level 1) which finally determine the safety evaluation associated with the safety 

requirements specifications [11]. 

In subjective safety analysis, there are three basic parameters (i.e. failure likelihood, consequence 

severity and failure consequence probability) which are usually used to assess the safety associated 

with an event on a subjective basis [2][9][10]. The subjective safety associated with a safety rule can 

also be modelled in terms of these three parameters. In this case, the failure likelihood defines the 

probability that the safety rule is violated, the consequence severity describes the magnitude of 

possible consequences and the failure consequence probability defines the likelihood that failure 

effects will occur given the violation of the safety rule [11]. The logical relationships between the 

safety specifications can be reflected by failure consequence probabilities associated with safety 

rules. Since great uncertainty is involved in assessing the three parameters associated with a safety 

rule, subjective linguistic variables are appropriate. To estimate the failure likelihood, for example, 

one may often use such variables as “highly frequent”, “frequent”, “reasonably frequent”, 



 

“average”, “reasonably low”, “low” and “very low”, to estimate the consequence severity, one may 

often use such variables as “catastrophic”, “critical”, “marginal” and “negligible”, and to estimate 

the failure consequence probability, one may often use such variables as “definite”, “highly likely”, 

“reasonably likely”, “likely”, “reasonably unlikely”, “unlikely” and “highly unlikely”. The typical 

linguistic variables for describing these three parameters may be defined in terms of membership 

degrees belonging to the seven categories (shown in Tables 1, 2 and 3) [11]. Membership degrees 

associated with the three basic parameters of a safety rule can be assigned by safety analysts, with 

reference to Tables 1, 2 and 3, to reflect their judgments [11]. 

Suppose Li,j,k,l represents the fuzzy set of the failure likelihood of occurrence associated with 

Rulei,j,k,l (i.e. the likelihood that Rulei,j,k,l is violated), Ci,j,k,l represents the fuzzy set of the 

consequence severity, and Ei,j,k,l represents the failure consequence probability. The subjective safety 

description Si,j,k,l associated with Rulei,j,k,l can be defined as follows [2][9][10]: 

Si,j,k,l =  Ci,j,k,l  Ei,j,k,l  Li,j,k,l 

where the symbol “” represents the composition operation and “” the Cartesian product operation 

in fuzzy set theory. 

The relationship between the membership functions associated with Si,j,k,l, Ci,j,k,l, Ei,j,k,l and Li,j,k,l is 

described as follows: 

   S C E Li j k l i j k l i j k l i j k l, , , , , , , , , , , ,
    

2.1 Fuzzy Safety Identification 

Safety can be expressed by degrees to which it belongs to such linguistic variables as “poor”, “fair”, 

“average” and “good” that are referred to as safety expressions. To evaluate Si,j,k,l in terms of those 

safety expressions, it is necessary to characterise them using membership degrees with respect to the 

same categories used, in order to project the obtained subjective safety description onto the safety 

expressions. The four safety expressions are defined as shown in Table 4 [11]. 

Suppose safety expressions “poor”, “fair”, “average” and “good” are described by safety 

expressions 1, 2, 3 and 4, respectively. The extent to which Si,j,k,l belongs to the mth (m = 1, 2, 3 or 

4) safety expression can be described by  i j k l
m
, , ,  (m = 1, 2, 3 or 4), which can be calculated as 

follows [11]: 

 
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where  i j k l
m
, , ,  (m = 1, 2, 3 or 4) represents the reciprocal of the relative distance between Si,j,k,l and 

the mth safety expression [9].  i j k l
m
, , ,  can be obtained by: 

 i j k l
m

i j k l
m

i j k l
Md d, , ,

, , , , , ,/
 1

 

where di j k l
m
, , ,  is the Euclidean distance between Si,j,k,l and the mth safety expression, and di j k l

M
, , ,  is the 

minimum value for di j k l
m
, , ,  (m = 1, 2, 3 and 4). 

2.2 Fuzzy Set Modelling by Multiple Safety Analysts 

If multiple safety analysts are involved in the safety analysis process, their judgments need to be 

synthesised. A diagram for synthesising the judgments on a safety rule produced by multiple safety 

analysts is shown in Fig .2. Suppose there are N safety analysts who assign membership degrees for 

three basic safety parameters associated with a safety rule. Suppose Ci,j,k,l,n, Ei,j,k,l,n and Li,j,k,l,n 

represent the three basic safety parameters associated with Rulei,j,k,l judged by safety analyst n (n = 1, 

, or N), respectively. The subjective safety description Si,j,k,l,n associated with Rulei,j,k,l judged by 

safety analyst n can be obtained by: 

Si,j,k,l,n =  Ci,j,k,l,n  Ei,j,k,l,n  Li,j,k,l,n 

Si,j,k,l,n (n = 1, , or N) can be mapped onto the defined safety expressions to identify the safety 

evaluation S(Si,j,k,l,n) associated with Rulei,j,k,l judged by safety analyst n. Suppose  i j k l n
m
, , , ,  (m = 1, 2, 

