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A Three-Scale Model of Spatio-Temporal Bursting∗

Alessio Franci† and Rodolphe Sepulchre‡

Abstract. We study spatio-temporal bursting in a three-scale reaction diffusion equation organized by the
winged cusp singularity. For large time-scale separation the model exhibits traveling bursts, whereas
for large space-scale separation the model exhibits standing bursts. Both behaviors exhibit a common
singular skeleton, whose geometry is fully determined by persistent bifurcation diagrams of the
winged cusp. The modulation of spatio-temporal bursting in such a model naturally translates into
paths in the universal unfolding of the winged cusp.
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1. Introduction. In the recent paper [11], we proposed that temporal bursting can be
conveniently studied in a three-time-scale model with a single scalar winged-cusp nonlinear-
ity, a basic organizing center in the language of singularity theory. Because of its particular
structure, the model is readily interpreted as a three-scale generalization of the celebrated
FitzHugh–Nagumo model, a two-time-scale model similarly organized by a single scalar hys-
teresis nonlinearity.

With enough time-scale separation, the (temporal) patterns exhibited by the trajectories
of those models are robust and modulable in the parameter space, because they are in one-
to-one correspondence with the persistent bifurcation diagrams of the universal unfolding of
the hysteresis and winged cusp, respectively.

We showed that this feature is of prime interest in neurophysiology, for instance, because
it provides insight in the physiological parameters that can regulate the continuous transition
between distinct temporal patterns as observed in experimental neuronal recordings.

The present paper pursues this investigation by adding diffusion in the three-scale temporal
model and exploring the resulting three-scale spatio-temporal patterns: traveling bursts and
standing bursts.
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The close relationship of the model with its 2-dimensional counterpart is of great help in
the analysis because we extensively rely on the existing theory for two-scale models with a
hysteresis nonlinearity. We study the existence of traveling bursts and standing bursts in our
three-scale model by mimicking the analysis of traveling pulses and standing pulses in earlier
two-scale models. This geometric analysis exploits the singular limit to construct the skeleton
of the attractor and relies on Fenichel theory to show the persistence of the pattern away from
the singular limit.

The results that we present are in close analogy both with the temporal results of the
3-dimensional model [11] and with the spatio-temporal results in two-scale models [2, 15, 5,
14, 17]. We prove existence results when they follow from the existing Fenichel theory and
discuss sensible predictions in situations that require an extension of the existing geometric
theory. The conceptual message of the paper is that singularity theory provides a principled
methodology for a geometric study of spatio-temporal patterns that can be robustly mod-
ulated in the presence of two or more well separated temporal and/or spatial scales. The
existence of specific patterns is proven for parameter sets sufficiently close to a singular con-
figuation (in the present situation, a pitchfork singularity in the universal unfolding of the
winged cusp) by enforcing the same geometric conditions as the classical two-scale analy-
sis.

Multiscale patterns seem particularly relevant in biology. Traveling bursts play a major
role in neuronal dynamics, both during development [23] and in the adult [12]. Morphogenetic
fields with multiple characteristic spatial scales are hypothesized, for instance, in limb devel-
opment [25]. More generally, we suggest that singularity theory provides a novel perspective
to model phenomena involving multiscale communication via traveling waves and multiscale
pattern formation.

Mathematically, three component reaction diffusion equations were studied in [6] but
the organizing singularity was the hysteresis and the objects under analysis were single
pulses, possibly interacting, rather than geometric bursts. Traveling bursts were also ob-
served in a biophysical neuronal network model in [8, Fig. 12.3]. Averaging over the fast
time-scale was used to reduce existence and stability analysis to the classical traveling pulse
analysis.

The paper is organized as follows. We introduce the three-scale reaction diffusion model
under analysis in section 2. The system equations are prepared to be studied geometrically
in section 3, where we also recall some classical geometric tools for the analysis of traveling
and standing pulses. Our presentation heavily relies on the ideas in [14, 17]. We develop
the fine (fast/short-range), medium (slow/long-range), and gross (ultraslow/ultralong-range)
scale analysis in sections 4, 5, and 6, respectively. Section 4 revisits the existence of trav-
eling and standing fronts around the winged-cusp nonlinearity. Sections 5 proves the co-
existence of a homogenous resting state with a periodic wave train or an infinite periodic
pattern. Finally, the existence of traveling bursts is proved in section 6.1 and the existence of
standing bursts is conjectured (together with a detailed singular construction) in section 6.2.
Based on this geometric analysis, and in full analogy with [11], section 7 discusses the rel-
evance of the proposed model to study the modulation of spatio-temporal bursting. Open
questions raised by the results of this paper are discussed theoretically and numerically in
section 8.
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2. A three-scale reaction diffusion model. The paper studies spatio-temporal bursting
in the reaction diffusion model

τuut = Duuxx + gwcusp(u, λ+ w,α+ z, β, γ),(1a)

τwwt = Dwwxx + u− w,(1b)

τzzt = Dzzxx + u− z,(1c)

where τu, τw, τz > 0, Du > 0, and Dw, Dz ≥ 0. The function

gwcusp(u, λ, α, β, γ) = −u3 − λ2 − α+ βu+ γuλ

is a universal unfolding of the winged cusp −u3 − λ2. We regard (1) as a one-component
reaction diffusion model organized by the winged-cusp singularity and with (spatio-temporal)
adaptation variables w and z.

The fundamental hypothesis of model (1) is a hierarchy of scales between the “master”
variable u and the adaptation variables w and z. This hierarchy of scales is consistent with
the hierarchy between the state variable (u), the bifurcation parameter (λ), and unfolding
parameters (α, β, γ) in singularity theory applied to bifurcation problems [13]. The variable w
accounts for variations of the bifurcation parameter while the variable z accounts for variations
of the unfolding parameter α. The fine-grain dynamics is organized by a single nonlinearity,
with distinct behaviors depending on the bifurcation parameter and unfolding parameters.
The medium-grain dynamics model (linear) adaptation of the bifurcation parameter to the
quasi-steady-state of the fine-grain behavior. The gross-grain dynamics models (linear) adap-
tation of unfolding parameters to the quasi-steady-state behavior of the fine and medium
grains.

We study separately the role of a time-scale separation

(2) 0 <
τu
τz

=: εus �
τu
τw

=: εs � 1,

which leads to traveling burst waves, and the role of space-scale separation

(3)

√
Dz

Du
=: δ−1

ul �
√
Dw

Du
=: δ−1

l � 1,

which leads to standing burst waves.
The proposed model extends earlier work in two directions:
• In the absence of diffusion, model (1) reduces to the bursting model analyzed in [11].

The results in [11] underlie the importance of a persistent bifurcation diagram in the
universal unfolding of the winged cusp, the mirrored hysteresis (class 2 of the persistent
bifurcation diagram of the winged cusp listed in [13, p. 208])), as a key nonlinearity for
obtaining robust three-time-scale bursting as ultraslow adaptation around a slow-fast
phase portrait with coexistence of a stable fixed point and a stable limit cycle [10].
• When the winged-cusp nonlinearity is replaced by an universal unfolding of the hys-

teresis singularity,
ghy(u, λ, β) = −x3 + λ+ βx,
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then (1) reduces to a FitzHugh–Nagumo-type model, which is the fundamental two-
scale model of excitability [9], exhibiting traveling pulses under a time-scale separation
[2, 15] and standing pulses under a space-scale separation [5, 17].

3. Methodology.

3.1. Reduction to singularly perturbed ODEs. Using the traveling wave anszatz (u,w, z)
( x√

Du
+ c t

τu
), traveling and standing waves of (1) satisfy the ODE

u′ = vu ,(4a)

v′u = cvu − gwcusp(u, λ+ w,α+ z, β, γ) ,(4b)

w′ = vw ,(4c)

v′w = c
δ2
l

εs
vw + δ2

l (w − u) ,(4d)

z′ = vz ,(4e)

v′z = c
δ2
ul

εus
vz + δ2

ul(z − u) .(4f)

For Dw, Dz 6= 0, we set c = 0 and use the change of variables vw 7→ ṽw
δl
, vz 7→ ṽz

δul
to study

the existence of standing waves satisfying the ODE

u′ = vu ,(5a)

v′u = −gwcusp(u, λ+ w,α+ z, β, γ) ,(5b)

w′ = δlvw ,(5c)

v′w = δl(w − u) ,(5d)

z′ = δulvz ,(5e)

v′z = δul(z − u) .(5f)

To study traveling waves, we start by multiplying both sides of (4d) and (4f) by εs
cδ2l

and
εus
cδ2ul

, respectively,

u′ = vu ,

v′u = cvu − gwcusp(u, λ+ w,α+ z, β, γ) ,

w′ = vw ,
εs
cδ2
l

v′w = vw +
εs
c

(w − u) ,

z′ = vz ,
εus
cδ2
ul

v′z = vz +
εus
c

(z − u) .
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In the limit εs
cδ2l
, εus
cδ2ul
→ 0, we obtain

u′ = vu ,(6a)

v′u = cvu − gwcusp(u, λ+ w,α+ z, β, γ) ,(6b)

w′ =
εs
c

(u− w) ,(6c)

z′ =
εus
c

(u− z) .(6d)

Note that if Dw = Dz = 0, that is, the two adaptation variable do not diffuse, then εs
cδ2l
, εus
cδ2ul

=

0, because in this case δl = δul = +∞. The persistence of the limit εs
cδ2l
, εus
cδ2ul
→ 0 for Dw, Dz 6= 0

will not be addressed in the present paper but we verify it numerically in section 8.2.1.

3.2. The geometry of traveling and standing pulses. For future reference, we briefly
recall here the geometric construction of traveling and standing pulses in two-scale reaction
diffusion equations. Our exposition is based on [14, sections 4.2, 4.5, and 5.3] for the traveling
case and [17, sections 4 and 5], [5, section 2] for the standing case.

