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this it is sufficient to take advantage of the freedom in choosing the position of the HFMP.

We demonstrate that by choosing a sufficiently large HFMP, which could be as large as 10

times the mass of the heavy quark, one can achieve the following improvements: 1) above

the HFMP the size of missing power corrections O(m) is restricted by the value of µb and,

therefore, the error associated with their omission can be made negligible; 2) additional

prescriptions for the definition of cross-sections are not required; 3) the resummation accu-

racy is maintained and 4) contrary to the common lore we find that the discontinuity of αs
and pdfs across thresholds leads to improved continuity in predictions for observables. We

have considered a large set of proton-proton and electron-proton collider processes, many

through NNLO QCD, that demonstrate the broad applicability of our proposal.
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1 Introduction

It is well established that a proton p undergoing an inelastic collision at a scale Q > mp

will exhibit non-trivial heavy quark content. Heavy quarks are the ones whose mass m is

large enough that the strong coupling at that scale is perturbative, i.e. αs(m) � 1. In

practice, only the charm and bottom quarks are considered massive while the top quark is

too massive to be relevant for currently accessible collider energies (which might change at

future high energy colliders). In this work we consider the simplified situation of a single

massive flavor which for convenience we choose to be the bottom. We will return to the

issue of including charm and top in the Conclusions.

This work is based on the collinear factorization approach [1–3] within which one iden-

tifies two types of contributions to the heavy quark parton distribution function (pdf): a

perturbative and an intrinsic one. In this study we will not consider the intrinsic compo-

nent since it is very small and, in fact, all recent attempts [4–8] to derive the intrinsic charm

component of the proton from experimental data have been consistent with vanishing in-

trinsic charm (intrinsic bottom would be even smaller). We note that not including intrinsic

heavy flavor component is mostly for convenience, however, and this is a problem which is

orthogonal to the scope of the current work. Therefore, for the rest of this work we will

simply speak of heavy flavor pdfs and will always have in mind the perturbative component.

The heavy flavor decoupling theorem [9–11] provides the natural framework for dis-

cussing heavy flavor pdfs. When a quark of mass m is probed at a scale Q one has two
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unambiguous limiting behaviors: if Q� m then the quark is effectively massless; all O(m)

contributions can be neglected, large quasi-collinear logs ∼ lnn(Q/m) are resummed by the

DGLAP evolution and the quark behaves exactly as the light quarks. In the opposite limit,

when Q � m the quark is very heavy and can be integrated out from the theory. Cor-

rections behaving like O(1/m) are neglected and, effectively, the heavy quark disappears

from the theory.

There exists a substantial interval of scales Q not very different from the mass m,

Q ∼ m, which is not covered by the two above-mentioned asymptotic regimes and where

power corrections of m are important. The theory provides us with only a minimal guidance

about this intermediate region and it is this inherent ambiguity which is the subject of this

work as well as the vast majority of past works on including heavy flavors in pdfs.

In the interval of energies from Q ∼ m down to Q � m the dependence on the mass

m can be reconstructed, at least at the conceptual level, in the following way. In any

observable, there are three basic ingredients where the dependence on the mass m appears:

the pdfs, the strong coupling αs and the partonic cross-section dσ̂. In the limit Q � m

the pdfs and αs evolve with nf = nl active flavors. As emphasized extensively in ref. [3],

since they both are renormalized in the MS scheme — which is mass independent — one

can extend their evolution all the way up to scales Q ∼ m. On the other hand the mass

dependence in dσ̂ can also be included by computing all diagrams that include the heavy

quark in the final state. This way, one can have a prediction with full dependence on the

mass m from scales Q ∼ m down to Q � m. This is the usual fixed-flavor (FF) picture

for describing charm, bottom and top production.

The difficulties arise when one tries to extend this result towards high energies Q� m.

Following the decoupling approach discussed above, at some scale Q ≡ µb ∼ m one switches

from the nf = nl description to a nf = nl+1 one, where the massive flavor is now considered

as massless. In the following we will refer to the point µb as heavy flavor matching point

(HFMP).1 We will avoid calling it threshold to avoid confusion with physical thresholds.

For all scales Q > µb then one evolves the pdfs and αs with nl + 1 flavors and introduces

pdfs for the heavy flavor and anti-flavor. As usual, matching relations for the coupling and

pdfs at the scale µb have to be imposed. Those are fully known through NNLO [12–14] and

partly known beyond [15–19] for the pdfs, and through four loops [20–22] for αs. The above

construction represents what is known as a variable flavor number scheme (VFNS) [23] or,

specifically, a zero-mass one (ZM-VFNS).

