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ABSTRACT
Multi-Path TCP (MPTCP) is a new standardized transport protocol
that enables devices to utilize multiple network interfaces. The
default MPTCP path scheduler prioritizes paths with the small-
est round trip time (RTT). In this work, we examine whether the
default MPTCP path scheduler can provide applications the ideal
aggregate bandwidth, i.e., the sum of available bandwidths of all
paths. Our experimental results show that heterogeneous paths
cause under-utilization of the fast path, resulting in undesirable ap-
plication behaviors such as lower video streaming quality than can
be obtained using the available aggregate bandwidth. To solve this
problem, we propose and implement a new MPTCP path scheduler,
ECF (Earliest Completion First), that utilizes all relevant information
about a path, not just RTT. Our results show that ECF consistently
utilizes all available paths more efficiently than other approaches
under path heterogeneity, particularly for streaming video.

1 INTRODUCTION
One significant factor that affects MPTCP performance is the de-
sign of the path scheduler, which distributes traffic across avail-
able paths according to a particular scheduling policy. The default
path scheduler of MPTCP is based on round trip time (RTT) esti-
mates, that is, given two paths with available congestion window
space, it prefers to send traffic over the path with the smallest RTT.
While simple and intuitive, this scheduling policy does not care-
fully consider path heterogeneity, where available bandwidths and
round trip times of the two paths differ considerably. This path
heterogeneity is common in mobile devices with multiple interfaces
[2, 4, 5, 9, 12] and can cause significant reorderings at the receiver-
side [1–3, 7, 13]. To prevent this, MPTCP includes opportunistic
retransmission and penalization mechanisms along with the default
scheduler [10]. In long-lived flows, e.g., large file transfer, MPTCP
is able to enhance performance using these mechanisms. However,
a large number of Internet applications such as Web browsing and
video streaming usually generate traffic which consists of multiple
uploads/downloads for relatively short durations. We find that in
the presence of path heterogeneity, the default MPTCP scheduler is
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unable to efficiently utilize some paths with such a traffic pattern.
In particular it does not fully utilize the highest bandwidth paths,
which should be prioritized to achieve the highest performance and
lowest response time.

In this work, we propose a novel MPTCP path scheduler to maxi-
mize fast path utilization, called ECF (Earliest Completion First). To
this end, ECF monitors not only RTT estimates, but also the current
subflow bandwidths (i.e., congestion windows) and the amount
of data available to send (i.e., the send buffer). By determining
whether using a slow path for the injected traffic will cause faster
paths to become idle, ECF more efficiently utilizes the faster paths,
maximizing throughput, minimizing download time, and reducing
out-of-order packet delivery. Our experimental results demonstrate
that ECF successfully avoids undesirable idle periods, achieving
greater throughput with higher path utilization than the default
scheduler. At the same time, it performs as well as other schedulers
under symmetric path conditions.

2 THE EFFECT OF PATH HETEROGENEITY
We examine the effect of path heterogeneity on application perfor-
mance using adaptive video streaming, since it is currently one of
the dominant applications in use over the Internet [11]. Wemeasure
the average video bit rate obtained by an Android DASH (Dynamic
Adaptive Streaming over HTTP) streaming client while limiting the
bandwidth of the WiFi and LTE subflows on the server-side using
the Linux traffic control utility tc [8]. The streaming client uses
a state-of-art adaptive bit rate selection (ABR) algorithm [6]. The
choice of ABR does not significantly affect the results in this exper-
iment as we use fixed bandwidths for each interface. The oppor-
tunistic retransmission and penalizationmechanisms are enabled by
default. Each experiment consists of five runs, where a run consists
of the playout of the 20 minute video of which available resolutions
are 144p to 1080p. Table 1 presents the bit rates corresponding
to each resolution. We choose bandwidth amounts slightly larger
than those listed in Table 1, i.e., {0.3, 0.7, 1.1, 1.7, 4.2, 8.6} Mbps, to
ensure there is sufficient bandwidth for that video encoding.