3 or 4) represents the extent to which Si,j,k,l,n belongs to the mth safety expression. S(Si,j,k,l,n) can be 

expressed in the following form: 

S S poor fair average goodi j k l n i j k l n i j k l n i j k l n i j k l n( ) {( , ' '),( , ' '),( , ' '),( , ' ')}, , , , , , , , , , , , , , , , , , , ,    1 2 3 4  

It is required to synthesise all S(Si,j,k,l,n) (n = 1, , and N) to obtain the safety evaluation associated 

with Rulei,j,k,l. The evidential reasoning approach can be employed to synthesise all S(Si,j,k,l,n) (n = 1, 

, and N) and take into account the weight of each safety analyst in such a synthesis process. 

2.3 Synthesis of the Judgments on Each Safety Rule Produced by Multiple Safety Analysts 

The evidential reasoning approach used in this paper is well suited to handling uncertain and 

inconsistent safety evaluations [12][13]. It is based on the principle that it will become more likely 

that a given hypothesis is true if more pieces of evidence support that hypothesis. As stated 

previously, the problems of information loss in the synthesis process of fuzzy descriptions can be 



 

avoided by employing the evidential reasoning approach. This approach is briefly described as 

follows to make this paper self-contained.  

In Fig. 2, whether the safety evaluation associated with a safety rule belongs to “poor”, “fair”, 

“average” or “good” judged by a safety analyst can be regarded as a hypothesis. Suppose H 

represents the set of the four safety expressions. Then, H can be expressed by: 

H =  {H1  H2  H3  H4} 

where H1, H2, H3 and H4 represent “poor”, “fair”, “average” and “good”, respectively. 

Let i,j,k,l,n (n = 1, , or N) be the normalised relative weight of safety analyst n in the safety 

evaluation process where 0  i,j,k,l,n  1. The weight i,j,k,l,n (n = 1, , and N) can be calculated on 

the basis of the relative weights of safety analysts. In this paper, it is assumed that if all safety 

analysts judge the safety associated with a safety rule as “good”, the safety associated with the safety 

rule is evaluated as “good” with a belief degree  of over 99.5 percent. The following formula can 

be used to obtain the value of i,j,k,l,n (n = 1, , or N) [12][13]: 

  
i j k l n i j k l

i j k l n

i j k l Max
, , , , , , ,

, , , ,

, , , ,

  

( ), , ,
, , , ,

, , , ,

1 1
1

  n
N

i j k l

i j k l n

i j k l Max

 
   

where i,j,k,l,n (n =  1, , or N) is the relative weight of the nth safety analyst; i, j, k, l, Max is the largest 

value among i,j,k,l,n (n =  1, , and N); and i, j, k, l is a priority coefficient representing the 

importance of the role the most important safety analyst plays in the evaluation of the safety 

associated with Rulei,j,k,l. Given all i,j,k,l,n (n =  1, , and N), i,j,k,l can be calculated and i,j,k,l,n can 

then be obtained. 

Suppose M i j k l n
m
, , , ,  (n =  1, , or N) is a degree to which S(Si,j,k,l,n) supports the hypothesis that the 

safety evaluation associated with Rulei,j,k,l is confirmed to Hm (m =  1, 2, 3 and 4). Then, M i j k l n
m
, , , ,  can 

be obtained as follows [9][12]: 

M i j k l n
m

i j k l n i j k l n
m

, , , , , , , , , , , ,    

Suppose M i j k l n
H
, , , ,  (n =  1, , or N) is the remaining belief unassigned after commitment of belief to 

all Hm (m =  1, 2, 3 and 4) for S(Si, j, k, l, n). M i j k l n
H
, , , ,  can be obtained as follows [9][12]: 
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Suppose MM i j k l n
m
, , , ,  (m =  1, 2, 3 or 4; n =  1, , or N) represents the degree to which the safety 

associated with the Rulei,j,k,l belongs to Hm as a result of the synthesis of the judgments produced by 

safety analysts 1 to n. Suppose MM i j k l n
H
, , , ,  represents the remaining belief unassigned after 

commitment of belief to all Hm (m =  1, 2, 3 and 4) as a result of the synthesis of the judgments 

produced by safety analysts 1 to n. The recursive algorithm for synthesizing the analysts’ judgments 

to obtain the safety evaluation associated with Rulei,j,k,l can be stated as follows [12][13]: 

Initial conditions: MM Mi j k l
m

i j k l
m

, , , , , , , ,1 1  (m =  1, 2, 3, 4) and MM Mi j k l
H

i j k l
H

, , , , , , , ,1 1  

{ Hm} MM K MM Mi j k l n
m

i j k l n i j k l n
m

i j k l n
m
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     n =  1, , N-1 

MM i j k l N
m
, , , ,  is the safety evaluation associated with Rulei,j,k,l . 