The ZM-VFNS described above is consistent. However, it has an important shortcom-

ing: the intermediate region Q ∼ m in the nl + 1 scheme misses power corrections O(m)

that are important numerically (indeed, possibly dominant) in that region. A number of

approaches have been proposed in the past, starting with the ACOT proposal [23], which

allows for the power corrections present in the FF result to be incorporated in the ZM-

VFNS prediction. Many other such proposals exist [24–32] and approaches of this type are

known as general mass VFNS (GM-VFNS). These proposals have been refined in a number

1Our notation is such that the subscript labels the specific heavy flavor, i.e. µc for charm and µt for top.

As mentioned above, depending on the context µb indicates either the b flavor or a generic heavy flavor.
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of phenomenological applications [33–39] and in studies on the rationale behind the choice

of either scheme [42–45].

Schematically, the GM-VFN schemes work in the following way (see ref. [30]

for details):

dσ(GM−VFNS) = dσ(nl+1)(Q,m) + dσ(nl)(Q,m)− dσ(nl,0)(Q,m) , (1.1)

where dσ(nl+1)(Q,m) is the ZM-VFNS result, dσ(nl)(Q,m) is the one in the nf = nl scheme

with full mass dependence in the perturbative coefficient function and dσ(nl,0)(Q,m) is its

massless limit (which contains ln(m) and m-independent terms but no O(m) ones). Such

a construction naturally converges to the ZM-VFNS one for Q � m and has the added

benefit that at scales Q ∼ m also O(m) power corrections that are part of the massive

nf = nl calculation, including those of kinematic origin, are included. Note that since in

most GM-VFNS pdfs and αs are transformed into the same scheme, either nf = nl or

nf = nl + 1, the notation in eq. (1.1) emphasizes the number of flavors in the partonic

cross-sections and not the ones in αs and pdfs.

While the above construction is undoubtedly an improvement over the ZM-VFNS for

scales Q ∼ m, GM-VFN schemes suffer from certain ambiguities. First, O(m) terms in

reactions initiated by heavy flavors are usually not introduced. Presumably those are

suppressed numerically by the smallness of the heavy-flavor pdf; we revisit these power

corrections in section 2.2. Second, dσ(GM−VFNS), as defined in eq. (1.1), does not behave

as desired for Q ∼ m because the difference dσ(nl+1)(Q,m) − dσ(nl,0)(Q,m) does not

automatically vanish there. To restore the expected dσ(GM−VFNS) → dσ(nl)(Q,m) behavior

in this limit, one typically suppresses this difference by hand.2 In the existing literature

this suppression is implemented in two ways: either by multiplying that difference by an

arbitrary function which vanishes below Q = m or by introducing a specially designed

DIS-inspired rescaling (known as χ-rescaling) of the partonic variable x. See ref. [30] for a

detailed discussion on this point.

In this work we demonstrate that a numerically accurate prediction can be achieved

within the simplest possible variable flavor scheme: ZM-VFNS. To that end only one mod-

ification needs to be made compared to the conventional formulation: move the matching

point µb that separates the nf = nl and nf = nl + 1 schemes towards higher values, i.e.

from the conventional value µb = m to µb = κ · m with the parameter κ as high as 10.

The detailed justification for, and implications of, such a choice are given in the following

section. The remainder of the paper is then devoted to the phenomenological study of

our proposal.

2 The proposed idea

The single most relevant piece of information about our work is the position of the matching

point µb. In order to explain why and how we change it we need to first revisit its status.

2While in the calculation of DIS structure functions all schemes implement a suppression, such a sup-

pression is not necessarily introduced in calculations of Tevatron or LHC processes where the typical scales

are much larger than the heavy quark mass m. See for example refs. [34, 35, 38, 39, 46].
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All existing pdf sets and virtually all papers on the subject (with handful of exceptions

we discuss below) set µb = m. We have been unable to trace this choice to any specific

proposal in the literature. It seems to us that this choice stems from a combination of two

results. First, as discussed in section 1, decoupling implies that the matching point µb has

to be of the order of the mass m. This, of course, does not imply that µb has to be set

equal to m and, in fact, there is a considerable range of values around m that satisfy this

requirement. It is precisely this range that we will be exploring in this work.