Let ghy(u, λ, β) = −u3 + βu + λ be an universal unfolding of the hysteresis singularity.
The two-scale reaction diffusion model

τuut = Duuxx + ghy(u, λ+ w, β),(7a)

τwwt = Dwwxx + u− w,(7b)

exhibits traveling pulses under time-scale separation (2) and standing pulses under space-scale
separation (3). The traveling pulse is constructed geometrically for Dw = 0 using the traveling
wave ansatz. The standing pulse is constructed geometrically in the traveling wave ansatz
with c = 0. For large time-scale separation and large space-scale separation the two reductions
lead to the singularly perturbed ODEs

u′ = vu ,(8a)

v′u = cvu − ghy(u, λ+ w, β),(8b)

w′ =
εs
c

(u− w) ,(8c)

c′ = 0 ,(8d)

(traveling)

u′ = vu ,(9a)

v′u = −ghy(u, λ+ w, β),(9b)

w′ = δlvw ,(9c)

v′w = δl(w − u) .(9d)

(standing)

The dummy dynamics of the wave speed parameter c in the traveling case is needed for
the singular perturbation construction. Under the same geometric conditions as [14, sec-
tion 4.2]—traveling case—and [5, section 1]—standing case—the singular skeleton of (8) and
(9) is sketched in Figure 1. Geometrically, traveling and standing pulses share the same
singular skeleton provided by their hysteretic critical manifold

S0 = {(u, vu, w, c) : vu = 0, ghy(u, λ+ w, β) = 0}
(traveling),

S0 = {(u, vu, w, vw) : vu = vw = 0, ghy(u, λ+ w, β) = 0}
(standing).
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Figure 1. Geometry of traveling and standing pulses in reaction diffusion model with a cubic nonlinearity.
Stable homogeneous resting states are depicted as black dots. The critical manifold S0 is depicted as the thick
black line. The thin black line is the nullcline of the slow variable w (traveling case) or vw (standing case).
Trajectories of the layer dynamics (10) and (13) are drawn with double arrows. Trajectories of the reduced
dynamics (11) and (12) are drawn with single arrows.

Both traveling and standing pulses are constructed as homoclinic orbits obtained as per-
turbations of the singular homoclinic orbits sketeched in Figure 1.

The singular homoclinic orbit associated with the traveling pulse begins with a first jump
from steady state to the excited along the (fast) layer dynamics

u′ = vu ,(10a)

v′u = cvu − ghy(u, λ+ w, β) ,(10b)

w′ = 0 ,(10c)

c′ = 0 .(10d)

This jump is a heteroclinic orbit of (10) constructed as the transverse intersection in the
4-dimensional (u, vu, w, c)-space of suitable 2-dimensional stable and 3-dimensional unstable
manifolds (see [14, section 4.5] for details). Because c is a parameter, this transverse inter-
section lies in the same c-slice, that is, for c = c∗ 6= 0. The phase portrait of the (u, vu)
subsystem at the heteroclinic connection is the same as Figure 2B∗∗. The slow motion inside
the 1-dimensional c = c∗-slice of the upper branch of the critical manifold is ruled by the
reduced dynamics

0 = vu ,(11a)

0 = cvu − ghy(u, λ+ w, β) ,(11b)

w′ =
1

c
(u− w) ,(11c)

c′ = 0, c = c∗ .(11d)
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Figure 2. The geometry of traveling and standing wave fronts around a transcritical singularity in the
universal unfolding of the winged cusp. A. Steady states of (14), (15) as a function of λ̃ for γ = 0, β > 0, and
α̃ = −2(β

3
)2/3. B. Top. Traveling and standing front of (14) and (15), respectively. Bottom. The (u, vu) phase

portraits at the traveling and standing fronts.

The slow flow continues until the singular trajectory reaches the base point of a downward
heteroclinic jump along the layer dynamics (10). This heteroclinic orbit is again constructed
as the transverse intersection of suitable stable and unstable manifolds (see [14, section 5.3]
for details). The phase portrait of the (u, vu) subsystem at this heteroclinic connection is the
same as Figure 2B∗. The slow motion inside the 1-dimensional c = c∗-slice of the lower branch
of the critical manifold is ruled by the reduced dynamics (11) until the singular trajectory
converges back to the resting point.

Due to the Hamiltonian nature of (9), the standing pulse is a symmetric homoclinic orbit,
that is, satisfying (u(ξ), vu(ξ), w(ξ), vw(ξ)) = (u(−ξ),−vu(−ξ), w(−ξ),−vw(−ξ)). It therefore
suffices to construct a singular trajectory originating at the steady state and intersecting
transversely the subspace {vu = vw = 0}. This singular homoclinic orbit begins with a slow
portion along the reduced dynamics

0 = vu ,(12a)

0 = −ghy(u, λ+ w, β) ,(12b)

w′ = vw ,(12c)

v′w = w − u .(12d)
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Because v′w > 0 on the right of the steady state, vw and, therefore, also w, increase until the
trajectory reaches the base point of a heteroclinic trajectory along the layer dynamics

u′ = vu ,(13a)

v′u = −ghy(u, λ+ w, β) ,(13b)

w′ = 0,(13c)

v′w = 0.(13d)

Existence of this heteroclinic orbit easily follows from the Hamiltonian nature of the layer dy-
namics. The fact that it can be constructed as the transverse intersection in the 4-dimensional
(u, vu, w, vw)-space of suitable 2-dimensional stable and 3-dimensional unstable manifolds is
proved by imposing the geometric conditions in [5, section 1]. At the heteroclinic jump the
trajectory jumps to the upper branch of the critical manifold. There, the trajectory is carried
transversely across {vu = vw = 0} by the reduced flow (12). Again, transversality, in particu-
lar the fact that the trajectory remains bounded away from the fold singularity of the critical
manifold, is proved by imposing the geometric conditions in [5, section 1]. The other half of
the trajectory is constructed by symmetry.

Persistence of the singular homoclinic orbits associated with both the traveling and stand-
ing pulse follows by the Exchange Lemma [16]. Roughly speaking, the Exchange Lemma allows
us to track, for ε > 0, the invariant (stable and unstable) manifolds involved in the construc-
tion of the singular orbits and, in particular, to ensure that the same transverse intersections
persist away from the singular limit and for ε sufficiently small.

Application of the Exchange Lemma in the construction of the classical traveling and
standing pulse requires that the homoclinic trajectory solely shadows a normally hyperbolic
part of the critical manifold. In the traveling case, this property is enforced by the fact that
the homogeneous resting state is far from the fold singularity (note that the property may
fail to hold when the resting state is close to the fold singularity or when ε becomes too large
[3]). In the standing case it is enforced by the geometric assumptions in [5, section 1]. We
will enforce the same property in the construction of our traveling and standing bursts by
enforcing similar geometric conditions as the classical traveling and standing pulse.

4. Fine-scale analysis: Bistability and connecting fronts. For εs = εus = 0 and δl =
δul = 0, models (6) and (5) reduce to one-scale behaviors describing the fine-grain dynamics:

u′ = vu ,(14a)

v′u = cvu − gwcusp(u, λ̃, α̃, β, γ)(14b)

(traveling),

u′ = vu ,(15a)

v′u = −gwcusp(u, λ̃, α̃, β, γ)(15b)

(standing),

where λ̃, α̃, c, w, and z are now fixed parameters.
In both models, the steady-states

(16) {(u, vu) : vu = 0, gwcusp(u, λ̃, α̃, β, γ) = 0}

are determined by the universal unfolding of the winged cusp, as the bifurcation and unfolding
parameters vary. For γ = 0, β > 0, and α̃ = −2(β3 )2/3, the steady-state curve possesses a
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transcritical singularity for λ̃ = 0, where two mirror-symmetric hysteretic branches merge, as
sketched in Figure 2A.

Away from the transcritical singularity, both hysteretic branches possess the same quali-
tative geometry as the classical cubic critical manifold in Figure 1. In particular, they exhibit
bistability between up and down homogeneous steady states of the associated scalar reaction
diffusion equation. Both in the traveling and standing case, there exist connecting heteroclinic
orbits between the up and down steady-state branches (Figure 2B), which correspond to trav-
eling or standing wave fronts of the associated reaction diffusion equation. In the traveling
case, there are four c-dependent values of the bifurcation parameter λ̃ for which the model
posses a heteroclinic orbit: two upward heteroclinic orbits and two downward heteroclinic
orbits. In the standing case, there are two values of the bifurcation parameter λ̃ for which the
model possesses both a downward and an upward heteroclinic orbit. The phase portraits of
the fast heteroclinic jumps are sketched in the insets.

Existence of these heteroclinic orbits follows exactly from the theory in [14, section 4.5] for
the traveling case and in [17, section 4] for the standing case. They all persist to parameter
variations, in particular, to unfolding of the transcritical singularity. We omit here a detailed
proof but the key derivations are recalled in Lemma A.1 for the traveling case and in Lemma
B.1 for the standing case.

5. Medium-scale analysis: Bistability between homogeneous and periodic states. To
model slow adaptation of the bifurcation parameter λ, we unfreeze the slow variable w and
study coexistence of a resting state (corresponding to a stable homogeneous resting state in
the original PDE) and a limit cycle (corresponding to a periodic wave train or an infinite
periodic patter in the original PDE) in the models:

u′ = vu ,(17a)

v′u = cvu − gwcusp(u, λ+ w, α̃, β, γ),(17b)

w′ =
εs
c

(u− w) ,(17c)

c′ = 0(17d)

(traveling),

u′ = vu ,(18a)

v′u = −gwcusp(u, λ+ w, α̃, β, γ),(18b)

w′ = δlvw ,(18c)

v′w = δl(w − u)(18d)

(standing),

for εs and δl sufficiently small, respectively. This bistability is the generalization of bistability
between the homogeneous rest and excited states in the two-scale scenario.

