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In the presence of sufficiently strong disorder or quasi-periodic fields, an interacting many-body
system can fail to thermalize and become many-body localized. The associated transition is of
particular interest, since it occurs not only in the ground state but over an extended range of
energy densities. So far, theoretical studies of the transition have focused mainly on the case of
true-random disorder. In this work, we experimentally and numerically investigate the regime close
to the many-body localization transition in quasi-periodic systems. We find slow relaxation of the
density imbalance close to the transition, strikingly similar to the behavior near the transition in
true-random systems. This dynamics is found to continuously slow down upon approaching the
transition and allows for an estimate of the transition point. We discuss possible microscopic origins
of these slow dynamics.

Introduction.— An isolated quantum system of in-
teracting particles can be non-ergodic and fail to thermal-
ize in the presence of sufficiently strong disorder [1–16]
or quasi-periodic fields [13, 17, 18]. This phenomenon –
called many-body localization (MBL) – presents a generic
alternative to thermalization [19–21] and has attracted
an immense amount of interest in recent years, see e.g.
Refs. [9, 10] for reviews. More recently, theoretical stud-
ies started to address the phase transition from the ther-
malizing to the MBL phase itself (reviewed in Refs. [22–
24]). This transition is of particular interest, since, in
contrast to conventional quantum phase transitions [25]
the MBL transition happens over a wide range of en-
ergy densities. Furthermore, a good understanding of
the transition may give new insight into thermalization
in closed quantum systems [26].

So far, theoretical studies of the transition have fo-
cused on spin models with true-random disorder where
the nature of the transition is still under discussion [27].
Renormalization group schemes [28, 29] have predicted
a Griffiths regime [30] on the thermal side of the transi-
tion. In this regime, the dynamics is dominated by rare,
locally critical or insulating inclusions in the thermalizing
bulk, resulting in sub-diffusive transport and power-law
relaxation of global density patterns. Indeed, exact diag-
onalization (ED) studies of small systems have found slow
power-law relaxation processes close to the MBL transi-
tion [31–35], but with scaling behaviors in violation of the
Harris-Chayes criterion [36–38]. This is potentially due
to finite size limitations preventing access to the scaling
regime, suggesting that current numerics cannot accu-
rately capture the properties of the true-random MBL
transition [27]. Recently, however, it has been pointed

out that finite size limitations might be less severe in
quasi-periodic systems [39], as rare regions should a pri-
ori be absent in a deterministic potential [40].

In this work, we experimentally and numerically
investigate the MBL transition in a one-dimensional
Fermi-Hubbard model with a quasi-periodic on-site
potential. We find a slow relaxation dynamics of the
density imbalance [13] on the experimentally accessible
timescales. These dynamics continuously slow down
upon approaching the transition before stopping in the
MBL phase, a behavior which is strongly reminiscent of
a recent numerical study on true-random systems [34].
As an important result of the analysis of the dynamics,
we are able to give an improved estimate of the critical
point compared to previous values [13]. Finally, we
discuss possible microscopic explanations for the ob-
served slow dynamics, including both rare-regions in the
initial state [34] and atypical transition rates between
single-particle states [53].

Experiment.— Our experimental setup effectively
implements the interacting Aubry-André model [18, 41],
which describes spinful fermions on a lattice with nearest-
neighbor tunneling of amplitude J ≈ h × 500 Hz and
on-site interactions of strength U . The fermions are sub-
jected to a quasi-periodic correlated disorder potential
of the form ∆ cos(2πβi + φ), where ∆ and φ denote the
strength and relative phase of the potential, i numbers
the lattice sites and the irrational β gives the disorder pe-
riodicity (see [42] for details). This model has a localiza-
tion transition at ∆U=0

c = 2J in the absence of interac-
tions [41], and was shown numerically and experimentally
to exhibit MBL above a critical disorder strength [13].
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We prepare a high energy initial charge-density wave
(CDW) state, where up and down spin atoms are
randomly distributed on even lattice sites, while odd
lattice sites are empty. During the preparation, doubly
occupied lattice sites are suppressed by strong repulsive
interactions. The CDW in the central tube is approxi-
mately 200 sites long and contains about 80 atoms. In
contrast to previous experiments [13], in this work we
only mildly confine the atom cloud during the ensuing
time evolution in order to reduce the effects of the overall
harmonic trapping potential. After a variable evolution
time, we extract the imbalance I = (Ne−No)/(Ne +No)
between the populations of even (Ne) and odd (No) sites
using a band mapping technique [43]. The imbalance
has an initial value close to one and, in a thermalizing
system, will ultimately relax to zero. In contrast, a
finite imbalance indicates a memory of the initial state
and signals that the system has not fully thermalized
yet. Since the imbalance is a local probe and does
not require global mass transport to relax, it exhibits
a short intrinsic relaxation timescale of O(τ) in the
non-disordered case, where τ = ~/J is the tunneling
time. This allows for an experimental observation of
slow, disorder induced dynamics. Global observables,
on the other hand, are expected to show hydrodynamic
tails in the ergodic phase [44], which would mask the
slow relaxation processes. For details of the setup and
the experimental sequence, see Refs. [13, 42].