The safety evaluation associated with Rulei, j, k, l can then be presented in the following form: 

S(Si,j,k,l) = {(  i j k l, , ,
1  , “poor”), ( i j k l, , ,

2 , “fair”), ( i j k l, , ,
3 , “average”), ( i j k l, , ,

4 , “good”)} 

where  i j k l
m
, , ,  (m = 1, 2, 3 and 4) is equal to MM i j k l N

m
, , , , . 

2.4 Hierarchical Propagation for Safety Evaluation 

After the safety evaluation associated with each safety rule has been obtained, it is required to 

synthesise the safety evaluations associated with all Rulei,j ,k,l to obtain the safety evaluation 

associated with SSi,j,k. Then the safety evaluations associated with SSi,j,k need to be synthesised to 

obtain the safety evaluation associated with SCi,j. Such a hierarchical evaluation can finally be 

progressed up to the accident (ACi) level to obtain the safety evaluation associated with the safety 

requirements specifications [11]. All such hierarchical evaluations can be conducted using the 

evidential reasoning approach in the same way as described above. 



 

3. Subjective Cost Analysis 

Safety and cost may be two conflicting criteria, with high safety leading to high costs. When 

studying safety requirements specifications, this means that if the safety associated with the safety 

requirements specifications is improved, then there may be a higher cost incurred. Since the cost 

incurred is determined by many factors, the level of uncertainty in cost estimation may be very high. 

Therefore, it is often difficult to model the cost incurred in safety improvement of safety 

requirements specifications on a numerical basis. It may be more appropriate to model the cost using 

fuzzy sets.  

The cost incurred in safety improvement of safety requirements specifications can be described 

using such linguistic variables as “Very low”, “Low”, “Moderately low”, “Average”, “Moderately 

high”, “High” and “Very high”. Such linguistic variables are referred to as cost expressions. They 

can be described as shown in Table 5 in terms of membership values with respect to the seven 

categories already defined. 

The membership values describing the cost incurred may be given by safety analysts with reference 

to Table 5. Suppose there are multiple safety analysts. The cost C(i)n incurred in safety improvement 

of option i judged by safety analyst n can be described in terms of membership values as follows: 

C(i)n = [1/C i n( )

1 , 2/C i n( )

2 , 3/C i n( )

3 , 4/C i n( )

4 , 5/C i n( )

5 , 6/C i n( )

6 , 7/C i n( )

7 ] 

where each C i
j

n( ) (j = 1, 2, 3, 4, 5, 6, 7) represents a degree to which C(i)n belongs to the jth 

category. 

 

4. Synthesis of Safety and Cost Evaluations 

A framework for synthesis of safety and cost evaluations for option ranking is shown in Fig. 3. In 

the framework, multiple safety analysts can make their judgments on each rule in an option of safety 

requirements specifications in terms of three parameters and then the information produced can be 

synthesised to obtain the safety evaluation associated with the option of the safety requirements 

specifications. Multiple safety analysts can also make judgments on the cost incurred for the option 

of safety requirements specifications. Both safety and cost evaluations can then be synthesised in 

order to select the best option. The evidential reasoning approach can be used to synthesise safety 

and cost evaluations to produce the preference degree associated with each option of safety 

requirements specifications.  



 

To synthesise both safety and cost aspects for decision-making purposes, it is necessary to define a 

utility space that can be used to evaluate safety and cost on the same scale [10]. Four exclusive 

utility expressions (i.e. “slightly preferred”, “moderately preferred”, “preferred” and “greatly 

preferred”) are defined as shown in Table 6. The safety associated with and the cost incurred in each 

option of safety requirements specifications are then mapped onto the utility space and expressed in 

terms of the utility expressions. 

Since the safety expressions and the utility expressions are defined by the same membership 

functions with respect to the seven categories, a safety description can be directly mapped onto the 

utility space. Given the membership values of a cost description with reference to Table 5, the Best-

Fit method can also be used to map the subjective cost description onto the defined utility 

expressions. The cost C(i)n incurred in the ith option of safety requirements specifications judged by 

safety analysts n can be evaluated in terms of the utility expressions as follows: 

U(C(i)n) = {( C i n( )

1 , “slightly preferred”), (C i n( )

2 , “moderately preferred”), (C i n( )

3 , “preferred”), 

(C i n( )

4 , “greatly preferred”)} 

The evidential reasoning approach can be used to synthesise all U(C(i)n) (n = 1, ..., N) to obtain the 

utility expression associated with the ith option of safety requirements specifications as follows: 

U(C(i)) = {( C i( )1 , “slightly preferred”), (C i( )2 , “moderately preferred”), (C i( )3 , “preferred”), 