For future reference, we make the following preliminary observation. The homogeneous
resting state equation of (17) and (18) is

(19) F (u, λ, α̃, β, γ) := −u3 − (λ+ u)2 + βu− γ(λ+ u)u− α̃ = 0

and is easily shown to be again a universal unfolding of the winged cusp around uwcusp := 1
3 ,

λwcusp := 0, αwcusp := − 1
27 , βwcusp := −1

3 , γwcusp := −2.

5.1. Traveling case. The 2-dimensional critical manifold of the singularly perturbed dy-
namics (17) is

(20) S0 = {(u, vu, w, c) : vu = 0, gwcusp(u, λ+ w, α̃, β, γ) = 0}.
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S0
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Figure 3. A. Bistability between a homogeneous steady state and a periodic wave train in the singular limit
and in the traveling wave ansatz. The two objects are connected by a traveling front. The homogeneous resting
state is depicted as a black dot, the singular heteroclinic orbit corresponding to the traveling front as a green
oriented line, and the singular periodic orbit corresponding to the periodic wave train as a blue oriented line.
One arrow indicates slow portions along the reduced dynamics (22), two arrows fast portions along the layer
dynamics (21). B. Bistability between a homogeneous steady state and an infinite periodic pattern in the singular
limit and in the standing wave ansatz. There is also a (single) standing pulse solution that shadows the periodic
pattern. The homogeneous resting state is depicted as a black dot, the singular periodic orbit corresponding
to the infinite periodic pattern as a blue oriented line, and the singular homoclinic orbit corresponding to the
standing pulse as a green oriented line. One arrow indicates slow portions along the reduced dynamics (25),
two arrows fast portions along the layer dynamics (24).

For γ = 0, β > 0, and α̃ < −2(β3 )2/3 the transcritical singularity in Figure 2A unfolds
into the mirrored hysteresis persistent bifurcation diagram introduced in [11, section 2.3] and
organizing the singular phase portrait in Figure 3A. This algebraic curve is a template for
rest-spike bistability in ODEs [10, Theorem 2]. Here we show that it is also a template to
construct a wavefront between homogeneous resting and a periodic wave train.

The singular phase portrait of (17) in Figure 3A is constructed in Lemma A.1. It exists
for a precise value c = c∗ derived along the same line as [14, section 4.2]. It contains an
equilibrium (black dot) corresponding to a stable homogeneous resting state of the associated
reaction diffusion model, a singular periodic solution (blue line) corresponding to a traveling
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periodic wave train, and a heteroclinic1 orbit (green line) corresponding to a traveling wave
front connecting the stable homogeneous resting state to the periodic wave train. The singular
periodic solution consists of two heteroclinic jumps of the layer dynamics (21) connected by
trajectories of the reduced dynamics (22):

u′ = vu ,(21a)

v′u = cvu − gwcusp(u, λ+ w, α̃, β, γ),(21b)

w′ = 0 ,(21c)

c′ = 0(21d)

0 = vu ,(22a)

0 = cvu − gwcusp(u, λ+ w, α̃, β, γ),(22b)

w′ =
1

c
(u− w) ,(22c)

c′ = 0 .(22d)

The singular heteroclinic orbit consists of a heteroclinic jumps of the layer dynamics followed
by a trajectory of the reduced dynamics.

The heteroclinic jumps are constructed in Lemma A.1 as the transverse intersection in the
4-dimensional (u, vu, w, c)-space of suitable 2-dimensional stable and 3-dimensional unstable
manifolds of the layer dynamics (21), by enforcing the same geometric conditions as [14,
section 4.2]. Like the standing pulse case, because c is a parameter, this transverse intersection
lies in the same c-slice, that is, for c = c∗ 6= 0. The fast phase portrait of the (u, vu) subsystem
associated with upward (resp., downward) heteroclinic jumps is exactly the same as in Figure
2B∗ (resp., Figure 2B∗∗). The slow flow along the reduced dynamics (22) connects the landing
point of successive heteroclinic orbits. This singular structure persists for εs > 0, as proved
in the following theorem. Its proof is provided in Appendix A.

Theorem 1. There exist open sets of bifurcation (λ) and unfolding (α, β, γ) parameters in
a parametric neighborhood of the pitchfork singularity of (19) at β = 1

3 , λ = 1
3 , α̃ = 1

27 −
1
9 ,

γ = 0 such that, for all parameters in those sets, there exists c∗ 6= 0 and ε̄s > 0 such that, for
each 0 < εs < ε̄s, model (17) possesses for a value c̄ = c∗ + O(εs) a fixed point and a limit
cycle both of saddle type and a heteroclinic orbit hεs converging in backward time to the fixed
point and in forward time to the limit cycle.

Theorem 1 generalizes bistability between a fixed point and a limit cycle in finite-dimen-
sional systems [11, Theorem 2] to bistability between a homogeneous resting state and a
periodic wave train in reaction diffusion models organized by the winged-cusp singularity. We
note that the heteroclinic orbit of Theorem 1 selects one out an infinity of periodic solutions
for (17) by selecting a unique traveling speed.

In the proof of Theorem 1 we enforce the same standing conditions as for the construction
of the classical FitzHugh–Nagumo pulse and apply the Exchange Lemma similarly. The
singular skeleton is constructed along the same line as [14, sections 4.2, 4.5]. Existence of
heteroclinic and periodic orbits is then proved by applying the Exchange Lemma along the
same line as [14, sections 5.3].

5.2. Standing case. The 2-dimensional critical manifold of the singularly perturbed dy-
namics (18) is

(23) S0 = {(u, vu, w, vw, c) : vu = vw = 0, gwcusp(u, λ+ w, α̃, β, γ) = 0}.

1The term heteroclinic is used in the generalized sense of a trajectory connecting two ω-limit sets, not
necessarily two fixed points.
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For γ = 0, β > 0, α̃ > −2(β3 )2/3, and |α̃ + 2(β3 )2/3| sufficiently small, the transcritical
singularity in Figure 2A unfolds into the persistent bifurcation diagram organizing the singular
phase portrait in Figure 3B1. This persistent bifurcation diagram is qualitatively different
from the mirrored hysteresis in Figure 3A but both diagrams belong to the unfolding of the
same transcritical singularity in the universal unfolding of the winged cusp.

The singular phase portrait in Figure 3B is constructed in Lemma B.1. It contains an
equilibrium (black dot) corresponding to a stable homogeneous resting state of the associated
reaction diffusion model, a singular periodic solution (blue line) corresponding to a periodic
pattern, and a singular homoclinic orbit (green line) corresponding to a standing pulse. The
singular periodic and the homoclinic solution share a common arc: the standing pulse shadows
the periodic pattern in its excited phase. The 3-dimensional projection of this singular phase
portrait onto the (u,w, v2) space is sketched in Figure 3B2. Both the periodic and homoclinic
solutions consist of two heteroclinic jumps of the layer dynamics (24) connected by trajectories
of the reduced dynamics (25):

u′ = vu ,(24a)

v′u = −gwcusp(u, λ+ w, α̃, β, γ) ,(24b)

w′ = 0 ,(24c)

v′w = 0 ,(24d)

0 = vu ,(25a)

0 = −gwcusp(u, λ+ w, α̃, β, γ) ,(25b)

w′ = vw ,(25c)

v′w = u− w .(25d)

The fast phase portrait associated with the heteroclinic jumps is exactly the same as in
Figure 2∗∗∗).

In analogy with [5, section 2] and [17, section 4], the first branch of the singular homoclinic
orbit is provided by the slow 1-dimensional unstable manifold of the resting state inside the
critical manifold, that is, according to the reduced dynamics (25). The slow flow continues
until it reaches the fast heteroclinic trajectory of the layer dynamics (24). This trajectory,
whose existence is easily proved by invoking the Hamiltonian nature of (24), is constructed as
the transverse intersection in the 4-dimensional (u, vu, w, vw)-space of suitable 2-dimensional
unstable and 3-dimensional stable manifolds, much in the same way as [17, Lemma 4.1]. At
the heteroclinic jump the trajectory jumps to the upper branch of the critical manifold. There,
the trajectory is carried transversely across {vu = vw = 0} by the reduced flow. Avoidance
of the critical manifold fold singularity is ensured by enforcing the same geometric conditions
as [5, section 1]. The second half of the singular homoclinic trajectory is constructed by
symmetry of (24)–(25).

The singular periodic trajectory is constructed around the second (rightmost) fast hetero-
clinic connection, whose existence and transversality conditions are the same as the leftmost
heteroclinic. The slow arc of the singular homoclinic trajectory lying in the upper branch of
the critical manifold, on the right of the base points of the second fast heteroclinic connection,
provides the upper slow portion of the singular periodic trajectory. This is the shared arc.
The fast heteroclinic connections connect this arc with a slow arc in the lower branch of the
critical manifold.

This singular structure persists for δl > 0 as proved in the next theorem. Its proof is
provided in Appendix B.
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Theorem 2. There exist open sets of bifurcation (λ) and unfolding (α̃, β, γ) parameters in a
parametric neighborhood of the pitchfork singularity of (19) at β = 1

3 , λ = 1
3 , α̃ = 1

27−
1
9 , γ = 0

such that, for all parameters in those sets, there exists δ̄l > 0 such that, for all 0 < δl < δ̄l,
model (18) possesses a homoclinic trajectory and a limit cycle that are O(δl)-close to each
other together with their unstable manifolds in a neighborhood of the point (umax, 0, wmax, 0),
where w reaches its (unique) maximum along the singular homoclinic trajectory.

Theorem 2 characterizes bistability between a homogeneous resting state and a periodic
pattern in reaction diffusion models organized by the winged-cusp singularity. We note that
the homoclinic orbit singles out a privileged periodic pattern in model (18) out of an infinity
of them.

In the proof of Theorem 2 we enforce the same conditions as the construction of the
standing pulse and use the Exchange Lemma similarly. The singular skeleton is constructed
by enforcing the same assumptions as [5, section 2]. The existence of the homoclinic and
periodic orbits is proved along the same lines as [17, sections 4 and 5].

