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Abstract: Cyanobacterial blooms can cause serious damage to aquatic ecosystems. However, we 

have demonstrated that typical algae-blooming species Microcystis aeruginosa (M. aeruginosa) 

combined with photocatalysts could synergistically facilitate the photodecontamination of 

tetracycline hydrochloride (TC) and Cr(VI). In this study, for the first time, harmful algae were 

successfully converted into photoreactive bionano hybrid materials by immobilizing M. aeruginosa 

cells onto polyacrylonitrile (PAN)-TiO2/Ag hybrid nanofibers, and their photocatalytic activity was 

evaluated. The addition of M. aeruginosa significantly improved the photodecontamination, and the 

reaction rate constant (k) values of TC and Cr(VI) degradation by M. aeruginosa-PAN/TiO2/Ag 

nanofiber mats were 2.4 and 1.5-fold higher than that of bare PAN/TiO2/Ag nanofiber. Photoreaction 

caused damage to algae cells, but no microcystin was found that had been photodegraded 

simultaneously. The effects of various active species were also investigated, and the 

photodegradation mechanism was proposed. Recycling tests revealed that this flexible M. 

aeruginosa-PAN/TiO2/Ag hybrid mat had potential application in the removal of mixed organic and 

inorganic pollutants with high efficiency and without secondary pollutants. Thus, harmful algae 

blooms could serve as an efficient materials to remove toxic pollutants in a sustainable way under 

visible light irradiation. 

Keywords: Microcystis aeruginosa; PAN nanofiber; TiO2 photocatalytic; Ag nanoparticles; 

tetracycline; Cr(VI) 
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1. Introduction 

Microalgae are one of the most important bio resources and are distributed widely within 

various aquatic ecosystems. Microalgae remediation of environmental pollutants has attracted 

scientific attention, as micro algal remediation is a cost-effective, solar power-driven, and sustainable 

reclamation strategy [1]. Some studies have demonstrated that algae species such as, Chlorella vulgaris, 

Chlamydomonas sajao, Nitzschia hantzschiana, and Anabaena cylindrical can induce the photo-

decontamination of pollutants under irradiation [2–5]. During photochemical reactions, algae cells 

release organic acids and chlorophyll, which can absorb photons and induce the generation of active 

radicals [6]. When algae are combined with other photochemically active substances such as ferric 

ions, the system presents improved photocatalytic activity [7]. M. aeruginosa is a typical species in 

cyanobacterial blooms and has been found widely in lakes in China [8,9]. Current studies concerning 

M. aeruginosa mainly focus on its inactivation and removal because of its extensive damage to aquatic 

ecosystems. However, little is known regarding the photochemical activity of M. aeruginosa and its 

combination with other nanomaterials to prepare photoreactive biocomposite materials. The role of 

M. aeruginosa in the simultaneous phototransformation of organic and inorganic pollutants has not 

been reported yet. 

There are some drawbacks associated with the use of the algae-suspension photoreaction system 

during the recovery of algae cells. The immobilization of algae cells can help to remove cells from the 

photoreaction system. Nanofiber mats present a decent matrix to load algae cells because of high pore 

volume, large specific surface area, and uniform microporosity [10]. Electrospun polymer nanofibers 

with Ag/TiO2 nanoparticles have attracted much attention recently, due to their enhanced 

characteristics, such as their antimicrobial, optical, and photocatalytic properties [11–14]. However, 

most of the published studies have opted for two-step methods to decorate Ag/TiO2 nanoparticles on 

nanofibers, which are more complicated and less efficient [15]. Polyacrylonitrile (PAN)-based hybrid 

nanofibers are water insoluble and can be easily recovered from solution. Moreover, they have highly 

specific surface areas and functional nanoparticles; thus, these merits enhance their potential 

application [16,17]. In this work, we used a one-step method to prepare PAN/TiO2/Ag nanofibers 

(PAN/TiO2/Ag NF), and solvents such as N,N-dimethylformamide (DMF) served as electrospinning 

reducing agents for the synthesis of metallic Ag nanoparticles (AgNPs) [18]. Until now, very few 

studies have been reported regarding decorating PAN-based hybrid nanofiber mats with microalgae. 

This novel bionano hybrid material may presents integrated properties of nanomaterials and 

microorganisms, which would be worth investigating further. Moreover, there is still a lack of 

knowledge concerning the synergistic photocatalytic activity of M. aeruginosa and PAN/TiO2/Ag 

hybrid nanomaterials.  

