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Abstract 

We investigated the changes in bone characteristics and body composition of elite speed skaters across 

two competitive seasons. Twelve elite speed skaters age (23 ± 4 years; height 1.73 ± 0.09 m; body mass 

68.5 ± 8.8 kg; mean ± 1SD) were assessed by DXA and pQCT for Bone Mineral Density (BMD), Bone 

Mineral Content (BMC), area, bone strength, cortical thickness and density at four points over the 

course of two competitive seasons. Body composition data was also collected. A main effect of time 

was shown for whole body BMC, right leg BMC, and trabecular area (P<0.05). Whole body BMC was 

higher during pre-season and end of season in comparison mid-season (1.0%, P=0.007; 0.8%, P=0.017), 

right leg BMC was higher at the pre-season scan in comparison to the post pre-season scan 

(1.8%,P=0.02) and trabecular area was higher during the mid-season and end of season when compared 

to the pre-season (1.4%, P=0.012; 1.0%, P=0.003). Seasonal changes in bone characteristics and body 

composition are shown in elite speed skaters over a competitive season. The changes are thought to be 

as a result of fluctuations in training load. These data may have implications for training design and 

injury risk management in elite sport.  

 

 

 

 

 

 

 

 

 

 



Introduction 

The importance of mechanical loading to ensure optimal bone health is widely acknowledged [25]. The 

sports that are associated with the greatest osteogenic benefits have been shown to be activities that 

necessitate irregular movement patterns [9] and a high magnitude of loading [7,18]. This is substantiated 

by running speed being shown to be related to volumetric bone mineral density (BMD) and cortical 

area in groups of masters track athletes [28].  

Despite studies reporting the osteogenic benefits of certain sports, the time point during the season when 

the bone measurements were recorded is not commonly reported. This is important due to the changes 

shown in bone characteristics in athletes over the course of a competitive season (soccer players, [16] 

rugby league players, [8,10] alpine skiing, [15]). Information related to the time point of the season 

when bone characteristics are heightened may provide information that is useful for determining the 

osteogenic impact of differing exercise training. On the other hand, a decrease in bone characteristics, 

such as bone mineral content (BMC) has been associated with an increased risk of fracture [3], and 

therefore identification of seasonal time points when bone characteristics are lowered may highlight 

periods when there is a greater risk of bone injury.   

Bone fracture is the second most common type of injury in short track speed skaters, with the ankle 

being the most common anatomical location of fracture [21]. Short track speed skating is a sport in 

which training and competition racing involves irregular movement patterns that generate a high 

magnitude of loading [22]. The specific bone characteristics of short track speed skaters are yet to be 

fully elucidated, although speed skaters have been shown to have a greater BMD at the distal femur [12] 

and at the greater trochanter [17] in comparison to a sedentary control population, which is thought to 

be due to the mechanical loading long track speed skating necessities. However, the previous studies 

don’t allude to the time point in the season that the assessment of BMD took place and are conducted 

in either long track speed skaters [17] or don’t stipulate if the participants involved in long track or short 

track disciplines [12].  



Short track speed skating involves traveling at speeds in excess of 50kmh-1, while circling a 111m track 

for either 500, 1,000 or 1,500m [22]. Due to the skating action and speed at which skaters travel and 

corner, it is expected that a high  magnitude of load is encountered. As skaters navigate the course in a 

clockwise direction,  asymmetrical differences in neuromuscular [6] and muscle oxygenation occur [13] 

between the right and left leg. Because of this, bilateral differences are expected in bone characteristics 

and body composition. 

Currently, it is not known if the bone characteristics of elite speed skaters differ over the course of the 

season. Therefore the aim of the present study was to assess if the bone characteristics of elite speed 

skaters differ over the course of a competitive season and assess if the findings are reproducible 

following a second season.       