6. Gross scale analysis: Traveling and standing bursts.

6.1. Traveling bursts. Very much like traveling pulses are homoclinic orbits of the sin-
gularly perturbed dynamics (8), traveling bursts are constructed as homoclinic orbits of the
singularly perturbed dynamics (6). We start by constructing the singular limit εs → 0 of this
homoclinic orbit under the assumption that εus = ε̃usεs with 0 < ε̃us � 1. The layer (26) and
reduced (27) dynamics then read

u′ = v ,(26a)

v′ = cv −
gwcusp(u, λ+ w,α+ z, β, γ),(26b)

w′ = 0 ,(26c)

z′ = 0 ,(26d)

c′ = 0 ,(26e)

0 = v ,(27a)

0 = cv −
gwcusp(u, λ+ w,α+ z, β, γ),(27b)

w′ =
1

c
(u− w) ,(27c)

z′ =
ε̃us
c

(u− z) ,(27d)

c′ = 0 .(27e)

The associated critical manifold is

(28) S0 := {(u, v, w, z, c) : v = 0, gwcusp(u, λ+ w,α+ z, β, γ) = 0}.

The overall geometry of the singular homoclinic orbit is illustrated in Figure 4.
Figure 4A illustrates the deformation of the singular phase portrait of the medium scale

dynamics (17) for different values of the unfolding parameter α̃ = α + z for fixed α and
changing z. This deformation is proved in Lemma C.1. The starting point (at z = zrest)
is determined by Theorem 1, which corresponds to the phase portrait in Figure 3A. This
situation is created by picking (λ, α̃, β, γ) and c = c∗ as in Theorem 1, and α = α̃ − urest
so that (urest, urest) is an equilibrium for z = zrest = urest. Lemma C.1 also shows that, for
z ≥ zrest, the fixed point and the limit cycle persist over a range [zrest, z

∗), but that the fast
heteroclinic orbit from the lower to the upper branch of the critical manifold progressively
slides toward the second upward heteroclinic orbit as z → z∗. For z > z∗ only the fixed point
and the downward heteroclinic orbit persist.
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Figure 4. Geometric construction of traveling bursts. A. Deformation of the slow-fast phase portrait of (17)
for different values of α̃ = α+ z for fixed α and different values of z. Notation as in Figure 3. B. Projection of
the singular homoclinic orbit corresponding to the traveling burst solution (in red) onto the (u,w, z) space. One
arrow indicates slow portions along the layer dynamics (27), two arrows fast portions along the layer dynamics
(26). Base and landing points of the fast heteroclinic connections lie along the blue lines.

The singular homoclinic orbit is constructed by gluing together the z-slices of Figure 4A
in the range [zrest, z

∗ + θ] for small θ > 0, as illustrated in Figure 4B. As for the traveling
pulse, a first heteroclinic jump brings the orbit from rest to the excited state. As z increases
in the ultraslow scale, the slow flow governed by (27) brings the trajectory to the base point
of the next fast heteroclinic jump. The alternation of slow flows and fast heteroclinic jumps,
along the family of singular limit cycles, continues until z > z∗. The orbit then relaxes back
to rest along the lower branch of the critical manifold.

The following theorem proves the existence of a homoclinic orbit that tracks the singular
homoclinic orbit away from the singular limit. Its proof is provided in Appendix C.



A THREE-SCALE MODEL OF SPATIO-TEMPORAL BURSTING 2157

Theorem 3. There exist open sets of bifurcation (λ) and unfolding (α, β, γ) parameters in
a parametric neighborhood of the pitchfork singularity of (19) at β = 1

3 , λ = 1
3 , α̃ = 1

27 −
1
9 ,

γ = 0 such that, for all parameters in those sets, there exists c∗ 6= 0 such that for almost
all ε̃us > 0 sufficiently small and c = c∗, the singular limit (26)–(27) possesses a transverse
singular homoclinic orbit as sketched in Figure 4. Furthermore, model (6) possesses for εs > 0
sufficiently small a homoclinic orbit near the transverse singular homoclinic orbit.

The proof of Theorem 3 is a direct application of the Exchange Lemma, more precisely, of
the theorem in [16, section 4], which applies the Exchange Lemma to persistence of singular
homoclinic orbits like the one in Figure 4. The presence of a third scale governed by εus or,
equivalently, by ε̃us is solely exploited to enforce the transversality conditions required by the
application of the Exchange Lemma to (8) via the singular limit (26)–(27). Genericity in ε̃us
arises by imposing some of these transversality conditions.

Nongeneric values of ε̃us include spike-adding bifurcations in which the number of spikes
per burst in the singular homoclinic solution changes: for ε̃us sufficiently large there is only
one spike per burst because the slow flow brings z above z∗ after just one jump; for decreasing
ε̃us the number of jumps necessary to bring z above z∗ increases monotonically and so does
the number of spikes per burst. Spike-adding bifurcations and the rich dynamics they bring
are well known in the purely temporal saddle-homoclinic bursting setting (see, e.g., [20, 22]).

6.2. Standing bursts. In analogy with the standing pulses of (9), the standing bursts of
the singularly perturbed dynamics (5) are symmetric homoclinic orbits, that is, they satisfy

(u(ξ), vu(ξ), w(ξ), vw(ξ), z(ξ), vz(ξ)) = (u(−ξ),−vu(−ξ), w(−ξ),−vw(−ξ), z(−ξ),−vz(−ξ)).

The overall geometry of the associated symmetric singular homoclinic orbit is illustrated in
Figure 5.

Figure 5A illustrates the deformation of the singular phase portrait of the medium-scale
dynamics (18) for different values of the unfolding parameter α̃ = α + z, for fixed α and
changing z. The existence of the range (zhom, zhom), where a singular homoclinic orbit and
a singular periodic orbit coexist, follows from Theorem 2. In this range, the phase portrait
is as in Figure 3B. The condition zrest ∈ (zhom, zhom) is again imposed by picking (λ, α̃, β, γ)
as in Theorem 2, and α = α̃ − urest in such a way that (urest, urest) is an equilibrium for
z = zrest = urest.

The first portion of the singular symmetric homoclinic orbit is constructed in the singular
limit δul → 0 and 0 < δl � 1, that is, (u, vu, w, vw) are fast and (z, vz) are slow. The associated
layer and reduced dynamics are

u′ = vu ,(29a)

v′u = −gwcusp(u, λ+ w,α+ z, β, γ),(29b)

w′ = δlvw ,(29c)

v′w = δl(w − u) ,(29d)

z′ = 0 ,(29e)

v′z = 0 ,(29f)

0 = vu ,(30a)

0 = −gwcusp(u, λ+ w,α+ z, β, γ),(30b)

0 = vw ,(30c)

0 = (w − u) ,(30d)

z′ = vz ,(30e)

v′z = z − u− z̄ .(30f)
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Figure 5. Geometric construction of standing bursts. A. Deformation of the slow-fast phase portrait of
(18) for different values of α̃ = α+ z, for fixed α and different values of z. Notation as in Figure 3. B. and C.
Singular homoclinic orbit corresponding to the standing burst solution. One arrow distinguishes trajectories of
the reduced dynamics (30), two arrows trajectories of the reduced dynamics (32), and three arrows trajectories
of the layer dynamics (31). Base and landing points of the fast heteroclinic connections lie along the blue lines.

In this singular limit, the homogeneous resting state belongs to the 2-dimensional critical
manifold

S0,1 := {(u, vu, w, vw, z, vz) : vu = vw = 0, w = u, gwcusp(u, λ+ w,α+ z, β, γ) = 0}

and, inside this manifold (i.e., with respect to the reduced dynamics (30)), it has 1-dimensional
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stable and unstable manifolds (Figure 5B). The unstable manifold provides the first portion
of the singular homoclinic orbit. Note that, in this singular limit, both u and w are at
quasi-steady-state in this regime.

The reduced and layer dynamics (29) and (30) are not appropriate to describe the oscil-
latory part of the pattern because there only (u, vu) are at their quasi-steady-state (except
during fast heteroclinic jumps). To construct the oscillatory part of the pattern we consider
the singular limit δl → 0, δul = δlδ̃ul with 0 < δ̃ul � 1, that is, (u, vu) are fast and (w, vw, z, vz)
are slow. In this new singular limit, the layer and reduced dynamics are

u′ = vu ,(31a)

v′u = −gwcusp(u, λ+ w,α+ z, β, γ),(31b)

w′ = 0 ,(31c)

v′w = 0 ,(31d)

z′ = 0 ,(31e)

v′z = 0 ,(31f)

0 = vu ,(32a)

0 = −gwcusp(u, λ+ w,α+ z, β, γ),(32b)

w′ = vw ,(32c)

v′w = w − u ,(32d)

z′ = δ̃ulvz ,(32e)

v′z = δ̃ul(z − u− z̄) .(32f)

The 4-dimensional critical manifold is the set

S0,2 := {(u, vu, w, vw, z, vz) : vu = 0, gwcusp(u, λ+ w,α+ z, β, γ) = 0}.

The oscillatory part of the standing burst solution (Figure 5C) is composed by trajectories
of the reduced dynamics (32) connected by heteroclinic jumps of the layer dynamics (31).
Projections of the slow orbits onto the (w, vw, z, vz)-space are drawn in the insets marked
with stars. As z ultraslowly increases, the trajectory shadows the family of singular periodic
orbits. For δ̃ul sufficiently small, this ensures that the slow portions also cross the subspace
{vw = 0} transversely. The last slow orbit crosses transversely the subspace {vw = vz = 0},
which makes the singular trajectory symmetric, in view of the fact that vu is identically zero
on the critical manifold.