Therefore, the objective of this work was to prepare photo reactive bionano hybrid materials by 

immobilizing M. aeruginosa cells onto PAN/TiO2/Ag nanofiber mats and study their synergistic 

photocatalytic degradation of organic and inorganic pollutants under visible light irradiation. This is 

the first time that harmful algae M. aeruginosa have been utilized to photodegrade mixed pollutants 

under visible light irradiation. This study can help to explain one of the possible transformation 

pathways of pollutants in the aquatic ecosystem. Antibiotics and heavy metals are two major classes 

of highly concerned environmental pollutants, hence tetracycline hydrochloride (TC) and Cr(VI) 

were selected as target pollutants in this work [19–23]. The effects of various active species on the 

decontamination of pollutants were also investigated. Microcystins were analyzed at the end of the 

reaction, and the stability of photo-reactive bionano hybrid materials was also validated by recycling 

tests. 

2. Results and Discussion 

2.1. Characterization of M. aeruginosa-Decorated PAN/TiO2/Ag Nanofiber Mats 

Figure 1 shows the scanning electron microscope (SEM) images of PAN-based nanofibers 

comprising 2 wt% of TiO2 and 5 wt% of AgNO3. PAN/TiO2 nanofiber appeared to have a rough and 

non-uniform morphology with diameters above 270 nm, however the PAN/Ag nanofibers displayed 



Catalysts 2018, 8, 628 3 of 13 

 

a smooth morphology with an average diameter of 130 nm. Interestingly, the spinning potential of 

the mixture was enhanced by AgNO3 and formed uniform PAN/TiO2/Ag functional nanofibers with 

a diameter of 200 nm and specific surface area of 49 m2 g−1. Figure 2(a2–c2) depicts the EDX spectra 

of these nanofiber mats. The characteristic peaks of Ag and Ti provided further evidence for the 

synthesis of AgNPs and TiO2 on surface of nanofibers. 

 

Figure 1. Scanning electron microscopy (SEM) images and energy-dispersive x-ray spectroscopy of 

various hybrid nanofiber mats: (a1, a2) PAN/2%TiO2, (b1, b2) PAN/5%AgNO3, and (c1, c2) 

PAN/2%TiO2/5% AgNO3. 

The transmission electron microscopy (TEM) images show the well-dispersed Ag and TiO2 

nanoparticles on the nanofibers (Figure 2a). The crystal-phase structure of PAN/TiO2/Ag hybrid 

materials were also measured using X-ray diffraction (XRD) measurements. Figure 2b shows the XRD 

pattern of the PAN/TiO2/Ag NF, which exhibits the characteristic (101), (200), (105), (211), and (204) 

reflections corresponding to the lattice planes of anatase TiO2. The peaks appeared at the 2θ of 38.4 

and 44.2, which were attributed to the diffraction peaks of AgNPs (111) and (200). The UV–vis spectra 

of the ultrathin hybrid nanofiber mats were also characterized. As shown in Figure 3c, the PAN/Ag 

and PAN/TiO2/Ag NF displayed higher visible absorption than PAN and PAN/TiO2 NF. This 

absorptive characteristic is mainly ascribed to a major role played by AgNPs in decreasing the band 

gap of TiO2. These findings also corroborate our previous studies [24–26].  

M. aeruginosa decorated nanofiber mats were obtained by placing the algae solution on the 

surface of PAN/TiO2/Ag NF and then keeping them in an incubator for 72 h to allow for the adequate 

attachment of the microalgae on the surface of the nanofibers. The unstable cells were removed, and 

there was no more release of algae into the solution, even after 8 washes (Figure S1). These nanofibers 

with highly specific surface areas present a good matrix for algae cell immobilization. The detailed 

morphology of this bionano hybrid material was further analyzed by SEM, which revealed that the 

microalgae had been well immobilized on the nanofibers (Figure 3). In order to study the interaction 
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between algae and PAN/TiO2/Ag NF, the UV-vis analysis of algae-modified PAN/TiO2/Ag NF was 

performed. Figure 2c shows a certain shift toward visible region, with highly intense absorption 

curves around the entire visible region, but a small decrease in the UV region (λ < 300 nm). This can 

be attributed to the formation of a complex between algae-released substances and TiO2 nanoparticles. 

 

Figure 2. (a) Transmission electron microscopy (TEM) image and (b) X-ray diffraction (XRD) pattern 

of PAN/TiO2/Ag hybrid nanofiber; (c) UV-vis spectra of PAN hybrid nanofibers. 