Finite-Time Imbalance.— Fig. 1 shows measure-
ments of the imbalance at various disorder strengths ∆
for both the non-interacting case and at an interaction
strength of U = 4 J . The measurements were taken after
10 τ (called short), which is nonetheless long enough for
a clean system to relax, and after 40 τ (called long). In
this work, we generally refrain from accessing imbalances
at times longer than 40 τ , since then background decays,
which limit the lifetime of the imbalance to O(103 τ),
become increasingly relevant [42, 45, 46].

From the interacting data we can distinguish three
different regimes, as indicated by the gray background
shading. In the regimes of weak (∆ . 1.5 J) and strong
(∆ & 4 J) disorder, the imbalances measured after short
and long times agree up to the effect of background de-
cays [42, 45, 46]. The weak disorder regime is thermal,
with the imbalance quickly relaxing to zero. The strong
disorder regime shows many-body localization indicated
by a rapid approach of the imbalance to a finite station-
ary value. In the gray shaded regime of intermediate
disorder strength (1.5 J . ∆ . 4 J), we observe a signif-
icant difference between the interacting short and long
term imbalance, indicating the presence of relaxation dy-
namics on a slow timescale. A similar trend, but much
less pronounced, also exists in the non-interacting case
in the vicinity of ∆U=0

c . The fact that this regime ex-
tends to larger disorder strengths in the interacting case
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FIG. 1. Imbalance at finite times: Measurements of the
imbalance I after 10 τ (light points) and 40 τ (dark points)
for the non-interacting system and at U = 4 J . The non-
interacting data is vertically offset by 0.15 for clarity. The
data represents averages over 12 disorder phases φ with er-
rorbars indicating the uncertainty of the mean. Solid lines
are guides to the eye. In the interacting system, we observe a
regime (gray shaded), where the imbalance after 40 τ is signif-
icantly lower than after 10 τ , indicating a dynamical evolution
of the system. A similar, but much less pronounced, feature
is also present in the non-interacting case.

compared to the non-interacting case demonstrates that
interactions give rise to an additional relaxation (ther-
malization) process. This additional process acts in ad-
dition to the critical slowing down present close to the
non-interacting localization transition and hence shifts
the MBL transition point to larger disorder strengths.

In the following, we present a detailed characterization
of the slow dynamics in the interacting system. The
equivalent analysis of the non-interacting system can be
found in the supplemental material [42].

Imbalance Time Traces.— We monitor the dy-
namics in the interacting system via the time evolution
of the imbalance for various disorder strengths above the
non-interacting transition (see Fig. 2a). The imbalance
is shown on a log-log plot for times between 3 − 40 τ ,
which omits the rapid initial decay from its starting value
close to one [13]. After initial oscillations have ceased at
around 8 τ , we observe slow relaxations of the imbalance,
well reproduced by ED simulations (shown in Fig. 2a,
solid lines), which model our system on 20 sites [42].
Upon increasing ∆ this relaxation smoothly slows down
until, for ∆ & 4 J , the imbalance remains approximately
constant, suggesting that the system becomes localized.

This dynamics in the quasi-periodic potential is rem-
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FIG. 2. Time evolution of the imbalance close to the
MBL transition: Decay of an initially prepared charge-
density wave at a fixed interaction strength of U = 4 J . Points
mark experimental data, averaged over six disorder phases φ,
with errorbars indicating the uncertainty of the mean. The
corresponding ED simulations for S = 20 sites [42] are indi-
cated as solid lines. During the first three tunneling times
(not shown), the imbalance quickly decays from its initial
value close to one. During this initial decay, the imbalance
shows strong oscillations, which cease after ∼ 8 τ . Thereafter,
we observe a much slower further decay. a) Time traces for
various disorder strengths with power-law fits. b) Long term
decay at intermediate disorder strengths on a logarithmic y-
axis with an exponential fit (left) and on a double-log plot
with a power-law fit (right).

iniscent of the dynamics computed in numerical studies
of true-random spin models [34]. In the true-random
spin models, slow relaxation, which takes the form of
power-laws, has been argued to result from rare, lo-
cally critical or insulating regions immersed in an other-
wise thermal system [28, 29]. However, the deterministic
quasi-periodic potential in our system does not allow for
such rare-regions, raising the question of the microscopic
mechanism and the functional form of the observed de-
cays.