The quasi-steady-state part of the standing burst, ruled by (30), connects to the oscillatory
part of the standing burst, ruled by (31), (32), at a value zhom, where the singular trajectory
leaves the quasi-steady branch. Let W u

q.s.s be the (3-dimensional) manifold obtained by the
union of the (2-dimensional) unstable manifolds of the fixed points of the layer dynamics (29)
lying on the quasi-steady-state branch. Then zhom can be found by tracking W u

q.s.s along
(31), (32) and imposing its (0-dimensional) transverse intersection with the (3-dimensional)
{vu = vw = vz = 0} subspace, much in the same way as [17, Lemma 4.2].

The overall singular homoclinic orbit is constructed by patching two pieces corresponding
to the two different singular limits. In contrast to traveling bursts, a proof of its persistence
away from the singular limit(s) does not follow as an immediate application of the Exchange
Lemma. However, due to transversality, its persistence is highly plausible, leading to the
following conjecture.

Conjecture 1. There exist open sets of bifurcation (λ) and unfolding (α, β, γ) parameters
in a parametric neighborhood of the pitchfork singularity of (19) at β = 1

3 , λ = 1
3 , α̃ = 1

27 −
1
9 ,
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Figure 6. Parameters for traveling burst (left plot) are the same as in Figure 8. Parameters for traveling
pulse (right plot) are the same as traveling bursts except λ = λPF (β) + 0.15 and α = αPF (β) + 0.4.

γ = 0 such that, for all parameters in those sets and almost all δ̃ul > 0 sufficiently small,
the double singular limit (29)–(30), (31)–(32) possesses a transverse singular homoclinic orbit
as sketched in Figure 5. Furthermore, model (5) possesses for δl > 0 sufficiently small a
homoclinic orbit near the transverse singular homoclinic orbit.

7. Modulation of spatio-temporal bursting. A main motivation in [11] to study a model
organized by the winged-cusp singularity is that it provides a principled way to analyze the de-
formation of bursting patterns as parameter paths in the universal unfolding of the singularity.
The same geometric picture generalizes to spatio-temporal behaviors.

By changing the value of the bifurcation parameter λ and of the unfolding parameter
α the traveling burst pattern predicted by Theorem 3 deforms to a classical traveling pulse
(Figure 6). This is easily understood in terms of the geometry of the singular limit of the
slow-fast subsystem. In particular, in the parameter region where there is no bistability in the
slow-fast system, we recover the geometry of the FitzHugh–Nagumo model, as the ultraslow
variable barely affects the traveling pulse.

The same result holds for the deformation of standing bursts into standing pulses. By
changing the value of the bifurcation parameter λ and of the unfolding parameters α and β,
the standing burst pattern predicted by Conjecture 1 is changed into a classical standing pulse
(Figure 7). Again, inspection of the geometry of the singular limit of the short-long range
subsystem reveals the qualitative analogy with the geometry of the classical standing pulse
solution and the presence of the ultralong-range variable barely affects the standing pulse
solution.
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Figure 7. Parameters standing burst (left plot) are the same as in Figure 10. Parameters for standing
pulse are the same as standing bursts except λ = λPF (β) + 0.1, α = αPF (β) + 0.385, and β = 1/3.

We stress that the traveling and standing bursts solutions were found by enforcing the
conditions of Theorem 3 and Conjecture 1, respectively. The traveling and standing pulse
solutions were found by changing the model singular geometry (via modulation of bifurcation
and unfolding parameters) to enforce the same qualitative geometry as [14, sections 4.2, 4.5,
and 5.3] and [17, sections 4 and 5], [5, section 2], respectively. It would be of interest to
perform a numerical continuation analysis to analyze the continuous deformation from one
solution to the other.

8. Discussion.

8.1. The behavioral relevance of three-scale bursting models. In the continuation of
the (ODE) bursting model introduced in [11], the (PDE) bursting model in the present paper
is a three-scale model, that is, it uses three distinct scales to model the three distinct scales of
a bursting wave. This complexity may seem unnecessary as bursting has often been described
in two-scale reduced ODE models (see, e.g., [8, Chapter 5] and references therein). We
emphasize, however, that the robustness and modulation properties discussed here and in
[11] result from the geometric organization of the attractor, a property that is not shared by
two-scale bursting models.

Two-scale bursting models rely on a 2-dimensional fast subsystem that contains a family
of periodic orbits ending in a homoclinic bifurcation (see, e.g., [20]) or fold limit cycle [27].
The existence of such a family may hold for a range of parameters, but it is not a geometric
property of the fast system. In contrast, in the three-scale model, the existence in the slow-fast
subsystem of a family of periodic orbits and the associated global bifurcations proceed from
a geometric construction (see [10, section 6] and [11, Lemma 6]). The geometric construction
of the global singular skeleton allows for a mapping between the algebraic structure of the
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universal unfolding of the organizing singularity and the observed dynamical behavior. In
other words, close to the three-time-scale singular limit, the observed dynamical behavior is
fully determined by the algebraic property of the organizing center. Such a mapping does not
exist in two-time-scale bursting models.

The mapping between the algebraic structure and the dynamical behavior is key to a
rigorous study of modulation of three-scale spatio-temporal patterns in terms of paths in the
universal unfolding of the organizing singularity. The physiological relevance of this analysis
in the purely temporal case is illustrated in [11, section 3] and [7]. We anticipate a similar
potential for the three scale model of the present paper in the analysis of spatio-temporal
pattern formation.

8.2. Stability of bursting waves. Our work establishes the existence, not the stability, of
traveling and standing bursting waves. The stability analysis is beyond the scope of the present
paper but predictions can be made in accordance with what is known about the stability of
the two-scale models with a cubic nonlinearity. Standing pulses in two-scale models are known
to be stable if the space-scale separation δs is much smaller than the time-scale separation
[26, Theorem 4.2], namely,

δl � εs.

Likewise, to the best of our knowledge, the stability of traveling pulses has been analyzed only
in the absence of diffusion in the adaptation variable [15], which corresponds to the limit

δl =∞,

but one can expect that traveling pulses are stable when space-scale separation dominates the
time-scale separation, i.e.,

εs � δl.

We suspect that similar properties extend to the three-scale model analyzed in the present
paper: traveling bursts should be stable when time-scale separation dominates space-scale
separation, namely,

δl � εs and δul � εus,

and standing bursts should be stable when space-scale separation dominates time-scale sepa-
ration

δl � εs and δul � εus.

8.2.1. Numerical illustration. The following numerical examples were obtained with MAT-
LAB function pdepe with no-flux boundary conditions. Details about the used meshes and
parameters are given in the figure captions.

Traveling burst.
Conditions of Theorem 1 provide a constructive way to chose bifurcation and unfolding

parameters as well as time constants in (1) to observe traveling bursting waves. Figure 8
shows the result of the numerical integration for Dw = Dz = 0.

Figure 9 shows simulation for nonzero Dw and Dz. The simulations support the prediction
of section 8.2, that is, it is the ratio between time-scale separation and space-scale separation
that determines the stability of the traveling bursting wave. When this ratio is small, that is,
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Figure 8. Space mesh: [0 : 5/3000 : 5], time mesh: [0 : 5/1000 : 5]. Time constants: τu = 0.001, τw =
0.1, τz = 60. Diffusion constants: Du = 0.00005, Dw = 0.0, Dz = 0.0. Parameters: β = 1/3, γ = γPF (β),
λ = λPF (β)−0.02, α = αPF (β)+ 0.47, where the functions λPF (·), αPF (·), γPF (·) are defined in [11, Appendix
A]. The traveling burst was elicited by perturbing the homogeneous resting state with a perturbation Pert(t, x) =
I{0<x<0.05} I{0<t<0.25}, where I{·} is the indicator function.
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Figure 9. Same parameters as in Figure 8 except Dw = 0.01, Dz = 1.0 in the left plot and Dw = 0.1, Dz =
100.0 in the right plot.

time-scale separation dominates space-scale separation, the traveling burst is stable. As this
ratio increases and space-scale separation becomes more relevant, the traveling burst loses
stability. The resulting pattern exhibits a “breathing” behavior, that is, standing pulses of
variable width.

Standing bursts
Conditions of Conjecture 1 provide a constructive way to chose bifurcation and unfolding

parameters as well as time constants in (1) to observe traveling bursting waves. Figure 10
shows the result of the numerical integration in the absence of time-scale separation. In line
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with the singular construction of section 6.2, we observe a switch from the singular limit (29),
(30) to the singular limit (31), (32) at the transition from the quasi-steady part of the pattern
to the oscillatory part: w ∼ u in the quasi-steady part of the standing burst pattern, whereas
only u is at quasi-steady-state in the oscillatory part.

Figure 11 shows the simulation for increasing time-scale separation. Here again, the
numerical simulations support the prediction that it is the dominance of the space-scale sepa-
ration over the time-scale separation that determines the stability of the standing pulse. For
small time-scale separations, the pattern exhibits the same standing burst. For increasing
time-scale separation, the standing burst loses stability. For even larger time-scale separation
the pattern begins to exhibit the same breathing behavior observed in Figure 9.

8.3. Multiscale geometric and stability analysis. The three-scale model proposed in this
paper might motivate an extension of the Fenichel theory to more than two scales. To the best
of our knowledge, the only general effort in this direction can be found in [1] (but see also [28,
section 6] and reference therein and [24] for less rigorous treatments). The reader will indeed
notice that the construction of the three-scale standing burst requires two distinct singular
limits and, in both limits, only normally hyperbolic parts of the critical manifold are visited.
This is in contrast to other multiscale phenomena that are still amenable to the classical two-
scale theory of Fenichel (eventually in conjunction with desingularization techniques), such
as mixed mode oscillations [4, 18, 24] and nonclassical relaxation oscillations [19]. Beside
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desingularization, the analysis in those reference is, in spirit, similar to the traveling burst
analysis of the present paper, in particular, in terms of conditions imposed on the time-scale
ratios that allow us to reduce the analysis to a two-scale singularly perturbed dynamics.
The extension of the Exchange Lemma to general multiscale singularly perturbed dynamical
systems seems of particular relevance.