 

 

Figure 3. SEM images of M. aeruginosa on the surface of PAN/TiO2/Ag hybrid nanofiber mats at (a) 

low and (b) high magnification. 

2.2. Photocatalytic Decontamination of TC and Cr(VI) 

The photocatalytic activities of M. aeruginosa-PAN/TiO2/Ag bionano hybrid mats were evaluated 

by simultaneous removal of TC and Cr(VI) under visible light irradiation (λ > 420 nm) and ambient 

conditions. Systems with only M. aeruginosa (1.0 × 107 cells L−1) or PAN/TiO2/Ag NF (1 g L−1) were set 

as controls. In the control systems, the number of algae cells were equal to the nanofiber mat, and the 

amount of PAN/TiO2/Ag NF was the same as that used for algae immobilization. Before irradiation, TC 

and Cr(VI) mixed solutions with M. aeruginosa, PAN/TiO2/Ag NF, or M. aeruginosa-PAN/TiO2/Ag NF 

were separately stirred in dark ambient conditions for 30 min to achieve the adsorption–desorption 

equilibrium. The M. aeruginosa-PAN/TiO2/Ag NF absorbed 13% of TC and 11% of Cr(VI) in 30 min, 

which was higher than that of only M. aeruginosa or PAN/TiO2/Ag NF (as shown in Figure 4a,b). 

Extracellular substances of algae such as lipids and polysaccharides deliver various organic 

functional groups to sequester metal ions or organic pollutants[6]. Fresh algae cells combined with 

nanofibers can improve the bonding of mixed pollutants on nanofiber mats, which is important for 

enhanced photodegradation process. The irradiation results demonstrated that M. aeruginosa-

PAN/TiO2/Ag NF exhibited efficient activities for simultaneous TC degradation and Cr(VI) reduction. 

The photoremoval rates of TC and Cr(VI) reached up to 96% and 75%, respectively. However, only 

77% and 41% of the TC, and 61% and 34% of the Cr(VI), could be removed within the same reaction 

time using pure PAN/TiO2/Ag NF and M. aeruginosa, respectively. The addition of M. aeruginosa 

apparently enhanced the photocatalytic activity of the PAN/TiO2/Ag. The variation of the UV–vis 
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absorption spectra of algae supernatant was studied. The absorbance of irradiated algae supernatant 

was much higher than that of the living algae supernatant, which was attributed to the fact that algae 

exposed to irradiation released many substances (such as pigments, carboxylic acids) into the 

aqueous solution (Figure S2). Thus, the underlying mechanism behind the enhanced 

photodegradation of target pollutants can be explained, as algae that release intracellular substances 

(organic acids and chlorophylls) can consume holes and cause effective separation of photogenerated 

electron-holes on TiO2 and facilitate the photocatalytic activity of PAN/TiO2/Ag NF. For the first time, 

this work tested the photodegradation of TC and Cr(VI) induced by only M. aeruginosa cells and 

confirmed its efficiency for the photo-removal of pollutants. This work presents a possible method to 

turn widespread and harmful algae species into useful photoreactive biomaterials. Current findings 

can help to explain the possible transformation pathways of pollutant in natural water system.  

 

Figure 4. The simultaneous (a) degradation of tetracycline hydrochloride (TC) and (b) reduction of 

Cr(VI) under visible light irradiation in various system. 

The kinetics analysis is shown in Table 1. TC and Cr(VI) removal fit very well with the pseudo-

first order correlation, and M. aeruginosa-PAN/TiO2/Ag NF exhibited the maximum k value, 

according to its high photocatalytic activity. The k value for TC degradation by M. aeruginosa-

PAN/TiO2/Ag NF was 2.4 fold higher than that of PAN/TiO2/Ag NF. Also, the k value for Cr(VI) 

removal by M. aeruginosa-PAN/TiO2/Ag NF was 1.5 fold higher than that of PAN/TiO2/Ag NF. Thus, 

photocatalytic degradation of TC and Cr(VI) was significantly increased with the addition of M. 

aeruginosa. 

Table 1. Kinetics analysis of the photodegradation of TC and Cr(VI). 

Reaction System K (× 10−3, min−1) Correlation Coefficient R2 

TC 

M. aeruginosa 1.96 ± 0.15 0.99 

PAN/TiO2/Ag NF 5.62 ± 0.36 0.99 

M. aeruginosa-PAN/TiO2/Ag NF 13.21 ± 0.51 0.98 

Cr(VI) 

M. aeruginosa 1.41 ± 0.12 0.94 

PAN/TiO2/Ag NF 3.72 ± 0.24 0.99 

M. aeruginosa-PAN/TiO2/Ag NF 5.58 ± 0.38 0.97 

k (min−1): reaction rate constant. 