Second, the requirement for continuity of the pdfs across the HFMP was historically

very influential. The matching conditions for αs and the full set of pdfs fi read

α(nl+1)
s (µ2

b) = α(nl)
s (µ2

b)

(
1 +

∞∑
n=1

c(n)(µ2
b/m

2)
[
α(nl)
s (µ2

b)
]n)

, (2.1)

f
(nl+1)
i (x, µ2

b) =
∑
j

(
δ(1− x)δij +

∞∑
n=1

K
(n)
ij (x, µ2

b/m
2)
[
α(nl)
s (µ2

b)
]n)

⊗ f (nl)
j (x, µ2

b) ,

where the sum over j goes over all flavors but the heavy one and ⊗ stands for the usual

integral convolution in the variable x.

It is obvious from eqs. (2.1) that at the leading order (LO) both the coupling and

pdfs are continuous for any value of µb. At higher orders the coefficients c(n) and K
(n)
ij are

polynomials in log(µ2
b/m

2). A peculiar feature of the NLO result is that the “constant”

(i.e. log(µb/m)-independent) terms in both c(1) and K
(1)
ij are zero. This implies that the

coupling and pdfs are continuous also at NLO if the matching scale is chosen to be the mass,

i.e. if µb = m. Naively, the requirement for continuity seems desirable and much attention

to it has been devoted in the past [24, 25]. However, this is not so as we demonstrate in

the following.

First, it turns out that the continuity of αs and pdfs across the matching point µb for

µb = m is accidental. It does not persist at higher perturbative orders in the space-like

region [13, 14] or for related quantities in the time-like case [47–50]. Therefore, one has

to accept that the argument for continuity by a special choice of the matching point µb
is invalid.

Second, pdfs are not observables and their continuity is not a formal theoretical re-

quirement. Perhaps somewhat surprisingly, in this work we demonstrate precisely the

opposite: the presence of discontinuities across µb in αs and pdfs is, in fact, beneficial for

the continuity of predictions for observables at higher perturbative orders. Technically this

happens because the discontinuities in αs and various pdfs conspire in such a way that

they tend to largely compensate each other. This happens in a variety of processes and

observables (both inclusive and differential). Unsurprisingly, this observation reminds us

that the theory we work with is incredibly self-consistent! At this point we can introduce

our proposal in the following way:

Proposal:

• For the observable of interest (which could be inclusive or fully differential) choose

the value (or functional form) of the factorization scale;
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• Decide on the value of µb. In this work we explore values for µb as large as 10m;

• Events with kinematics for which µF ≤ µb are computed in the nf = nl scheme and

full mass dependence is to be retained;

• Events with kinematics for which µF > µb are to be evaluated in a scheme with

nf = nl + 1 active flavors where the mass m is set to zero.

In effect this is a ZM-VFNS scheme with a HFMP that is set to a (much) higher value

than in all existing pdf sets. For short, we will sometimes call it “variable µb approach”.

With the exception of appendix A, in the rest of this work we focus on the bottom pdf.

For added clarity, we make our proposal explicit with the following b-pdf specific equation:

dσ =


f

(nl=4)
i (µ2

F , µ
2
b)f

(nl=4)
j (µ2

F , µ
2
b)dσ̂

4F
ij (µ2

F,R, α
(nl=4)
s , mb 6= 0), for µF < µb

f
(nl=5)
k (µ2

F , µ
2
b)f

(nl=5)
l (µ2

F , µ
2
b)dσ̂

5F
kl (µ2

F,R, α
(nl=5)
s , mb = 0), for µF > µb ,

(2.2)

where the indices run over the following values: i, j ∈ {g, u, ū, d, d̄, s, s̄, c, c̄} and k, l ∈
{g, u, ū, d, d̄, s, s̄, c, c̄, b, b̄}.

2.1 Addressing some obvious questions

In the following we address a number of questions about our construction.

1. What about the mass power corrections O(m) neglected above the HFMP? Our pro-

posal is not exact and indeed for scales above the point µb it misses power corrections

O(m). However, unlike existing VFNS realizations, we have a parameter that con-

trols the size of the error we make by neglecting these power corrections. For a given

threshold the actual error that is made is O(m2/µ2
b),

3 and could be as small as 1%

for µb = 10m. This is a negligible effect at the current level of experimental and

theoretical precision. Even for µb = 5m the error is around 4%, i.e. very small. We

would like to stress that none of the existing schemes have a way of parametrically

estimating the error they make.

2. Are physical threshold effects taken into account? These effects are consistently

included in the computation of the observables below the HFMP. In particular, the

reduction of the kinematic phase space available to the final state caused by the

presence of massive particles is taken into account. However, these kinematic effects

are power suppressed and thus become less relevant at scales much larger than the

heavy-quark mass where, according to our prescription, the nf = nl and the nf =

nl + 1 schemes are joint. Therefore, our proposal guarantees that physical threshold

effects are correctly treated in the relevant region, i.e. Q ∼ m.