Also the problem of stability of the constructed multiscale spatio-temporal pattern should
be addressed carefully and more rigorously. The Evan’s function technique was successfully
applied in the two-scale scenario both for traveling [15] and standing [17] pulses. An extension
to the three-scale scenario might be natural.

Appendix A. Proof of Theorem 1. We start with a technical lemma that builds a
suitable singular skeleton on which we can apply the Exchange Lemma. We refer to Figure 12
for the notation.

Lemma A.1. Let β = 1
3 and γ = γPF

(
1
3

)
= 0. Let U be a neighborhood of

(
λPF

(
1
3

)
, αPF

(
1
3

))
in R2. There exists an open set V ⊂ U ∩

{
λ < λPF

(
1
3

)
, α̃ < αPF

(
1
3

)}
such that, for all

(λ, α̃) ∈ V , the following hold:
(a) For all c ∈ R, the critical manifold S of (17) has a mirrored hysteresis shape (strong

equivalence class 2 of the persistent bifurcation diagrams of the winged cusp listed at
[13, page 208]).

(b) Model (17) has exactly three curves of fixed points, corresponding to three roots urest <
uo < uright of (19). The leftmost curve {(urest, 0, urest, c), c ∈ R} ⊂ S−down ⊂ S. The
middle one {(uo, 0, uo, c), c ∈ R} ⊂ S−down ∪ S

−
mid ∪ F

−
down ⊂ S. The rightmost one

{(uright, 0, uright, c), c ∈ R} ⊂ S+
mid ⊂ S. Moreover, urest satisfies

u3
rest − βurest − α > −u3

rest + βurest − α > 0

and
u3
rest − (β + 1)urest + α > 0.

(c) Let dH(·, ·) denote the Hausdorff distance. Then

dH(S−down∩{w = urest}, S−mid∩{w = urest}) < dH(Sup∩{w = urest}, S−mid∩{w = urest}).

(d) There exists c∗ ∈ R such that the layer dynamics

u′ = v ,(A.1a)

v′ = cv − gwcusp

(
u, λ+ w, α̃,

1

3
, 0

)
,(A.1b)

w′ = 0 ,(A.1c)

c′ = 0 ,(A.1d)

of (17) restricted to the hypersurface {c = c∗} has four heteroclinic orbits:
• H−up, with base point on the equilibrium (urest, 0, urest) and landing point on
Sup;

• H−down, with base point on Sup at (u, v, w) = (−urest, 0,−λ−
√
u3
rest − βurest − α̃)

and landing point on Sdown;
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~

~
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L > L1 2

α=αPF(1/3)
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u

wvu

B)A)
Sup

Fup Hup

Hup

Hdown

Sdown

Smid

L1

Fup

Hdown

SmidFdown

Sdown

~

~

Figure 12. Geometric construction of the singular phase portrait in Figure 3A. Left: critical manifold
and fixed points at the pitchfork singularity (gray) and for λ and α satisfying the conditions of Lemma A.1
(black). Right: heteroclinic orbits of the layer dynamics and the different invariant manifolds involved in

their construction. F+/−
down and F+/−

up denotes the fourfold singularities in the mirrored hysteresis persistent

bifurcation diagram. S
+/−
down, S

+/−
mid , and Sup are the disconnected open submanifold of S, such that F+/−

down ∪
F+/−
up ∪ S+/−

mid ∪ Sup = S. L1 and L2 denote the distances dH(Sup ∩ {w = urest}, S−mid ∩ {w = urest}) and
dH(S−down ∩ {w = urest}, S−mid ∩ {w = urest}), respectively.

• H+
up and H+

down, which are obtained by symmetry of the layer dynamics with
respect to the hypersurface {w = −λ}.

Let S̄up and S̄+
down be compact, connected, normally hyperbolic submanifolds of Sup

and S+
down, respectively, that contain all the base and landing points of the hetero-

clinic orbits. Then H−up is obtained as the transverse intersection (in the (u, v, w, c)
space) of the 2-dimensional unstable manifold W u

rest of the curve of fixed points
{(urest, 0, urest, c), c near c∗} with the 3-dimensional stable manifold W s(S̄up). The
heteroclinic orbits H−down, H

+
up, H+

down are obtained as the transverse intersection (in
the (u, v, w, c) space) of the 2-dimensional unstable manifold W u(S̄base|c=c∗) of the in-
variant manifold S̄base containing the base points restricted to the hypersurface {c = c∗}
with the 3-dimensional stable manifold W s(S̄land) of the invariant manifold S̄land con-
taining the landing points.

Proof of Lemma A.1. Points (a), (b), and (c) follow from phase plane analysis (Figure
12) quantitatively supported by the inspection of transition varieties and persistent bifurca-
tion diagrams of the critical manifold (gwcusp(u, λ, α̃, β, γ) = 0) and fixed point (19) equa-
tions of (17), both cubic universal unfolding of the winged cusp, near the singularity at
(u, λ, α̃, β, γ) = (−1

3 ,
1
3 ,−

2
27 ,

1
3 , 0). This singularity is transcritical for the critical manifold

equation and pitchfork for the fixed point equation. For the algebraic expressions of the tran-
sition and bifurcation varieties, see [13, p. 206] for the critical manifold equation and [11] for
the fixed point equation.

To prove (d) we use existing results on the FitzHugh–Nagumo traveling pulse equation
[14, sections 4.2 and 5.3]. Points (a)–(c) imply that there exists a diagonal diffeomorphism
from a neighborhood of the hypersurface {w = urest} to a neighborhood of the hypersurface
{w = 0}, which is the identity on v and is affine in u, and which maps the layer dynamics
(A.1) to the layer dynamics of the FitzHugh–Nagumo traveling pulse equation [14, (4.2)] with
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parameter 0 < a < 1/2 given by

a =
dH(S−down ∩ {w = urest}, S−mid ∩ {w = urest})
dH(Sup ∩ {w = urest}, S−down ∩ {w = urest})

.

Explicitly, the diffeomorphism is given by

(A.2)


u
v
w
c

 7→


Cu+ urest
v

−
√
w − u3

rest + βurest − α− λ
c

 ,

where C is a scaling factor such that u = 1 is the largest of the three roots of the transformed
layer dynamics fixed point equation computed at w = 0, that is, −(Cu + urest)

3 + 1
3(Cu +

urest) − (urest + λ)2 − α = 0. The smallest root is by construction at u = 0 and, by (c),
the middle root is u = a with 0 < a < 1/2. Because by (b) −u3

rest + βurest − α > 0, the
diffeomorphism is well defined.

We now invoke the fact that (A.2) is diagonal, its affine dependence on u, and the fact that
it is the identity on v and c. By the chain rule, these properties imply that the differential
forms that we use to track invariant manifolds of (A.1) and their intersections are given
by linear scaling of the same computations as in the classical FitzHugh–Nagumo equation
[14, section 4.5]. As for the classical FitzHugh–Nagumo equation, we conclude the existence
of c∗ 6= 0 such that (A.1) possesses for c = c∗ the heteroclinic orbit H−up satisfying the
transversality conditions of point (d).

Existence of the heteroclinic orbits H−down, H+
up, and H+

down, and their transversality prop-
erties follow again from local equivalence of (A.1) with the layer dynamics of the FitzHugh–
Nagumo traveling pulse equation [14, (4.2)] and by following the same construction as in [14,
section 5.3].

To prove the theorem, we track the 2-dimensional unstable manifold W u
rest of the curve

of fixed points {(urest, 0, urest, c), c near c∗}, that is, we follow the mapping of a germ of
W u
rest through the flow associated with (17). For εs > 0 and sufficiently small, let S̄up,εs and

S̄+
down,εs

be the slow manifolds obtained as Fenichel perturbations of S̄up and S̄+
down, respec-

tively. Thanks to Lemma A.1(d), we can apply [16, Lemma 4.1] and the Exchange Lemma and
follow the same arguments as the last two paragraphs of the proof of the Theorem in [16, sec-
tion 4] to conclude the following: W u

rest intersects W s(S̄up,εs) transversely along H−up; between

H−up and H+
down it lies O(εs)-close to Sup. It leaves Sup along H+

down intersecting W s(S̄+
down,εs

)

transversely. Between H+
down and H+

up it lies O(εs)-close to S+
down; finally, it leaves S+

down

along H+
up, again, intersecting W s(S̄up,εs) transversely. We can continue to track the for-

ward mapping of W u
rest through the flow associated with (17) to conclude that it intersects

W s(S̄up,εs) and W s(S̄+
down,εs

) transversely infinitely many times. Since c is a parameter, all the
(1-dimensional) transverse intersections are in the same {c = c̄}-slice for some c̄ = c∗+O(εs).
We claim that the trajectory containing all the transverse intersections, call it hεs , is the
heteroclinic trajectory corresponding to the traveling front.

It remains to show that, in the same {c = c̄}-slice, there also exists a periodic solution `εs
of (17) and that hεs ⊂ W s(`εs). To this aim, we track the 2-dimensional unstable manifold
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W u(S̄up,εs |c=c̄). By the Exchange Lemma, W u(S̄up,εs |c=c̄) and W u
rest are O(εs)-C

1 close to
each other at the heteroclinic jump H+

down. It follows that, for εs sufficiently small, also
W u(S̄up,εs |c=c̄) comes back (under the flow associated with (17)) in a neighborhood of Sup
transversely intersecting W s(S̄up,ε) inside {c = c̄}. It follows that the 1-dimensional transverse
(in the (u, v, w, c) space) intersection W u(S̄up,εs |c=c̄)∩T W s(S̄up,εs) defines a periodic orbit `εs
of (17) in the slice c = c̄. Because W s(`εs) = W s(S̄up,εs |c=c̄) and hεs ⊂ W s(S̄up,εs |c=c̄), the
statement is proved for β = 1/3 and γ = 0. For β 6= 1/3, γ 6= 0, the theorem follows from
the persistence of all the transverse intersections used in the construction to arbitrary C1

perturbations.