2.3. Photodegradation of Algae 

Malondialdehyde (MDA) content and superoxide dismutase (SOD) activity in the M. aeruginosa 

were detected after a 4 h reaction. It is evident from Figure 5A that SOD activity was decreased 

apparently in the system with PAN/TiO2/Ag NF. Meanwhile, the MDA content in the cells was 

apparently increased after the reaction (Figure 6B). The MDA content of M. aeruginosa in the reaction 

system with PAN/TiO2/Ag NF was more than two times higher than without the nanofibers, which 
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indicates that photocatalytic activity of the PAN/TiO2/Ag NF may result in lipid peroxidation and 

cause oxidative stress in M. aeruginosa. After irradiation treatment, morphology of the algae was 

observed by SEM. As shown in Figure 6, M. aeruginosa was still immobilized on the nanofibers, 

however, the cell walls of M. aeruginosa were partially damaged, resulting in cell adhesion, holes, and 

shrinkages. Since the damaged M. aeruginosa cells might release microcystins into the system, 

microcystins were also measured in this work. However, microcystins were not found in the solution 

after the 4 h reaction. These important findings can also be attributed to the effective photocatalytic 

activity of PAN/TiO2/Ag NF, which could simultaneously degrade microcystin in the system.  

 

Figure 5. The superoxide dismutase (SOD) activity (A) and (B) malondialdehyde (MDA) content of 

algae in different systems. 
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Figure 6. SEM images of photo-damaged algae cells on the surface of PAN/TiO2/Ag NF at (a) low and 

(b, c) high magnification. 

2.4. Analysis of the Active Species and Discussion of the Mechanism 

To explore the underlying mechanism involved in photocatalytic degradation of TC and Cr(VI) 

by M. aeruginosa-PAN/TiO2/Ag NF, the influences of different active species were studied. Various 

individual scavengers were applied in the active species trapping experiments to evaluate the effect 

of the corresponding species, such as KI (hole scavenger), 2-propanol (·OH scavenger), BQ (O2·− 

scavenger), and CCl4 (electron scavenger). Figure 7a reveals that, when KI or 2-propanol was added 

to the system, the k value of TC degradation was much lower than that without radical scavengers, 

indicating that photogenerated holes and ·OH played important role in the photodegradation of TC. 

When BQ was added to the reaction system, the reaction was also slightly inhibited, which indicates 

that O2·− also took part in the TC degradation. Figure 7b illustrates that, when BQ or CCl4 were used, 

the photodegradation of Cr(VI) was significantly inhibited compared with the system without radical 

scavenger. Therefore, it can be inferred that electrons and O2·− are active species participating in the 

reduction of Cr(VI). 

 

Figure 7. The active species trapping experiments for degradation of TC (A) and Cr(VI) (B). 

A proposed mechanism of removing TC and Cr(VI) using M. aeruginosa-PAN/TiO2/Ag NF is 

presented in Figure 8. It is well-known that AgNPs can improve the interfacial charge transfer and 

electron-hole pair separation, thus extending the working area of TiO2 to visible light region (Figure 

3c) [27]. TiO2/Ag hybrid nanofiber displayed the highest photocatalytic activity under visible light 

irradiation and contributed by generating the active species (OH, H2O2, O2−) in the catalysis system 

[28]. The addition of algae significantly enhanced the photocatalytic performance of PAN/TiO2/Ag 

NF. In this bionano hybrid system, the photolysis of algae was enhanced in the presence of 

PAN/TiO2/Ag nanofibers, which can help improve the photo-activity of algae cells. Meanwhile, the 

released algae intracellular organic substances (chlorophylls, humic and fulvic acids, etc.) can 

consume part of the holes, attenuate electron–hole pair recombination on the TiO2, and facilitate the 

photocatalytic activity of PAN/TiO2/Ag NF [7,29]. The interaction between algae and PAN/TiO2/Ag 

NF has been analyzed by the UV-vis spectrum, and Figure 2c shows the formation of a complex 

between algae-released substances and TiO2 nanoparticles. Algae cells can improve the absorption 

ability of toxic pollutants due to their extracellular organic substances release and increase the 



Catalysts 2018, 8, 628 8 of 13 

 

number of the functional groups to sequester additional metal ions. They are also able to significantly 

accelerate the photodegradation of pollutants, because algae intracellular substances (such as 

chlorophylls) can absorb light energy and generate reactive species (OH, 1O2, HOO, O2−) [30,31]. This 

work demonstrates that pure M. aeruginosa can induce the simultaneous photodegradation of TC and 

Cr(VI) (Figure 4), which is consistent with the previous theory that algae photolysis is a possible 

strategy for pollutant degradation [32]. 