Fig. 2b shows the time trace at ∆ = 2.5 J , to slightly
longer evolution times of up to 100 τ . The data is
presented on a lin-log (left panel) and a log-log (right
panel) plot together with an exponential (red line) and a
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FIG. 3. Power-law exponent of imbalance decay: Ex-
perimental and theoretical (ED, S = 20, see [42]) fitted ex-
ponents α as a function of disorder strength ∆ at a fixed
interaction strength of U = 4 J . Errorbars indicate the uncer-
tainty of the fit to the experimental data. The purple shading
denotes an estimate of the uncertainty on the simulated ex-
ponents based on finite size effects. For the largest disorder
strengths, systematic errors due to finite time and size do not
allow an accurate estimation of α and the actual uncertainty
is likely underestimated [42]. The gray shading marks the
regime of slow dynamics as observed in Fig 1. At large disor-
der strengths, the experimental value saturates at a non-zero
offset αo, consistent with the independently observed back-
ground lifetime [42, 45, 46]. The finite value of α in ED for
large disorder strength is likely caused by finite size effects.
The corresponding exponents for the non-interacting data can
be found in the supplemental material [42].

power-law (yellow line) fit to the experimental data. We
find that the power-law fit describes the data slightly
better than the exponential fit (see [42] for fit residuals),
a trend that is more pronounced in the numerical simu-
lations. We attribute this difference to the background
decay, present only in the experiment, that always
contributes an exponential decay component, potentially
altering the actual functional form. The numerical
result is also consistent with a recent numerical study on
spin models with quasi-periodic potentials [47], which
also finds imbalance decays that are well described by
power-laws on intermediate timescales.

Relaxation Exponent.— Motivated by the above
analysis and the similarity to true-random systems [34],
we characterize the observed decays via power-laws
I(t) ∼ t−α. The exponents α are extracted using linear
fits of log(I) versus log(t) between 8−40 τ to the experi-
mental data. Fig. 3 shows the experimental values in very
good agreement with the results of ED simulations, where
we choose a fitting range of 20−80 τ , as initial oscillations
in the imbalance cease slower than in the experiment and
affect the fitted exponent [42]. Above the single-particle
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localization transition at ∆U=0
c = 2J , we observe that

α decreases monotonously until the experimental values
saturate at a non-zero offset αo. This offset is consistent
with the expected effect of background decays in our sys-
tem [42, 45, 46], suggesting that α could indeed vanish in
an isolated system. This suggests that the closed-system
dynamics indeed smoothly changes from slow decays to
a stationary finite imbalance at the MBL transition. We
note though, that even in the MBL phase there may be
a regime of slow, possibly logarithmic relaxation towards
the stationary value of the imbalance [48], potentially
contributing to a finite effective value of αo.

As in Ref. [34], the exponents can be used to estimate
the location of the MBL critical point as the disorder
strength where the exponent becomes zero. In the ex-
periment, however, this behaviour is masked by the offset
in the exponent resulting from the coupling to external
baths. As the effects of external baths on the power-law
exponents (i.e. whether external decays result in a simple
offset or a more complicated interplay) remain unclear,
this prevents an accurate determination of ∆MBL

c . How-
ever, the disorder strength where the exponents become
compatible with the background decay does serve as a
lower bound of ∆MBL

c & 3.8 ± 0.5 J . The numerical re-
sults for small system sizes indicate that the actual crit-
ical disorder strength might be located at larger lattice
depths and a simple linear extrapolation of the expo-
nents gives a best guess for the critical disorder strength
of ∆MBL

c ≈ 4.3± 0.5 J . Previously performed DMRG for
the localized phase suggest an upper bound for the MBL
transition of ∆MBL

c . 5 J [49]. For completeness, we also
performed an equivalent analysis of the slow dynamics us-
ing exponential decays [42]. While the individual fits are
not quite as good as the power-law fits, similar bounds
on the critical disorder strength can be obtained, fur-
ther showing that the slowing down of the dynamics is a
generic feature that captures the MBL transition in our
system.

The lower bound for the transition exceeds the es-
timate of previous experimental work of ∆MBL

c ≈
2.5 J [13]. This value was extracted based on a finite-
time measurement of the imbalance, a method that can
become problematic in the presence of increasingly slow
dynamics. The analysis based on the relaxation expo-
nents given here takes into account the full dynamical
evolution of the system and hence gives an improved es-
timate of the critical disorder strength.