Appendix B. Proof of Theorem 2. We use two technical lemmas to build a suitable
singular skeleton on which we can apply the Exchange Lemma.

Lemma B.1. Let β = 1
3 and γ = γPF (1

3) = 0. For all α̃ ∈ [αPF (1/3), 0) and all λ ∈ R, the
layer dynamics of (18),

u′ = vu ,(B.1a)

v′u = −gwcusp

(
u, λ+ w, α̃,

1

3
, 0

)
,(B.1b)

possess two heteroclinic orbits at w = wh1(α̃) and two heteroclinic orbits at w = wh2(α̃) with
wh1(α̃) = −λ −

√
−α̃ < −λ < −λ +

√
−α̃ = wh2(α̃). For α̃ = 0, model (B.1) possesses two

heteroclinic orbits at w = −λ.

Proof of Lemma B.1. For w = wh1(α̃) or w = wh2(α̃), (B.1) reduces to

u′ = vu ,

v′u = −u3 +
u

3
,

which is Hamiltonian, has three fixed point at vu = 0 and u = − 1√
3
, 0, 1√

3
, and satisfies

∫ 1√
3

− 1√
3

(
−u3 +

u

3

)
du = 0.

The notation in the next lemma is defined in Figure 13.

Lemma B.2. Let β = 1
3 and γ = γPF (1

3) = 0. There exist a neighborhood U of (λ, α̃) =

(1/
√

3, 0) and an open set V ⊂ U ∩ {λ < 1/
√

3, α̃ < 0}, such that, for all (λ, α̃) ∈ V the
following hold:

(a) The critical manifold of model (18) belongs to class 3 of the persistent bifurcation
diagrams of the winged cusp [13, p. 208]. Let wfold be the w-coordinate of the right
fold of the critical manifold. Let u = udown(w) be the function such that the lower
branch of the critical manifold C− = {(u, vu, w, vw) = (udown(w), 0, w, 0)} and uup(w)
the function such that the upper branch of the critical manifold between the two fold
singularities C+ = {(u, vu, w, vw) = (uup(w), 0, w, 0)}.

(b) Model (18) has a unique fixed point at (wrest, 0, wrest, 0) with wrest < −λ.
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Figure 13. Geometric construction of the singular phase portrait in Figure 3B.

(c) The following inequalities hold:∫ wh1

wrest

(
udown(s)− s

)
ds+

∫ wfold

wh1

(
uup(s)− s

)
ds > 0 ,(B.2a) ∫ wh1

wrest

(
udown(s)− s

)
ds+

∫ wh2

wh1

(
uup(s)− s

)
ds < 0 .(B.2b)

Proof of Lemma B.2. Points (a), (b) follow from phase plane analysis (Figure 13) quan-
titatively supported by the inspection of transition varieties and persistent bifurcation dia-
grams of the critical manifold (gwcusp(u, λ, α̃, β, γ) = 0) and fixed point (19) equations of (17),
both cubic universal unfolding of the winged cusp, near the singularity at (u, λ, α̃, β, γ) =
(xPF (1

3), λPF (1
3), αPF (1

3), 1/3, γPF (1
3)) = (−1

3 ,
1
3 ,−

2
27 ,

1
3 , 0). This singularity is transcritical

for the critical manifold equation and pitchfork for the fixed point equation. For the algebraic
expressions of the transition and bifurcation varieties; see [13, p. 206] for the critical manifold
equation and [11] for the fixed point equation.

Point (c). Because
∫ wfold
wh1

(uup(s) − s)ds > 0 and wrest = wh1 for (λ, α̃) = (1/
√

3, 0), it

follows that (B.2a) is satisfied for (λ, α̃) = (1/
√

3, 0). By continuity of the integral operator,
the same holds true for (λ, α̃) sufficiently close to (1/

√
3, 0).

To prove the second inequality, observe that
∫ wh1
wrest

(udown(s)− s)ds < 0 and wh1 = wh2 for

λ < 1/
√

3 and α̃ = 0. Therefore (B.2b) is satisfied for λ < 1/
√

3 and α̃ = 0. By continuity,
the same holds for (λ, α̃) sufficiently close to (1/

√
3, 0).

The existence of the homoclinic orbit now follow exactly as [17, sections 4 and 5]. The two
models indeed share the exact same geometry (compare Figure 13 right and [17, Figure 4]).
The sole difference is the absence of a fixed point on C+. This only changes the construction
of the slow portion of the singular homoclinic orbit on C+. Construction of this portion here
follows the same line as in [5, pp. 238 and 239].

The same construction is used for the periodic orbit. The only difference is that the initial
slow portion is now defined as the slow trajectory passing through the point (wh2 , vw,h2)
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instead as the unstable manifold of the fixed point. Then, all the results of [17, sections 4 and
5] still hold.

The fact that the homoclinic and singular periodic orbits are O(δl)-close to each other near
the point (umax, 0, wmax, 0), where w reaches its maximum along the homoclinic trajectory
follows from the fact that, near C+, the homoclinic and the periodic orbits are perturbations
of, and henceO(δl)-close to, the same invariant manifold; likewise, for their stable and unstable
manifolds.

Appendix C. Proof of Theorem 3. We refer the reader to Figure 14 for the notation
used in the following lemma.

Lemma C.1. Let β = 1
3 and γ = γPF (1

3) = 0. Let V ⊂ R2 and c∗ 6= 0 be defined as in the
statement of Lemma A.1. For all (λ, α) ∈ V , the following hold true:

(a) There exists ∆α∗ > 0 and δ > 0 such that, for all α̃ ∈ [α−δ,∆α∗), the layer dynamics

u′ = v ,(C.1a)

v′ = cv − gwcusp

(
u, λ+ w, α̃,

1

3
, 0

)
,(C.1b)

w′ = 0 ,(C.1c)

c′ = 0(C.1d)

of (17) restricted to the hypersurface {c = c∗} has four heteroclinic orbits α̃H+/−
up/down

that are all obtained as the transverse intersections (in the (u, v, w, c) space) of the 2-
dimensional unstable manifold W u(α̃S̄base|c=c∗) of the invariant manifold α̃S̄base, where
the base point lies restricted to the hypersurface {c = c∗} with the 3-dimensional stable
manifold W s(α̃S̄land) of the invariant manifold α̃S̄land where the landing point lies.2

(b) For α̃ = α+ ∆α∗ the two heteroclinic orbits α̃H+/−
up merge in a fast heteroclinic jump

H0
up. This heteroclinic lies in the hypersurface {w = −λ} and is obtained as the

nontransverse intersection W u(α̃S̄down|c=c∗) ∩W s(α̃S̄up).

(c) The two downward heteroclinic jumps α̃H+/−
down persist for α̃ ∈ [α+ ∆α∗, α+ ∆α∗ + δ)

and with the same transversality properties as in (a).
(d) For all α̃ ∈ [α, α + ∆α∗), let α̃wup <α̃ wdown be the w-coordinate of the hetero-

clinic α̃H+
up and α̃H+

down, respectively. There exists C > 0 such that, for all α̃ ∈
[α, αPF (1/3)],∫ α̃wdown

α̃wup

(u|α̃S+
down
− (α̃− α))dw +

∫ α̃wdown

α̃wup

(u|α̃Sup − (α̃− α))dw > C

and, for all α̃ ∈ (αPF (1/3), α+ ∆α∗),∫ α̃wdown

α̃wup

(u|α̃Sdown − (α̃− α))dw +

∫ α̃wdown

α̃wup

(u|α̃Sup − (α̃− α))dw > C.

2As in Lemma A.1, the overline means a compact, connected, normally hyperbolic submanifold of the
relative manifold that contains all the base and landing points of the heteroclinic orbits.
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Figure 14.

Proof of Lemma C.1. To prove point (a) we again use local equivalence to the layer dy-
namics of the standard FitzHugh–Nagumo pulse equation. The diffeomorphism (A.2) between
the layer dynamics (C.1) and the FitzHugh–Nagumo pulse equation [14, (4.2)] with the same
parameter a as above, can be built also for α̃ 6= α. For α̃H−up it reads

u
v
w
c

 7→


Cα̃u+ urest
v

−
√
w − u3

rest + βurest − α̃− λ
c

 ,

which maps a neighborhood of the hypersurface {w = −
√
−u3

rest + βurest − α̃ − λ} to a
neighborhood of {w = 0}, whereas for α̃H−down it reads

u
v
w
c

 7→ −


Cα̃u− urest
v√

w + u3
rest − βurest − α̃− λ

c

 ,
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which maps a neighborhood of the hypersurface {w = −
√
u3
rest − βurest − α̃− λ} to a neigh-

borhood of {w = 0}. For α̃H+
up/down we use symmetry with respect to the hypersurface

{w = −λ}. The w-coordinate of the heteroclinics α̃H−up and α̃H−down are given by α̃w−up =

−
√
−u3

rest + βurest − α̃ − λ and α̃w−down = −
√
u3
rest − βurest − α̃ − λ, respectively. Their

mirrors with respect to the hypersurface {w = −λ} are α̃w+
up =

√
−u3

rest + βurest − α̃ − λ
and α̃w−down =

√
u3
rest − βurest − α̃ − λ. Existence of the four heteroclinic orbits and their

transversality conditions then follows as in [14, section 5.3].
The value ∆α∗ of point (b) is computed by imposing −u3

rest + βurest − α−∆α∗ = 0. As
α̃→ α + ∆α∗, the two heteroclinics α̃H−up and α̃H−up converge to each other in the Hausdorff

distance, because limα̃→α+∆α∗
α̃w−up = limα̃→α+∆α∗

α̃w+
up = −λ. For α̃ = α+ ∆α∗, the map

u
v
−λ
c

 7→


Cu+ urest
v
0
c


maps the layer dynamics (C.1) restricted to the hypersurface {w = −λ} to the traveling wave
problem [14, (4.10)] with the same parameter a as above. With the same computation as
[14, section 4.5], we conclude the existence of the heteroclinic H0

up in the same hypersurface

{c = c∗} as α̃H+/−
up/down, α ∈ [α, α + ∆α). The nontransversality condition follows by the

fact that transversality is not compatible with a (local) change in the number of transverse
intersections.