 

Method 

Participants  

Elite male (n = 6) and female (n = 6) speed skaters (23 ± 4 years; height 1.73 ± 0.09 m; body mass 

68.5 ± 8.8 kg; mean ± 1SD) were recruited via previously established links with Nottingham Trent 

University. Participants were inducted into the study if they were over 18 years of age, on the elite 

level program, injury free and not taking any form of medication known to influence bone 

metabolism. Prior to the scans commencing, participants completed a statement of informed consent, 

pre-scan screening and health screen questionnaire. The study conformed to Ionising Radiation 

Regulations and was approved by the National Health Service Research Ethics Committee (Reference 

15/EM/0037). The study was also conducted in accordance with international standards [11].   

Of the 12 speed skaters that volunteered to participate in the study, two were withdrawn due to 

retriment and illness (Figure 1). The following season male (n = 6) and female (n = 6) speed skaters 

(age 22 ± 3 years; height 1.69 ± 0.10 cm; body mass 63.6 ± 9.9 kg; mean ± 1SD) were recruited by 

the same method as previously mentioned. Of the skaters that completed season one, nine took part in 



season two. The typical training conducted by the elite speed skaters of the course of the season is 

shown in table 1.   

Procedures  

Elite world and national level speed skaters were tested for baseline variables during the first week of 

pre-season training, which included height, body composition and bone characteristics using Dual-

energy x-ray Absorptiometry (DXA) (iDXA, GE Healthcare, United Kingdom) and  peripheral 

quantitative computed tomography (pQCT) (XCT2000L, Stratec Medizintechnik, Pforzheim, 

Germany) over the course of a competitive season. Data was collected using the same methodology 

during a second season to confirm or refute the findings. Speed skaters completed their regular training 

and competition season as normal with a repeat of the baseline measures taking place post pre-season, 

mid-season and at the end of the season. The time span between each scan was as follows: Season 1: 

Pre-season to Post-season (101.0 days ± 0.0, Post pre-season to Mid-season 76.2 days ± 1.4,  Mid-

season to End of season 82.2 days ± 5.1.  Season 2: Pre-season to Post-season (104.4 days ± 1.8, Post 

pre-season to Mid-season 97.0 days ± 0.0,  Mid-season to End of season 92.4 days ± 2.3). All training 

was conducted and supervised by qualified coaches at the English Institute of Sport.  

 

Height (Stadiometer, Seca, Hamburg, Germany) and body mass (Seca, Birmingham, U.K.) were 

recorded with participants wearing minimal clothing. DXA scans assessed participant BMD, BMC, 

bone area and body composition. Calibration of the DXA was completed prior to scanning, using a 

manufacturer supplied phantom of a known density. Participants were asked to wear mimimal clothing 

and remove any jewellery or metal prior to the scan to ensure the validity of the measurements. 

Participants were asked to be fasted for two hours, void their bladder immediately before and consume 

500mL of water  at least 1 h prior to the scan to ensure euhydration. Participants were placed in a supine 

position on the DXA bed within the scanner range, with ankles and knees held in place by Velcro straps 

to ensure any unintended movements were avoided. Participants were asked to remain as still for the 

duration of the scan. Scans lasted approximately 10 minutes depending on the size of the participant. 



Coefficient of variation for the scan used in the present study has been shown to be 0.075% for BMD 

and 0.6% for fat mass [19].   

The following measures were analysed: whole body lean mass (kg) and % body fat; whole body BMD 

(g), whole body BMC (g), right leg BMD (g), left leg BMD (g), right leg BMC (g), left leg BMC (g), 

total bone area (cm2), right leg area (cm2), left leg area (cm2) and Z-score. 

pQCT scans were taken of the dominant leg (defined as the leg that the participant most comfortably 

kicked a ball with), by the same operator. Before scanning commenced, the scanner was cross-calibrated 

using phantoms of known density in accordance with manufacturer guidelines. Data was analysed 

you're the integral manufacturer supplied software. pQCT has previously been shown to provide a 

reliable measurement of bone characteristics in humans by our wider research group [14] and others 