 

Figure 8. Photocatalytic degradation schematic illustration of TC and Cr(VI) over M. aeruginosa-

PAN/TiO2/Ag NF. 

2.5. Repeated Test 

The reusability and stability of the hybrid nanomaterials were also tested in three cycles. As 

shown in Figure 9, the removal rate of TC in each cycle was 96%, 90%, and 87%, respectively. Similarly, 

the removal efficiency of Cr(VI) was also decreased from 75% to 70% after three cycles. Although 

both slight decrements were observed in each cycle, the M. aeruginosa-PAN/TiO2/Ag NF sustained 

high activity even after three consecutive cycles and 12 h of continuous irradiation. This result is 

consistent with the previous results showing that the damaged algae was efficient in the photolysis 

of pollutants [30,32]. These results demonstrate that bionano hybrid nanofibers have relatively high 

photocatalytic activity and may be recovered and reused in the combined pollutant treatment. 

 

Figure 9. Reusability experiments for photocatalytic decontamination of TC and Cr(VI) in the M. 

aeruginosa-PAN/TiO2/Ag NF system. 
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3. Materials and Methods  

3.1. Materials 

Polyacrylonitrile (PAN, Mw = 150 k) was obtained from Aldrich. Anatase particles (TiO2, sized 

5–10 nm) were obtained from Evonik Industries Metal Oxides (Beijing, China). Electrospinning 

solvent DMF, K2Cr2O7, and AgNO3 were provided by Beijing Chemical Works (Beijing, China). 

Tetracycline hydrochloride (TC), potassium iodide (KI), 2-propanol, 1,4-benzoquinone (BQ), and 

carbon tetrachloride (CCl4) were purchased from Aladdin (Shanghai, China). Methanol and formic 

acid (FA) were HPLC grade and obtained from Fisher Chemical (Beijing, China). M. aeruginosa was 

obtained from Wuhan Hydrobiology Institute of CAS, China. Milli-Q water was used to prepare all 

the aqueous solutions (Millipore Corp, Boston, MA, USA). All the other chemicals were analytical 

grade and were further used without purification.  

3.2. Preparation of M. aeruginosa-Decorated PAN/TiO2/Ag Nanofiber Mats 

A quantity of 10 wt% of electrospinning solution was obtained by stirring the PAN in DMF 

mixture at 50 °C for 24 h. A certain amount of AgNO3 and TiO2 was dispersed in the above mixture 

by ultrasonic treatment. Subsequently, the spinning solution was put into a glass syringe and 

connected to a high-voltage power supply (Spellman SL150, New York, NY, USA). Electrospinning 

was performed at 10 kV with constant collection distance of 15 cm. A syringe pump was used to feed 

the polymer solution at a rate of 0.25 mL h−1. A schematic diagram of the single needle electrospinning 

setup is presented in Figure 1a. Nanofibers were collected on the aluminum foil and dried under 

vacuum and room temperature for 24 h.  

M. aeruginosa-decorated PAN/TiO2/Ag NF were prepared by placing 5 mL of M. aeruginosa 

solution (1.0 × 109 cells L−1) on the PAN/TiO2/Ag NF (0.5 g, 5 × 5 cm) and incubated for 72 h to let 

adequate attachment of the microalgae to nanofibers (Figure 10b). All of the samples were washed at 

least three times with pure water to remove residues and unstable algae cells. The interaction between 

algae and PAN/TiO2/Ag NF was analyzed by the UV-vis spectrum [33,34]. 

 

Figure 10. (a) Schematic diagram of electrospinning setup and (b) diagram illustrating the preparation 

of M. aeruginosa-TiO2/Ag hybrid nanofiber. 