(C i( )4 , “greatly preferred”)} 

Suppose there are D options in hand. Given the relative importance of cost against safety, denoted 

by , U(S(i)) and U(C(i)) can be synthesised using the evidential reasoning approach to obtain a 

preference estimate associated with option i in terms of the utility expressions. The synthesised 

preference estimate U(i) for an option can be expressed as follows: 

U(i) = {( Ui

1 , “slightly preferred”), (Ui

2 , “moderately preferred”), (Ui

3 , “preferred”), (Ui

4 , 

“greatly preferred”)} 

Preference degree Pi associated with option i can be obtained by: 
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j
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j
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where [K1 K2 K3 K4] = [0.217 0.478 0.739 1]; ( )( )1
1

4 U i

j

j
 describes the remaining belief 

unassigned after commitment of belief in the synthesis of cost and safety descriptions; and 
1

4 1

4  K j
j

 

is the average value of the Kjs.  

Obviously, a larger Pi means that option i is more desirable. Each Pi (i =  1, 2, ... D) represents the 

comparison with others. The best option with the largest preference degree can be selected. 

 

5. An Example 

With the aim of exemplifying the proposed framework for making decisions on safety requirements 

specifications based on subjective safety and cost analyses, a case study based on a train set crossing 

is used in this paper. The detailed description of the train set crossing can be found in [8]. 

5.1 Safety Assessment 

The train set crossing process consists of two track circuits Cp and Cs, and two types of trains, that 

is, primary (Trp) and secondary (Trs). The circuits are divided into sections and there are two 

separate crossing sections at which the two circuits intersect. It is assumed that trains of type Trp 

travel around circuit Cp and trains of type Trs travel around circuit Cs; both types of train travel in 

one direction (clockwise) only. The longest train is shorter than the smallest section. The circuits Cp 

and Cs, and the crossing sections are illustrated in Fig. 4 [8]. 

Suppose the type of circuit is denoted by c  L, L =  {p, s}, the crossing section by r  Trc = {1, , 

Ntc}. Addition  and subtraction  on circuit section numbers are performed modulo the number of 

sections of the circuit. The danger zone on circuit Cc for CC(c, r) for a crossing section CC(c, r) are 

illustrated in Fig. 4 [8]. The behaviour of the physical process is captured by two state variables 

Ptrain and Rtrain. Ptrain(c, x) denotes the state variable for the position of train x on circuit Cc, and 

Rtrain(c, x) the reservation set of train x on circuit Cc. 

If only two possible accidents on the train set are considered, the safety specification hierarchy for 

the train set crossing is shown in Fig. 5 [8][11]. The details of the rules are not discussed any further 

in this paper. The subjective safety analysis of the safety requirements specifications in the safety 

specification hierarchy is carried out as follows: 

Suppose there are four safety analysts who make judgments on each rule in terms of failure 

likelihood, consequence severity and failure consequence probability. The safety description of each 

rule judged by a safety expert can be obtained using fuzzy manipulations. Then the safety 



 

description can be mapped onto the safety definitions to be presented in terms of the safety 

definitions and the extent to which it belongs to each of the safety definitions. Such safety 

evaluations for rule 1 are as follows: 

Rule1,1,1,1 

S(S1,1,1,1,1) = {(0.175496, “poor”), (0.184576, “fair”), (0.364160, “average”), (0.275768, “good”)} 

S(S1,1,1,1,2) = {(0.177419, “poor”), (0.186412, “fair”), (0.364218, “average”), (0.271953, “good”)} 

S(S1,1,1,1,3) = {(0.175134, “poor”), (0.183683, “fair”), (0.367365, “average”), (0.273818, “good”)} 

S(S1,1,1,1,4) = {(0.124688, “poor”), (0.156304, “fair”), (0.584837, “average”), (0.134171, “good”)} 

where S(Si, j, k, l, n) is the subjective safety evaluation associated with Rulei, j, k, l judged by safety 

analyst n. 

Suppose the relative weights of the four safety analysts are 2, 1, 2 and 1, respectively. Then [i,j,k,l,1 

i,j,k,l,2 i,j,k,l,3 i,j,k,l,4]T = [2 1 2 1]T where i = 1 or 2; j = 1; k = 1; and l = 1 or 2. i,j,k,l,n (n = 1, 2, 3, and 

4) are calculated as follows [7][9]: 

i,j,k,l,1 = 0.8744 i,j,k,l,2 = 0.4372 i,j,k,l,3 = 0.8744 i,j,k,l,4 = 0.4372 

Using the evidential reasoning algorithm, the safety evaluations associated with Rule1,1,1,1 is 

obtained as follows: 

S(S1,1,1,1) = {(0.115318, “poor”), (0.127214, “fair”), (0.503492, “average”), (0.231790, “good”)} 

In a similar way, the safety evaluations associated with Rule1,1,1,2, Rule2,1,1,1 and Rule2,1,1,2 are 

obtained as follows: 

S(S1,1,1,2) = {(0.115431, “poor”), (0.127229, “fair”), (0.504863, “average”), (0.230315, “good”)} 