[1]. The participants’ tibial length was measured to the nearest 1 mm, determined as the midpoint of the 

medial malleolus to the medial aspect of the tibial plateau. The participants leg was then placed in the 

scanner with their foot secured by a purpose built attachment. The leg was aligned with use of an integral 

laser and a clamp was placed to the knee to reduce movement, with the participant instructed to remain 

as still as possible for the duration of the scan. Initially, a preliminary reference point locating scout-

view scan was performed in the frontal plane to confirm the location of the middle of the distal end 

plate, which would act as a positioning line. Sectional images, were then obtained at 4%, 14%, 38% 

and 66% from the positioning line with a voxel size set at 0.5mm and a slice thickness of 2.5mm for all 

measurements. A contour mode, with a threshold of 180mg·cm-3, was used to separate soft tissue and 

bone. To analyse trabecular bone, a constant default threshold of 711mg·cm-3 was used to identify and 

remove cortical bone. The integral XCT2000L software (version 6.20A) was used to analyse the 

images. 

 

If any movement artefacts were present following the scan, the image was classed as invalid and a 

repeat measure was performed. If an artefact was present in the second image the participant was 

removed from the study in line with radiation exposure guidelines. 

 



The following measures were analysed: 4%: total cross sectional area (CSA, mm2) and trabecular BMD 

(mg·cm-3).14% and 38%: CSA, (mm2), cortical CSA (mm2), cortical BMD (mg·cm-3), cortical thickness 

(mm), periosteal circumference (mm) and stress strain index (SSI,mm-3). 66%: Total CSA, (mm2) and 

cortical BMD (mg·cm-3). 

 

 

Statistical analysis  

All data are presented as mean ± 1SD. Data were tested for normality using the Shapiro-Wilk test. A 

repeated measures ANOVA was conducted to assess the effect of time on the bone and body 

composition characteristics assessed. Post hoc test using Bonferroni correction were then conducted to 

identify the were the differences occurred. The significance level was set at P <0.05. Results were 

interpreted according to the statistical probabilities of rejecting the null hypothesis (H0) and in the 

following categories: P > 0.1: no evidence against H0; 0.05 < P < 0.1: weak evidence against H0; 0.01 

< P < 0.05: some evidence against H0; 0.001 < P < 0.01: strong evidence against H0; < P < 0.001: very 

strong evidence against H0. All statistical analysis was performed using Statistical Package for Social 

Sciences (SPSS) version 23.0 (SPSS, Inc., Chicago, IL, USA).  

 

Results  

Body composition 

A significant effect of time was shown for lean mass (p = 0.03) and percentage body fat (p = 0.009) 

over the course of a season (Table 2). Lean mass was significantly lower mid-season when compared 

to immediately post pre-season (p = 0.01, f = 3.48, df = 3). Percentage body fat was significantly higher 

before pre-season (p = 0.007, f = 4.73, df = 3) and at the end of the season (p = 0.05, f = 1.01, df = 3) 

in comparison to post pre-season. No significant changes were shown in body mass (Table 1). 

When analysis was conducted following the second season, a significant effect was time was also shown 

for lean mass (p = <0.001) and percentage body fat (p = 0.019). Lean mass was significantly lower at 

the end of season in comparison to post pre-season (52.5 ± 10.7 kg compared to 50.7 ± 10.5 kg; p = 

0.005; f = 11.23, df = 3) and during the season (52.5 ± 10.7 kg compared to 51.4 ± 10.4 kg; p = 0.025, 



f = 2.82, df = 3). Percentage body fat was significantly higher at pre-season in comparison to post pre-

season (17.5 ± 0.5% compared to 16.3 ± 0.6%; p = 0.02; f = 2.12; df = 3) and mid-season (17.5 ± 0.5% 

compared to 16.2 ± 0.5%; p = 0.03, f = 1.52, df = 3).   