By Lemma A.1(b), we have u3
rest−βurest > −u3

rest +βurest. This in turn implies that the

outer heteroclinics H+/−
down persist and with the same properties as in (a) for α̃ = α+ ∆α∗ and,

by continuity, also for α+ ∆α∗ < α < α+ ∆α∗ + δ, which proves (c).
To prove point (d), we start by noticing that, by antysimmetry in u of the layer dynamics

(A.1), for all α̃ ∈ [α, αPF (1
3)],∫ α̃wdown

α̃wup

u|α̃S+
down

dw = −
∫ α̃wdown

α̃wup

u|α̃Supdw

and, for all α̃ ∈ (αPF (1
3), α+ ∆α∗),∫ α̃wdown

α̃wup

u|α̃Sdowndw = −
∫ α̃wdown

α̃wup

u|α̃Supdw.

The proof of (d) therefore reduces to showing that −urest−(α̃−α) > 0 for all α̃ ∈ [α, α+∆α∗).
It suffices to prove this for α̃ = α + ∆α∗. By (b), ∆α∗ = −u3

rest + βurest − α, so we have to
prove that u3

rest − (β + 1)urest + α > 0, which was proved in Lemma A.1(b).

A straightforward corollary of Lemma C.1, obtained by replacing α̃ by α + z, is that
the singular (εs = 0) phase portrait of (6) is as depicted in Figure 4. Let T denote the
(2-dimensional) critical manifold of (6). Slices zT ⊂ T at z ∈ [zrest − δ, z∗ + δ] are given by
embedding in R5 the critical manifold of (C.1) for α̃ = α + z. For each z ∈ [zrest − δ, z∗ + δ]



A THREE-SCALE MODEL OF SPATIO-TEMPORAL BURSTING 2173

we denote with zT
+/−
down/up the embedding of α̃S

+/−
up/down, α̃ = α + z, defined as in Figure 14

and, similarly, with zT̄
+/−
down/up the embedding of α̃S̃

+/−
up/down. For each z ∈ [zrest − δ, z∗ + δ] we

denote with zH+/−
up/down and zH0

up the embedding of α̃H+/−
up/down and α̃H0

up, where they exist.

This singular phase portrait provides a skeleton for the application of the theorem in [16,
section 4]. In particular, we can build a singular homoclinic trajectory from the resting point

to itself consisting of finitely many jumps along the family of heteroclinic orbits zH+/−
up/down

of the layer dynamics of (26) connected slow trajectories of the reduced dynamics (27). This

trajectory was sketched in Figure 4. Transversality properties of α̃H+/−
up/down will translate into

the needed transversality condition [16, (4.2) and (4.3)].
For the existence of the singular homoclinic trajectory, we invoke Lemma C.1(d). It implies

that for ε̃us > 0 and as long as z < z∗, the z-coordinate of two successive jumps down and of
two successive jumps up is strictly uniformly monotonically increasing by an amount bounded
from below by Cε̃us. After the last jump down the trajectory might cross the hypersurface
{w = −λ} at z = z∗, which would break the transversality required by the Exchange Lemma.
However, by smooth dependence of trajectories on the model parameters [21, Theorem D.5],
this behavior is not generic in ε̃us > 0, which explains the genericity condition in the statement
of the theorem. The trajectory then converges toward the quasi-steady-state of the slow-fast
subsystem (6a)–(6c) and then to rest.

We now verify the two transversality conditions [16, (4.2) and (4.3)]. Let

T 0 :=
⋃

z∈[−δ,αPF ( 1
3

)−α]

(zT̄−down ∪
zT̄+

down) ∪
⋃

z∈(αPF ( 1
3

)−α,∆α∗+δ]

zT̄down

and

T 1 :=
z⋃

z∈[−δ,∆α∗+δ]

T̄up,

that is, T 0 and T 1 are compact, connected, normally hyperbolic (for the layer dynamics (26))
submanifolds of the critical manifold T that contains all the base and landing points of the

heteroclinic orbits zH+/−
up/down, in particular, T 0 contains base points of upward heteroclinic

and landing points of downward heteroclinic, and vice versa for T 1.
To verify [16, (4.2)], we have to prove that, in the layer dynamics (26), the first hetero-

clinic jump of the singular homoclinic trajectory, along zrestH−up, is obtained as the transverse
intersection W u

rest ∩T W s(T 1), where W u
rest is the 2-dimensional unstable manifold of the line

of fixed points {(urest, 0, urest, c, 0), c near c∗}, whereas W s(T 1) is 4-dimensional. Note that
W u
rest ⊂ {z = zrest} and that W s(T 1) ∩ {z = zrest} = W s(Sup), where Sup is defined as in

Lemma A.1. It follows by Lemma A.1(d) that W u
rest ∩T W s(T 1) inside {z = zrest}. Since the

full space only adds the z-direction, W u
rest ∩T W s(T 1), which verifies [16, (4.2)] for (6).

Next, we verify [16, (4.3)] for all successive jumps. We write the condition explicitly for
the first jump down along zH+

down for some z > zrest. Computations for other jumps are
similar and therefore omitted. We have to verify that W u(T 1|sing.orbit) ∩T W s(T 0). First,
we note that the singular homoclininc trajectory is in the hypersurface {c = c∗}. Second,
as ε̃us → 0, the slow motion after the first jump up converges in the Hausdorff distance
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to the hypersurface {z = zrest}, that is, limε̃us→0 T
1|sing.orbit = T 1|c=c∗,z=zrest , where the

limit is again in the Hausdorff distance. Since W u(T 1|c=c∗,z=zrest) ⊂ {z = zrest}, reasoning
as above we can invoke Lemma A.1(d) to conclude that W u(T 1|c=c∗,z=0) ∩T W s(T 0) inside
the subspace {z = zrest} and, therefore, by adding the z-dimension, in the whole space.
Because W u(T 1|sing.orbit) is also O(ε̃us)-close to W u(T 1|c=c∗,z=zrest) for ε̃us sufficiently small,
also W u(T 1|sing.orbit) ∩T W s(T 0).

We can now apply the theorem in [16, section 4] to conclude that, for εs > 0 sufficiently
small, there exists a unique homoclinic solution of (6), which proves the statement of the
theorem for β = 1/3 and γ = 0. For β 6= 1/3 and γ 6= 0, the statement follows from the
persistence of transverse intersections to arbitrary C1 perturbations. �
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[18] M. Krupa, N. Popović, and N. Kopell, Mixed-mode oscillations in three time-scale systems: A pro-
totypical example, SIAM J. Appl. Dyn. Syst., 7 (2008), pp. 361–420.

[19] C. Kuehn and P. Szmolyan, Multiscale geometry of the Olsen model and non-classical relaxation oscil-
lations, J. Nonlinear Sci., 25 (2015), pp. 583–629.

http://dx.doi.org/10.1523/ENEURO.0031-14.2015


A THREE-SCALE MODEL OF SPATIO-TEMPORAL BURSTING 2175

[20] E. Lee and D. Terman, Uniqueness and stability of periodic bursting solutions, J. Differential Equations,
158 (1999), pp. 48–78.

[21] J. M. Lee, Introduction to Smooth Manifolds, 2nd ed., Grad. Texts In Math., Springer, New York, 2013.
[22] D. Linaro, A. Champneys, M. Desroches, and M. Storace, Codimension-two homoclinic bifurca-

tions underlying spike adding in the Hindmarsh–Rose burster, SIAM J. Appl. Dyn. Syst., 11 (2012),
pp. 939–962.

[23] E. Maeda, H. P. Robinson, and A. Kawana, The mechanisms of generation and propagation of
synchronized bursting in developing networks of cortical neurons, J. Neurosci., 15 (1995), pp. 6834–
6845.

[24] P. Nan, Y. Wang, V. Kirk, and J. E. Rubin, Understanding and distinguishing three-time-scale
oscillations: Case study in a coupled Morris–Lecar system, SIAM J. Appl. Dyn. Syst., 14 (2015),
pp. 1518–1557.

[25] S. A. Newman and H. L. Frisch, Dynamics of skeletal pattern formation in developing chick limb,
Science, 205 (1979), pp. 662–668.

[26] J. E. Rubin, Stability, bifurcations and edge oscillations in standing pulse solutions to an inhomogeneous
reaction-diffusion system, Proc. Roy. Soc. Edinburgh Sect. A, 129 (1999), pp. 1033–1079.

[27] J. Su, J. Rubin, and D. Terman, Effects of noise on elliptic bursters, Nonlinearity, 17 (2003), pp. 133–
157.

[28] T. Vo, R. Bertram, and M. Wechselberger, Multiple geometric viewpoints of mixed mode dynamics
associated with pseudo-plateau bursting, SIAM J. Appl. Dyn. Syst., 12 (2013), pp. 789–830.


	Introduction
	A three-scale reaction diffusion model
	Methodology
	Reduction to singularly perturbed ODEs
	The geometry of traveling and standing pulses

	Fine-scale analysis: Bistability and connecting fronts
	Medium-scale analysis: Bistability between homogeneous and periodic states
	Traveling case
	Standing case

	Gross scale analysis: Traveling and standing bursts
	Traveling bursts
	Standing bursts

	Modulation of spatio-temporal bursting
	Discussion
	The behavioral relevance of three-scale bursting models
	Stability of bursting waves
	Numerical illustration

	Multiscale geometric and stability analysis

	Appendix A. Proof of Theorem 1
	Appendix B. Proof of Theorem 2
	Appendix C. Proof of Theorem 3