S(S2,1,1,1) = {(0.115318, “poor”), (0.127214, “fair”), (0.503492, “average”), (0.231790, “good”)} 

S(S2,1,1,2) = {(0.084500, “poor”), (0.103661, “fair”), (0.658630, “average”), (0.1331126, “good”)} 

Suppose [1,1,1,1 1,1,1,2]T is obtained as [1.5 1]T by studying the relations between Rule1,1,1,1 and 

Rule1,1,1,2 and studying the relative confidence in safety analysis of each safety rule. 1,1,1,1 and 

1,1,1,2 are calculated as follows: 

1,1,1,1 = 0.9855   1,1,1,2 = 0.6570 



 

Suppose [2,1,1,1 2,1,1,2]T is obtained as [1 1]T by studying the relations between Rule2,1,1,1 and 

Rule2,1,1,2 and studying the relative confidence in safety analysis of each safety rule. 2,1,1,1 and 

2,1,1,2 are calculated as follows: 

2,1,1,1 = 0.9293   2,1,1,2 = 0.9293 

The safety evaluations associated with SS1,1,1 and SS2,1,1 are obtained as follows: 

S(S1,1,1) = {(0.068534, “poor”), (0.078407, “fair”), (0.696841, “average”), (0.137151, “good”)} 

S(S2,1,1) = {(0.049794, “poor”), (0.060850, “fair”), (0.760025, “average”), (0.113180, “good”)} 

1,1,1 and 2,1,1 are calculated as follows: 

1,1,1 = 0.9950   2,1,1 = 0.9950 

The safety evaluations associated with SC1,1 and SC2,1 are obtained as follows: 

S(S1,1) = {(0.068191, “poor”), (0.078015, “fair”), (0.693357, “average”), (0.136546, “good”)} 

S(S2,1) = {(0.049545, “poor”), (0.060546, “fair”), (0.756225, “average”), (0.112614, “good”)} 

 1 1,
HZ  and  2 1,

HZ  are calculated as follows: 

 1 1,
HZ  = 0.9950    2 1,

HZ  = 0.9950 

The safety evaluations associated with HZ1,1 and HZ2,1 are obtained as follows: 

S(SHZ
1 1, ) = {(0.067850, “poor”), (0.077625, “fair”), (0.689890, “average”), (0.135780, “good”)} 

S(SHZ
2 1, ) = {(0.049297, “poor”), (0.060243, “fair”), (0.752444, “average”), (0.112051, “good”)} 

1,1 and 2,1 are calculated as follows: 

1,1 = 0.9950   2,1 = 0.9950 

The safety evaluations associated with AC1 and AC2 are obtained as follows: 

S(S1) = {(0.067511, “poor”), (0.077237, “fair”), (0.686441, “average”), (0.135104, “good”)} 

S(S2) = {(0.049051, “poor”), (0.059942, “fair”), (0.748681, “average”), (0.111491, “good”)} 

Suppose [1 2]T is obtained by [1 2]T by studying the relations between AC1 and AC2 and studying 

the relative confidence in safety analysis of each accident. 1 and 2 are calculated as follows: 

1 = 0.4951   2 = 0.9901 



 

The safety evaluation associated with option 1 of the safety requirements specifications is finally 

obtained as follows: 

S(S(1)) = {(0.035199, “poor”), (0.043240, “fair”), (0.811309, “average”), (0.084147, “good”)} 

Suppose there are two other options of safety requirements specifications in which rule Rule1,1,1,1 is 

changed and the other three remain unchanged. The modification of a rule may change the safety 

associated with the option of safety requirements specifications. This may be demonstrated by an 

example in which a rule is that if one train is at the crossing section, other trains on the tracks should 

keep a distance from it for at least 2 miles. If the distance is increased to 5 miles, the safety may be 

increased and if the distance is reduced to 1 mile, the safety may be reduced. It can also be 

understood that the costs incurred in the above three options may be different since those three 

options require different speeds of other trains on the tracks, track structure, etc. Therefore, different 

options of safety requirements specifications may correspond to different levels of cost. 

In a similar way, the safety evaluations associated with options 2 and 3 of the safety requirements 

specifications are obtained as follows: 

S(S(2)) = {(0.040887, “poor”), (0.064904, “fair”), (0.782754, “average”), (0.092668, “good”)} 

S(S(3)) = {(0.040153, “poor”), (0.049232, “fair”), (0.787313, “average”), (0.105124, “good”)} 

5.2 Cost Assessment 

Suppose the four safety analysts make the cost estimates as follows: 

Option 1 

C(1)1 = [1/0, 2/0, 3/0.5, 4/1, 5/0.5, 6/0, 7/0] 

U(C(1)1) = {(0.169984, “slightly preferred”), (0.330016, “moderately preferred”), (0.330016, 