 

Bone Characteristics 

A main effect of time was shown for whole body BMC (p = 0.01), right leg BMC (p = 0.02), right leg 

BMD (p = 0.006), sub cortical area (p = 0.05), total CSA; 66% site (p = 0.05) and trabecular area (p = 

0.05) following analysis from the first season (Table 3 and 4). 

Whole body BMC was higher during pre-season and end of season in comparison mid-season (p = 

0.007, f = 7.0, df =3; p = 0.017, f = 3.67, df =3; table 2). Right leg BMC (p = 0.02, f = 3.70, df =3) and 

BMD (p = 0.006; f = 2.76, df 3) were higher at the pre-season scan in comparison to the post pre-season 

scan. Sub cortical area was higher mid-season and at the end of the season in comparison to pre-season 

(p = 0.011; f = 2.91, df = 3; p = 0.010; f = 1.97, df = 3) (Table 3). Total cross sectional area at the 66% 

site of the tibia was higher at the end of the season compared to pre-season (p = 0.011, f = 1.23, df = 3) 

and post pre-season (p = 0.005; f = 1.51, df = 3). Trabecular area was higher mid-season and at the end 

of the season in comparison to pre-season (p = 0.012, f = 2.90, df = 3 and p = 0.03, f = 1.10, df = 3) and 

post pre-season (p = 0.005, f = 0.94, df = 3 and p = 0.023, f = 2.96, df = 3).    

 

 

Seasonal differences were again shown in whole body BMC (p = 0.03), right leg BMC (p = 0.003), and 

trabecular area (p = 0.05) following the second season. No differences were shown in right leg BMD, 

sub-cortical area and total CSA (66% site) following the second season (p >0.05).    

In line with the initial season measurements, whole body BMC was higher at the end of the season in 

comparison to mid-season (2790.5 ± 492.0 in comparison to 2770.2 ± 480.7; p = 0.001, f = 4.71, df = 

3). Right leg BMC was also higher at the pre-season scan in comparison to the post pre-season scan 

(517.0 ± 104.4 in comparison to 511.4 ± 102.3; p = 0.034, f = 3.31, df = 3) in line with the initial season 



measurements. Trabecular area measurements were also in agreement with the initial analysis, end of 

season measurements were higher than pre-season measurements (513.8 ± 64.0 in comparison to 504.6 

± 62.1; p = 0.043, f = 1.03, df = 3)    

Adjusted for body mass 

When data were adjusted for body mass, a significant effect of time was still present for percentage 

body fat (p = 0.028), lean mass (p = 0.041), trabecular area (p = 0.019), cross sectional area (p = 0.044) 

and total cross sectional area at the 4% tibal site (p = 0.019) in the first season.  The differences in body 

fat (p = 0.019), lean mass (p = <0.001),  trabecular area (p = 0.001) and total cross sectional area at the 

4% tibal site (p = 0.007) were also evident in the second season.  

 

Discussion 

To the authors knowledge, this is the first study to assess changes in the bone characteristics and body 

composition of elite speed skaters over the course of a competitive season. Z-scores above zero were 

maintained at all scan points, showing all athletes were not at risk of osteopinea or osteoporosis, 

however variations in bone characteristics were shown. The findings, that have been also shown 

following in a second season of analysis, show that small, but significant changes in whole body BMC, 

right leg BMC and trabecular area, as well as, lean mass and percentage body fat occur over the course 

of a competitive season.  

The transient decrease in whole body BMC shown in the present study (higher at pre-season and at the 

end of the season in comparison to the mid-season measurement) may be related to the 

mechanotransductive governance of bone remodelling. Increased training load during the pre-season 

period is likely to have up-regulated bone remodelling, as the bone attempts to adapt to the change in 

the type and frequency of loading placed upon it. A bone remodelling cycle is thought to take 

approximately three months from start to finish [26] and the bone resorption element is complete within 

the first four weeks of this cycle [23]. Therefore, the mid-season scan may represent incomplete 

adaptation to the pre-season training stimulus, although by the end of the season the bone would have 



adapted to the initial stimulus and thus a greater amount of mineralisation is likely to have occurred by 

this time. 