3.3. Characterizations of M. aeruginosa-Decorated PAN/TiO2/Ag Nanofiber Mats 

The synthesized nanofibers were characterized by transmission electron microscopy (TEM, 

Tecnai G2 20 ST, Hillsboro, CA, USA) and scanning electron microscopy (SEM, Jeol Co., Akishima, 

Japan). Elemental composition of nanofibers was also investigated by energy dispersive X-ray 
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spectroscopy (EDX, Horiba, Kyoto, Japan). The BET specific surface area of the nanofiber was 

characterized by the surface area and porosity of the analyzer (ASAP 2020 HD88, Micromeritics, 

Norcross, GA, USA). The UV–vis spectra of hybrid nanofiber mats were characterized by a UV–vis 

Spectrophotometer (Shimadzu UV-3101, Kyoto, Japan). 

3.4. Photocatalytic Activity Measurement  

The photocatalytic activity of M. aeruginosa decorated PAN/TiO2/Ag NF was measured by the 

decontamination of TC and Cr(VI) under visible-light irradiation. Photocatalytic degradation studies 

were conducted using a homemade photochemical reactor (1 L) connected with 500 W halogen lamp 

(made by Institute of Electric Light Source of Beijing, China) and an optical filter to cut off the UV 

wave-length (λ < 420 nm). All the reaction solutions were prepared by adding the prepared M. 

aeruginosa-PAN/TiO2/Ag NF into 500 mL aqueous solutions containing TC (20 mg L−1) and Cr(VI) (10 

mg L−1). Systems with only PAN/TiO2/Ag NF and M. aeruginosa were set as controls. Five mL of M. 

aeruginosa solution (1.0 × 109 cells L−1) were diluted into a 500 mL reaction solution, and the total algae 

amount was equal to the immobilized cells on the nanofibers; the PAN/TiO2/Ag NF (1 g L−1) was the 

same amount as that used for algae immobilization. The pH of the reaction solution was kept at 6.0. 

Before the irradiation experiment, the mixture was kept in dark and ambient conditions for 30 min 

to achieve the adsorption-desorption equilibrium. During the photoreaction process, 5 mL of sample 

was collected at pre-set time intervals, and all the samples were filtered using a 0.25 μm membrane. 

The TC concentration was determined by HPLC (Agilent 1200, PaloAlto, CA, USA) with a Waters 

C18 column (3.5 μm, 4.6 × 150 mm) and UV detection at 355 nm. The volume ratio of 0.2% of FA water 

and methanol was 5:5 (v/v) with a flow rate of 0.5 mL min−1. The Cr(VI) concentration was determined 

through spectrophotometric assay in the presence of diphenylcarbazide as coloring agent (Shimadzu 

UV-3101 Spectrometer, Kyoto, Japan ). Moreover, all of the experiments were conducted in triplicate. 

To investigate the photocatalytic mechanism of the M. aeruginosa-decorated PAN/TiO2/Ag NF, 

experiments were performed using 1 mM of various scavengers. For example, CCl4 [35,36], 2-

propanol [37], KI [38], and BQ [39,40] served as scavengers to trap the electrons, hydroxyl radicals 

(·OH), holes, and superoxide radical (O2·−), respectively. However, all other experimental conditions 

were the same as in the photodegradation experiment. 

3.5. Photodegradation of Algae  

After irradiation for 4 h, the MDA and SOD of the algae were determined using a reagent kit 

(Nanjing Jiancheng Biotechnology Institute, Nanjing, China) [41,42]. Microcystins were detected in 

the system using an ELISA kit for total-microcystins detection (J&Q Environmental Technologies Co., 

Ltd., Hong Kong, China). 

4. Conclusions 

We have reported the successful preparation of M. aeruginosa-decorated PAN/TiO2/Ag NF to 

synergistically enhance the photocatalytic activity for the removal of organic (TC) and inorganic 

(Cr(VI)) pollutants under visible light irradiation. The reaction rate constants (k) of TC and Cr(VI) 

degradation by M. aeruginosa-PAN/TiO2/Ag NF were 2.4 and 1.5-folder higher than that of bare 

PAN/TiO2/Ag NF. Algae cells not only improved the absorption ability of pollutants but also 

accelerated the photodegradation of toxic pollutants. This study can help explain one of the possible 

transformation pathways of pollutants in the aquatic ecosystem, such as in lakes and rivers. 

Irradiation in the presence of PAN/TiO2/Ag NF caused damage to algae cells, but microcystin was 

not detected in the solution, indicating the simultaneous photodegradation of microcystin in the 

system. This study is novel, as it converts harmful algae into useful photoreactive bionano hybrid 

materials for removing other pollutants. Bionano hybrid materials can be reused and easily removed 

from the solution after the reaction, providing a promising and sustainable strategy to remove toxic 

pollutants from effluents under visible light irradiation.  
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