“preferred”), (0.169984, “greatly preferred”)} 

C(1)2 = [1/0, 2/0, 3/0.5, 4/1, 5/0.5, 6/0, 7/0] 

U(C(1)2) = {(0.169984, “slightly preferred”), (0.330016, “moderately preferred”), (0.330016, 

“preferred”), (0.169984, “greatly preferred”)} 

C(1)3 = [1/0, 2/0.25, 3/1, 4/0.75, 5/0, 6/0, 7/0] 

U(C(1)3) = {(0.102234, “slightly preferred”), (0.685810, “moderately preferred”), (0.115923, 

“preferred”), (0.09603, “greatly preferred”)} 

C(1)4 = [1/0, 2/0, 3/0, 4/0.75, 5/1, 6/0.25, 7/0] 



 

U(C(1)4) = {(0.096033, “slightly preferred”), (0.115923, “moderately preferred”), (0.685810, 

“preferred”), (0.102234, “greatly preferred”)} 

The judgments produced can then be synthesised to obtain the utility description of the cost incurred 

in design option 1. 

U(C(1)) = {(0.08133, “slightly preferred”), (0.576404, “moderately preferred”), (0.240367, 

“preferred”), (0.07915, “greatly preferred”)} 

The four safety analysts can also make the cost estimations on options 2 and 3 and in a similar way 

the utility descriptions of the costs incurred in those two options are obtained as follows: 

Option 2 

U(C(2)) = {(0.078148, “slightly preferred”), (0.706781, “moderately preferred”), (0.127187, 

“preferred”), (0.068324, “greatly preferred”)} 

Option 3 

U(C(3)) = {(0.068324, “slightly preferred”), (0.127187, “moderately preferred”), (0.706781, 

“preferred”), (0.078148, “greatly preferred”)} 

5.3 Synthesis of Safety and Cost Evaluations 

If safety and cost aspects are considered to be of equal importance, then the utility descriptions of 

the three options are obtained as follows using the evidential reasoning approach: 

Option 1 

U(1) = {(0.033499, “slightly preferred”), (0.198317, “moderately preferred”), (0.690426, 

“preferred”), (0.056197, “greatly preferred”)} 

P1 = 0.033499  0.217 + 0.198317  0.478 + 0.690426  0.739 + 0.056197  1 + 0.02156  0.6085 

= 0.681607 

Option 2 

U(2) = {(0.04138, “slightly preferred”), (0.339518, “moderately preferred”), (0.531463, 

“preferred”), (0.061776, “greatly preferred”)} 

P2 = 0.04138  0.217 + 0.339518  0.478 + 0.531463  0.739 + 0.061776  1 + 0.025862  0.6085 

= 0.641534 

Option 3 



 

U(3) = {(0.016937, “slightly preferred”), (0.029856, “moderately preferred”), (0.908145, 

“preferred”), (0.033337, “greatly preferred”)}  

P3 = 0.016937  0.217 + 0.029856  0.478 + 0.908145  0.739 + 0.033337  1 + 0.011725  0.6085 

= 0.729537 

The ranking of the three options is as follows: 

Ranking Options Preference degrees 

1   Option 3   0.729537 

2   Option 1   0.681607 

3   Option 2   0.641534 

The ranking of the three options varies with the change of the relative importance of cost against 

safety. For different relative weights of cost against safety, the ranking of the three options is 

obtained as shown in Table 7, Table 8 and Fig. 6. 

From Table 8 and Fig. 6, it can be seen that the ranking order of the three options is consistently 

option 3, option 1 and option 2 when the relative weights of cost against safety are set to 0.1, 0.2, 

0.5, 1, 2, 5, 10. It can be noted that when the relative weights of cost against safety are small, the 

preference degrees associated with the three options are close. For example, when the relative 

weight of cost against safety is equal to 0.1, the preference degrees associated with options 1, 2 and 

3 are 0.728208, 0.720426 and 0.730045, respectively. As the relative weight of cost against safety 

increases, the differences among the preference degrees associated with the three options are 

widened. For example, when the relative weight of cost against safety is equal to 5, the preference 

degrees associated with options 1, 2 and 3 are 0.572936, 0.535429 and 0.693896, respectively. In 

this particular example, the best option is option 3 in terms of both safety and cost.  

It should be mentioned that the options can only be compared with respect to the same relative 

weight of cost against safety. In this example, the ranking order of the options does not change with 

the relative weight of cost against safety. In practice, the ranking order of options in hand may 

change with the relative weight of cost against safety. The best option may be chosen by considering 

the particular requirements on safety and cost. 