The change in bone characteristics shown in speed skaters have similarities to bone changes shown to 

other sports over the course of a season. Greater whole body BMC in elite rugby league players was 

shown in pre-season when compared to the mid and end of season [10]  , while whole body BMD was 

greater in pre-season when compared to mid-season [8]. Elite football players also show a decrease in 

BMC of the lower limbs when comparing pre-season to later in the season [16]. This does, however, 

contrast with some other previous findings; pelvic BMC of elite football players was reported to 

increase at the end of a season when compared to pre-season and upper limb BMC was shown to 

increase in direct contrast to the decrease shown at the lower limbs [16]. These findings suggest 

anatomical site specific changes that might be directly related to the type and magnitude of the loading 

encountered and the type of bone being loaded. No changes were reported in competitive triathletes 

when assessing whole body BMC or BMD following 32 weeks of a triathlon season, although detailed 

training information was not provided and, given that there was no difference in lean mass or percentage 

body fat between the two assessments, it could be that the triathlon training conducted didn’t fluctuate 

as much as the sport specific training conducted in the present study and in the previous studies 

involving team sports [8,10,16]. This fact might explain the differences seen between the studies with 

respect to changes in bone characteristics across the season.  

 

As well as there being a whole body BMC response to training load, there also seems to be an anatomical 

site specific response. Right leg BMC was higher in pre-season in comparison to post pre-season, but 

no differences were shown in the left leg. The different findings in the right leg compared to the left leg 

in the present study may be due to the asymmetrical nature of loading in short track speed skating. This 

is the first known study to assess bilateral differences in the bone characteristics of speed skaters, but 

previous studies have shown differences in the bone characteristics when assessing bilateral sports. The 

racket arm of tennis players was shown to have greater BMC and cross sectional area in comparison to 



the non-racket arm [2], while the cortical area and cortical thickness at the 66% site of the tibia were 

higher in the take-off of leg compared to the non-take-off leg in collegiate long jumpers [27] . 

 

Although speed skating is unilateral when skating in a straight line, it has bilateral components when 

cornering. Cornering generates high ground reaction forces [24], which are likely to be heightened in 

the right leg when compared to the left leg due to the technique involved when cornering (skater travel 

clockwise around the rink). The greater amount of loading experienced by the right leg during speed 

skating performance is characterised by data showing neuromuscular activation [6] and muscle 

oxygenation [13] to be greater in the right leg in comparison to the left leg. Therefore, the different 

loading characteristics experienced may explain why changes were only shown in right leg BMC.  

 

The rate of response to mechanical loading is different between trabecular and cortical bone [5], with 

trabecular bone remodelling more quickly than cortical bone [21]. The increase in trabecular area at the 

mid-season and end of season assessments when compared to the early season assessments, likely 

reflects a lag in bone adaptation from the pre-season period. Although speculative, it could be suggested 

that the increase in trabecular area could be a result of increased bone marrow cavities in preparation 

for an increase in trabecular density. The reason for the lack of seasonal differences in density related 

aspects of the tibia may be due to the high basal level of exercise that is taking place, which is not giving 

adequate time for mineralisation to take place. 

                            

Although the different training phases is thought to have caused changes in bone characteristics, whole 

body BMD Z-scores were above zero at all time points of the season. The current findings showing 

changes in whole body and right leg BMC over the course of a competitive season may be important 

for short and long term bone health. Decreased BMC has been associated with increased absolute 

fracture risk [3] and implicated in the onset of osteoporosis [20]. The reduction in BMC during the post 



pre-season (right leg) and mid-season (whole body BMC) periods may represent a heightened risk of 

bone injury in elite speed skaters. Long-term epidemiological studies assessing injury prevalence in 

speed skaters are, however, required before any cause and effect propositions can be made. The findings 

showing that intense training in the pre-season period causes a transient drop in BMC may also have 

implications when designing exercise programs as a method of ensuring positive bone health across the 

lifespan.       