Figure 1(a) presents the ratio of the average bit rate achieved
versus the ideal average bit rate available, based on the bandwidth
combinations, when using the default MPTCP path scheduler. The
figure is a grey-scale heat map where the darker the area is, the
closer to the ideal bit rate the streaming client experiences. The
closer the ratio is to one, the better the scheduler does in achieving
the potential available bandwidth. The values are averaged over
five runs. In a streaming workload, we define the ideal average
bit rate as the minimum of the aggregate total bandwidth and the
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Resolution 144p 240p 360p 480p 760p 1080p
Bit Rate (Mbps) 0.26 0.64 1.00 1.60 4.14 8.47

Table 1: Video Bit Rates vs. Resolution
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Figure 1: Ratio of Measured Average Bit Rate vs. Ideal Aver-
age Bit Rate (darker is better)

bandwidth required for the highest resolution at that bandwidth.
For example, in the 8.6 MbpsWiFi and 8.6 Mbps LTE pair (the upper
right corner in Figure 1(a)), the ideal average bit rate is 8.47 Mbps,
since the ideal aggregate bandwidth (8.6+8.6 = 17.2 Mbps) is larger
than the required bandwidth for the highest resolution of 1080p
(8.47 Mbps). Since the full bit rate is achieved, the value is one and
the square is black.

Figure 1(a) shows that, when significant path heterogeneity ex-
ists, the streaming client fails to obtain the ideal bit rate. For exam-
ple, whenWiFi and LTE provide 0.3Mbps and 8.6Mbps, respectively
(the upper left box in Figure 1), the streaming client retrieves 480p
video chunks, which requires only 2 Mbps, even though the ideal
aggregate bandwidth is larger than 8.47 Mbps. Thus, the value is
only 25% of the ideal bandwidth and the square is light grey. This
problem becomes even more severe when the primary path (WiFi)
becomes slower (compare the 0.3 Mbps & [0.3 – 8.6] Mbps and 8.6
Mbps & [0.3 – 8.6Mbps] pairs), as shown by the grey areas in the
upper left and lower right corners.

3 ECF SCHEDULER
To solve the performance degradation problem with path hetero-
geneity, we propose a new MPTCP path scheduler, called ECF (Ear-
liest Completion First). An MPTCP sender stores packets both in its
connection-level send buffer and in the subflow level send buffer
(if the packet is assigned to that subflow). Assume that there are k
packets in the connection level send buffer, which have not been
assigned (scheduled) to any subflow. If the fastest subflow in terms
of RTT has available CWND, the packet can simply be scheduled
to that subflow. If the fastest subflow does not have available space,
the packet needs to be scheduled to the second fastest subflow.

We denote the fastest and the second fastest subflows as xf
and xs , respectively. Let RTTf , RTTs andCWNDf ,CWNDs be the
RTTs and CWNDs of xf and xs , respectively. If the sender waits
until xf becomes available and then transfers k packets through xf ,
it will take approximately RTTf + k

CW NDf
×RTTf , i.e., the waiting

and transmission time of k packets. Otherwise, if the sender sends
some packets over xs , the transmission will finish after RTTs with
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Figure 2: The case for waiting for the fast subflow

or without completing k packet transfers. Thus, as shown in Figure
2, in the case of RTTf + k

CW NDf
× RTTf < RTTs , using xf after

it becomes available can complete the transmission earlier than
using xs immediately. If RTTf + k

CW NDf
×RTTf ≥ RTTs , there are

sufficient number of packets to send, so that usingxs at thatmoment
can decrease the transmission time by utilizing more bandwidth
than just by using xf .

ECF checks the above inequality to decide whether it will wait for
xf or immediately use xs . Figure 1(b) shows that ECF successfully
enables the streaming client to obtain average bit rates closest to
the ideal average bit rate, and does substantially better than the
default when paths are not symmetric.
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