 



 

6. Concluding Remarks 

This paper presents a modelling approach for subjective analysis of both safety and cost criteria 

associated with safety requirements specifications. If there are several options of safety requirements 

specifications in hand, the best one can be selected by synthesising subjective safety and cost 

evaluations. The approach presented in this paper combines fuzzy set modelling and evidential 

reasoning to avoid any possible information loss which often happens when traditional subjective 

techniques are used. This approach is particularly useful in situations where the level of uncertainty 

involved in safety and cost analyses is high. It can be used as an alternative approach for safety 

analysts to make decisions based on safety and cost analyses of safety requirements specifications in 

safety-critical software development. Since the uncertainty involved in safety and cost assessment in 

the software domain is often high, the proposed approach offers significant potential to aid the 

development of safety-critical systems. 
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Table 1 Failure likelihood 

 

 

 

 

 

 

 

 

 

 

 

Table 2 Consequence severity 

 

 

 

 

 

 

 

 

 

Table 3 Failure consequence probability 

 

 

 

 

 

 

 

 

 

 

 

 

 

L 

Linguistic variables 

Categories 

1         2          3          4           5          6          7 

Highly frequent 0 0 0 0 0 0.75 1 

Frequent 0 0 0 0 0.75 1 0.25 

Reasonably frequent 0 0 0 0.75  1  0.25 0 

Average 0 0 0.5 1 0.5 0 0 

Reasonably low 0 0.25 1 0.75 0 0 0 

Low 0.25 1 0.75 0 0 0 0 

Very low 1 0.75 0 0 0 0 0 

C 

Linguistic variables 

Categories 

1         2          3          4           5          6          7 

Catastrophic 0 0 0 0 0 0.75 1 

Critical 0 0 0 0.75  1  0.25 0 

Marginal 0 0.25 1 0.75 0 0 0 

Negligible 1 0.75 0 0 0 0 0 

E 

Linguistic variables 

Categories 

1         2          3          4           5          6          7 

Definite 0 0 0 0 0 0.75 1 

Highly likely 0 0 0 0 0.75 1 0.25 

Reasonably likely 0 0 0 0.75  1  0.25 0 

Likely 0 0 0.5 1 0.5 0 0 

Reasonably unlikely 0 0.25 1 0.75 0 0 0 

Unlikely 0.25 1 0.75 0 0 0 0 

Highly unlikely 1 0.75 0 0 0 0 0 



 

Table 4 Safety expression 

 

 

 

 

 

 

 

 

Table 5  Cost expressions 

 

 

 

 

 

 

 

 

 

 

 

Table 6 Utility expressions 

 

 

 

 

 

 

 


S

 

Linguistic variables 

Categories 

1         2          3          4           5          6          7 

1. Poor 0 0 0 0 0 0.75 1 

2. Fair 0 0 0 0.5  1  0.25 0 

3. Average 0 0.25 1 0.5 0 0 0 

4. Good 1 0.75 0 0 0 0 0 

C 

Linguistic variables 

Categories 

1         2          3          4           5          6          7 

Very high 0 0 0 0 0 0.75 1 

High 0 0 0 0 0.75 1 0.25 

Moderately high 0 0 0 0.75  1  0.25 0 

Average 0 0 0.5 1 0.5 0 0 

Moderately low 0 0.25 1 0.75 0 0 0 

Low 0.25 1 0.75 0 0 0 0 

Very low 1 0.75 0 0 0 0 0 

 

Linguistic variables 

Categories 

1         2          3          4           5          6          7 

1. Slightly preferred 0 0 0 0 0 0.75 1 

2. Moderately preferred 0 0 0 0.5  1  0.25 0 

3. Preferred 0 0.25 1 0.5 0 0 0 

4. Greatly preferred 1 0.75 0 0 0 0 0 



 

Table 7 Summary of the three options with the relative importance of cost against safety 

Safety is twice as important as cost. 
Option 1 
U(1) = {(0.033823, “slightly preferred”), 
(0.068841, “moderately preferred”), (0.793887, 
“preferred”), (0.081854, “greatly preferred”)} 
P1 = 0.721923 
Option 2 
U(2) = {(0.038883, “slightly preferred”), 
(0.108353, “moderately preferred”), (0.743788, 
“preferred”), (0.084864, “greatly preferred”)} 
P2 = 0.709426 
Option 3 
U(3) = {(0.028102, “slightly preferred”), 
(0.036948, “moderately preferred”), (0.844841, 
“preferred”), (0.072491, “greatly preferred”)}  
P3 = 0.731308 
Ranking Options Preference degrees 
1   Option 3  0. 731308 
2   Option 1  0. 721923 
3   Option 2  0. 709426 
 

Safety is five times as important as cost. 
 