The decrease in lean mass from post pre-season to mid-season and decrease in percentage body fat from 

pre-season to post pre-season and mid-season are likely to be due to the changes in training load that 

occurred during the season. The number of gym based sessions decreased during mid-season in 

comparison to the pre-season period, which may explain the decrease in lean mass, while both gym 

based sessions and ice sessions increased from the off-season in comparison to pre-season and mid-

season period, which explains the differences in body fat. These finding are not unexpected and are in 

line with changes in lean mass and percentage body fat seen in other sports (Gaelic hurlers [5]; Rugby 

league players [8,10]; Footballers [16]).      

The present study is not without limitation. The cohort used in the present study was relitivley small 

however, elite athletes are by definition limited in number, and the findings were shown in a second 

season of analysis, and therefore we are confident that a type I error has not occurred. As the study was 

applied and conducted in elite athletes, very little control measures were implicated. Due to this, 

habitual diet and lifestyle preferences were not prescribed by the authors, which could have impacted 

on the results shown. Unfortunately, altering the daily routines of these elite athletes would have 

reduced the studies ecological validity and, thus, reduced the applied implications of the study. Specific 

details in relation to qualification of training load are not know. The lack of precise information makes 

it difficult to clarify the specific training load that is causing the observed changes in bone 

characteristics and body composition. As all training was conducted and prescribed by specialist 

coaches within the national governing bodies’ organisation, the authors had no control over 

measurements taken during training sessions. 



In conclusion, BMC (whole body and right leg) and trabecular area change over the course of a 

competitive season in elite speed skaters. The reason for the changes in bone characteristics is likely to 

be due to seasonal differences in training load. The decrease in BMC following pre-season training may 

represent a heightened risk of bone injury during early to mid-season, particularly in the right leg. 
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Table 1. The type and duration pf speed skating training conducted over the course of the season.  

Type of training Off-season (Mar-Jun) Pre-season (Jun-Sept) Mid-season (Sept-Mar) 

 Number of occurrences   

Gym  

(1 h +WU/CD) 
 3-4 2-3 

Aerobic (cycle 1.5-

2.5 h/run 30-60 min)  
1 1 0-1 

Ice (1.5 h on Ice + 

WU/CD) 
5 7-8 7 

Imitations (30-60 

min) 
3-4 2-3 2 

WU = warm up; CD= cool down; Ice = training drills and competitions conducted on an ice rink; 

Imitations = land based rehearsals of the actions typically conducted during speed skating.  

 

 

 

Table 2. Body composition measurements from elite speed skaters over the course of a competitive 

season.  

  Pre-season Post pre season Mid-season End-season 

Body Mass (kg) 68.5 ± 8.8 67.6 ± 8.9 67.3 ± 9.1 67.7 ± 9.4 

Lean Mass (kg) 55.2 ± 9.4  55.7 ± 9.7 55.0 ± 9.1a 55.0 ± 9.4a 

% Body Fat  16.7 ± 0.5 14.8 ± 0.5b 15.2 ± 0.5b 15.9 ± 0.5 
a significantly lower in comparison to post-pre-season (p <0.05). 

b significantly lower in comparison to pre-season (p <0.05). 

 

Table 3. DXA derived bone measurements from elite speed skaters over the course of a competitive 

season. 