The presented estimates of the critical point locate the
MBL transition near the upper edge of the intermediate
regime of slow dynamics in Fig. 1. We note, that the
upper edge of the non-interacting intermediate regime
in Fig. 1 would slightly overestimate the known critical
point of ∆U=0

c = 2 J [41], as it neglects the initial
dynamics on the localized side. Such a dynamics would,
however, be much slower and possibly logarithmic in the
MBL phase [48], and might therefore be masked by the

background decay in the experiment.

Discussion.— We have experimentally observed a
slow, interaction-induced relaxation dynamics close to
the MBL phase transition in the interacting Aubry-
André model, in very good agreement with ED simu-
lations. Specifically, we observe that the relaxation of
an initial charge-density wave continuously slows down
when approaching the MBL transition. On the experi-
mentally accessible timescales, the decays are consistent
with power-laws whose exponents α smoothly vanish at
the transition, thereby allowing for an estimation of the
critical disorder strength based on the dynamics.

As the dynamics observed in this experiment behave
very similar to those found in numerical studies of true-
random systems [28, 29, 31–34], it is tempting to specu-
late whether the two systems share a common mechanism
that underlies the slow dynamics. However, the Grif-
fiths mechanism suggested to cause power-law dynamics
in true-random systems [28, 29] cannot apply to quasi-
periodic systems, as rare regions in the disorder pattern
cannot exist in a deterministic potential. Given the wide
regime of sub-diffusive dynamics calculated in systems
with true-random disorder [34, 35], it is nonetheless pos-
sible that additional mechanisms are also at play in gen-
erating slow dynamics there. It was suggested, that one
such mechanism could be strong local fluctuations in the
initial state [34], which are also present in our system.
For instance, a region containing only one spin species
would initially be non-interacting and hence insulating
once the single-particle localization length is smaller than
its size. The slow thermalization of such rare regions via
their surroundings could give rise to power-law relaxation
on intermediate timescales. On longer timescales, how-
ever, thermalization ultimately removes such regions and
accelerates the imbalance relaxation. The melting of rare
regions in the initial state might be further enhanced by
the delocalized spin dynamics in our SU(2) symmetric
system [50–52].

Our results are consistent with two recent numer-
ical studies on quasi-periodic systems that also find
power-law decays of the imbalance on intermediate
timescales [47] and sub-diffusive transport [53]. However,
those properties have been found to exist also in the ab-
sence of randomness in the initial state, suggesting that
rare regions in the initial state are at least not the sole
cause of the slow dynamics. Instead, a further mechanism
was proposed based on atypical transition rates between
single-particle states [53].

A similar mechanism was also suggested to explain
the sub-diffusive spreading of bosonic atoms in a quasi-
periodic geometry observed in a previous experiment [54],
which was performed in the absence of lattices along the
orthogonal directions. Since this experiment was per-
formed at a disorder strength where our system would
appear localized, the dynamics likely emerged due to the
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bath-like effects of the delocalized orthogonal dimensions.

Our experimental and numerical results cannot dis-
tinguish which mechanism is relevant to the observed
dynamics. The origin and exact functional shape of
the slow dynamics pose an interesting open problem
for future studies. Experimentally, future studies could
address the problem of a finite bath coupling via a
systematic analysis of its effects [46], allowing for a fur-
ther improvement in the determination of the transition
point and potentially enabling access to the universal
scaling regime.
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U. Schollwöck, J. Eisert, and I. Bloch, “Probing the re-
laxation towards equilibrium in an isolated strongly cor-
related one-dimensional bose gas,” Nat. Phys. 8 (2012).

[44] J. Lux, J. Müller, A. Mitra, and A. Rosch, “Hydrody-
namic long-time tails after a quantum quench,” Phys.
Rev. A 89, 053608 (2014).
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[46] H. P. Lüschen, P. Bordia, S. S. Hodgman, M. Schreiber,
S. Sarkar, A. J. Daley, M. H. Fischer, E. Altman, I. Bloch,
and U. Schneider, “Signatures of many-body localization
in a controlled open quantum system,” Phys. Rev. X 7,
011034 (2017).

[47] M. Lee, T. R. Look, D. N. Sheng, and S. P. Lim, “Many-
body localization in spin chain systems with quasiperi-
odic fields,” (2017), arXiv:1703.05425.

[48] M. Mierzejewski, J. Herbrych, and P. Prelovšek, “Uni-
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