Option 1 
U(1) = {(0.036203, “slightly preferred”), 
(0.052299, “moderately preferred”), (0.800072, 
“preferred”), (0.089827, “greatly preferred”)} 
P1 = 0.727078 
Option 2 
U(2) = {(0.040144, “slightly preferred”), 
(0.076687, “moderately preferred”), (0.769663, 
“preferred”), (0.090142, “greatly preferred”)} 
P2 = 0.718508 
Option 3 
U(3) = {(0.035755, “slightly preferred”), 
(0.044683, “moderately preferred”), (0.805505, 
“preferred”), (0.093315, “greatly preferred”)}  
P3 = 0.730322 
Ranking Options Preference degrees 
1   Option 3  0. 730322 
2   Option 1  0. 727078 
3   Option 2  0. 718508 
 

Safety is ten times as important as cost. 
Option 1 
U(1) = {(0.036795, “slightly preferred”), 
(0.048776, “moderately preferred”), (0.801361, 
“preferred”), (0.091701, “greatly preferred”)} 
P1 = 0.728208 
Option 2 
U(2) = {(0.040456, “slightly preferred”), 
(0.070089, “moderately preferred”), (0.775176, 
“preferred”), (0.091318, “greatly preferred”)} 
P2 = 0.720426 
Option 3 
U(3) = {(0.037953, “slightly preferred”), 
(0.046936, “moderately preferred”), (0.794475, 
“preferred”), (0.099234, “greatly preferred”)}  
P3 = 0.730045 
Ranking Options Preference degrees 
1   Option 3  0. 730045 
2   Option 1  0. 728208 
3   Option 2  0. 720426 
 

Cost is twice as important as safety. 
Option 1 
U(1) = {(0.067648, “slightly preferred”), 
(0.477762, “moderately preferred”), (0.358159, 
“preferred”), (0.070655, “greatly preferred”)} 
P1 = 0.594069 
Option 2 
U(2) = {(0.069416, “slightly preferred”), 
(0.634316, “moderately preferred”), (0.206607, 
“preferred”), (0.064917, “greatly preferred”)} 
P2 = 0.550923 
Option 3 
U(3) = {(0.045338, “slightly preferred”), 
(0.084643, “moderately preferred”), (0.795569, 
“preferred”), (0.055986, “greatly preferred”)}  
P3 = 0.705445 
Ranking Options Preference degrees 
1   Option 3  0. 705445 
2   Option 1  0. 594069 
3   Option 2  0. 550923 
 

Cost is five times as important as safety. 
Option 1 
U(1) = {(0.076984, “slightly preferred”), 
(0.545301, “moderately preferred”), (0.274753, 
“preferred”), (0.076326, “greatly preferred”)} 
P1 = 0.572936 
Option 2 
U(2) = {(0.075410, “slightly preferred”), 
(0.684200, “moderately preferred”), (0.149193, 
“preferred”), (0.067102, “greatly preferred”)} 
P2 = 0.535429 
Option 3 
U(3) = {(0.060030, “slightly preferred”), 
(0.111856, “moderately preferred”), (0.736110, 

Cost is ten times as important as safety. 
Option 1 
U(1) = {(0.079155, “slightly preferred”), 
(0.560876, “moderately preferred”), (0.255691, 
“preferred”), (0.077677, “greatly preferred”)} 
P1 = 0.568095 
Option 2 
U(2) = {(0.076734, “slightly preferred”), 
(0.695019, “moderately preferred”), (0.136917, 
“preferred”), (0.067617, “greatly preferred”)} 
P2 = 0.532099 
Option 3 
U(3) = {(0.064199, “slightly preferred”), 
(0.119563, “moderately preferred”), (0.719447, 



 

“preferred”), (0.070070, “greatly preferred”)}  
P3 = 0.693896 
Ranking Options Preference degrees 
1   Option 3  0. 693896 
2   Option 1  0. 572936 
3   Option 2  0. 535429 
 

“preferred”), (0.074101, “greatly preferred”)}  
P3 = 0.690662 
Ranking Options Preference degrees 
1   Option 3  0. 690662 
2   Option 1  0. 568095 
3   Option 2  0. 532099 
 

 

Table 8 Ranking of the design options 

Relative importance 
of cost against safety 

Option 3 Option 1 Option 2 

0.1 1 2 3 
0.2 1 2 3 
0.5 1 2 3 
1 1 2 3 
2 1 2 3 
5 1 2 3 
10 1 2 3 
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Fig. 1 A hierarchical framework for subjective safety analysis of safety requirements specifications 

where  ACi represents the modelling of accident i; 

  I is the number of the possible accidents; 

  HZi,j represents the modelling of hazard j associated with ACi; 

  J(i) is the number of the hazards associated with accident i; 

  SCi,j represents safety constraint j for HZi,j; 

  SSi,j,k represents safety strategy k for SCi,j; 

  K(j)  is the number of the safety strategies for SCi,j; 

  Rulei,j,k,l represents safety rule l associated with SSi,j,k; and 

  L(k) is the number of the safety rules for SSi,j,k. 
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Fig. 2 A diagram for synthesising the judgments produced by multiple safety analysts
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Fig. 3 A diagram for synthesis of safety and cost evaluations for option ranking 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 The train set circuits and the crossing section 



 

 

 

 

 

 

 

 

 

 

 

Fig. 5 Safety specification hierarchy of a train set example 
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Fig. 6 The relative importance of cost against safety 
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