  Pre-season Post pre-season Mid-season End-season 

WB BMD (g) 1.265 ± 0.120 1.250 ± 0.127 1.261 ± 0.122 1.262 ± 0.130 

BMD right leg (g) 1.383 ± 0.145 1.365 ± 0.146b 1.369 ± 0.142 1.379 ± 0.158 

BMD left leg (g) 1.384 ± 0.129 1.369 ± 0.133 1.376 ± 0.136 1.374 ± 0.139 

WB BMC (g) 3044.2 ± 552.9a 3020.2 ± 551.2 3012.7 ± 548.1  3035.4 ± 550.1a 

BMC right leg (g) 575.5 ± 116.3 565.3 ± 114.0b 566.7 ± 114.4 571.3 ± 117.8 

BMC left leg (g) 579.5 ± 113.0 574.9 ± 113.7 577.2 ± 111.1 578.3 ± 107.6 

Total bone area 

(cm2) 2393.4 ± 260.7 2397.1 ± 261.6 2375.6 ± 264.6 2392.5 ± 257.0 

Area right leg 

(cm2) 413.2 ± 47.4 414.3 ± 46.3 410.9 ± 47.4 411.3 ± 47.6 



Area left leg (cm2) 415.9 ± 48.6 417.0 ± 50.1 416.9 ± 48.6 418.9 ± 47.4 

Z-score 1.33 ± 1.10 1.24 ± 1.16 1.37 ± 1.11 1.34 ± 1.21 

WB = Whole body 

a Significantly higher in comparison to the mid-season measurement (P < 0.05). 

b Significantly lower in comparison to the pre-season measurement (P < 0.05).  

 

 

Table 4. pQCT derived bone measurements from elite speed skaters over the course of a competitive 

season. 

4% Pre-season Post pre-season Mid-season End-season 

Trabecular Area (mm2) 566.1 ± 67.8 567.9 ± 68.3 573.8 ± 61.4 a,b 573.8 ± 68.1 a,b 

Trabecular Density 

(mg·cm3) 267.2 ± 20.2 268.3 ± 19.6 268.2 ± 20.0 268.5 ± 20.3 

Sub Cortical Area (mm2) 692.2 ± 82.9 694.4 ± 83.4 701.6 ± 75.1a 701.7 ± 83.2a 

Sub Cortical Density 

(mg·cm3) 403. 2 ± 45.6 404.3 ± 46.4 399.1 ± 46.7 401.6 ± 46.1 

14%     
Cortical Density 

(mg·cm3) 1104.3 ± 23.6 1105.6 ± 22.5 1104.9 ± 26.4 1107.5 ± 19.5 

Cortical CSA (mm2) 212.3 ± 46.5 186.1 ± 49.3 201.8 ± 35.5 202.4 ± 35.4 

Cortical Thickness (mm) 2.76 ± 0.45 2.64 ± 0.46 2.68 ± 0.49 2.68 ± 0.46 

Periosteal 

Circumference (mm) 85.29 ± 8.96 79.05 ± 15.07 84.01 ± 6.31 84.22 ± 6.69 

Strength Strain Index 

(mg2/mm4) 2077.9 ± 633.6 1970.4 ± 480.4 1979.3 ± 431.7 1970.7 ± 403.7 

38%     
Cortical 

Density(mg·cm3) 1153.9 ± 32.6 1155.2 ± 29.0 1153.9 ± 29.8 1155.9 ± 30.7 

Cortical CSA (mm2) 322.9 ± 56.7 293.2 ± 94.9 326.1 ± 58.3 323.5 ± 55.9 

Cortical Thickness (mm) 5.58 ± 0.67 5.19 ± 1.24 5.62 ± 0.72 5.53 ± 0.61 

Periosteal 

Circumference (mm) 75.16 ± 6.31 71.20 ± 12.23 75.43 ± 6.17 75.57 ± 6.08 

Strength Strain Index 

(mg2/mm4) 1922.3 ± 467.2 1930.3 ± 497.7 1945.9 ± 477.5 1890.3 ± 398.3 

66%     
Cortical Density 

(mg·cm3) 1116.0 ± 26.5 1116.2 ± 26.1 1114.8 ± 27.7 1117.6 ± 26.7 

Total CSA (mm2) 772.9 ± 129.4 778.5 ± 136.3 781.1 ± 132.8 a,b 781.1 ± 127.7a,b 

a Significantly higher in comparison to the pre-season measurement (P < 0.05). 

b Significantly higher in comparison to the post pre-season measurement (P < 0.05). 

 

 

 



 

 

 

 

 

 

 

 

 

 