3. Can this proposal be complemented with existing, or future, GM-VFNS schemes like

ACOT [23] or FONLL [30]? Yes. Our proposal does not preclude the inclusion of

3Assuming that all other kinematic scales are bounded from below by the factorization scale µF .
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power corrections O(m) above the HFMP. However, by construction, such corrections

will be small and therefore typically there is no need for them at the current accuracy

level (we verify this explicitly in appendix A). One of the main goals behind our

proposal is to have a scheme which is both accurate and very straightforward to

implement.

4. How high should the value of µb be? Clearly it should not be very high because if

µb � m then collinear resummation will be spoiled. On the other hand, the power

corrections missed in the massless calculation above the HFMP are suppressed by

O(m2/µ2
b) and the motivation for choosing large values for µb is that they can be

made tiny. In fact, as we demonstrate at length in the rest of this paper, a value of

µb that is as high as µb = 10m is allowed and, therefore, for such a choice any power

corrections are about 1% effect and thus rendered phenomenologically irrelevant.

5. Is resummation accuracy maintained? Yes, if the HFMP is not chosen too high. We

have checked that even for µb = 10m the asymptotic behavior of cross-sections for

Q� m is maintained.

6. What is the distinction between choosing µb and the factorization scale µF ? There

is a fundamental difference between these two scales. While µb is totally process

independent — in effect it only knows about the proton and its choice should reflect

that — the factorization scale µF is process and observable dependent. This scale

implements the distinction between short- and long-distance physics specific to the

way the proton is probed in a given measurement. For this reason the choice for µF
should be made prior to, and independently of, that for µb.

7. What about intrinsic heavy flavor? In the context of our work a possible intrinsic

heavy flavor contribution will only affect the boundary condition at the HFMP used

subsequently by the DGLAP evolution. If needed it could be implemented on top of

our considerations.

8. What is the relation to fragmentation functions? Although we have not explored the

implications of our proposal for the case of fragmentation functions we see no reason

why it would not apply directly there, too. One should note that our situation

corresponds to the case of heavy flavor contribution to the fragmentation of light

hadrons. The fragmentation of heavy flavored mesons is different and may have to

be analyzed with more care.

2.2 Is the value of µb a matter of choice or part of the theoretical uncertainty?

At this point one may wonder if the value of µb is a matter of making a suitable choice

or if it should be considered apriori undetermined and the ambiguity due to its variation

around the point µb = m considered as part of the theoretical systematics. The latter

possibility has been explored in three recent papers [38, 39, 51] which, to the best of our

knowledge, are the only ones where values for µb different from the standard one µb = m

have been considered. For physical predictions, refs. [38, 39] pick the canonical value

– 6 –
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µb = m as the central choice and use variations about this point to estimate the associated

theoretical uncertainties.

Our motivation for moving away from the canonical choice µb = m is different from

the ones in the above-mentioned references. We explain it next.

As far as αs and pdfs are concerned any choice µb ∼ m is equally correct and therefore

the choice of µb is unimportant.4 This “translational invariance” of µb is, however, not

respected by the perturbative differential cross-sections (i.e. coefficient functions). While

in the nf = nl scheme full mass dependence is retained, this is not the case for the

nf = nl + 1 scheme where power corrections O(m) are missed. It is these missing power

corrections that make the theory predictions depend on the position of the HFMP.

In this work we take the viewpoint that the correct position of the HFMP is a matter

of choice: it is the position where these corrections are minimized. Such a position may

not be unique; it may belong to a finite range whose size is determined by the uncertainty

tolerance level. Values of κ in the interval κ = 5 − 10 seem to satisfy this requirement

for b-production.5 Once κ is chosen within such a range, its variation within that range

would be indicative of missing higher-order corrections related to perturbative matching.

Indeed, in this work we see that the inclusion of higher-order corrections in the pdf matching

conditions (and to a lesser degree in the pdf evolution) leads to a systematic reduction of the

sensitivity of observables to the position of the HFMP µb for sufficiently high values of µb.

Finally, we would like to stress that there are both technical and conceptual reasons

why O(m) corrections are always missing. In existing GM-VFNS implementations this is

due to the introduction by hand of rescaling or damping functions. These are checked in

known cases but their applicability for any process or to higher-orders is not obvious or

automatic. O(m) corrections are also neglected in higher-order calculations with incoming

massive quarks. The reason for this is twofold: on the technical side such calculations are

uncommon and technically challenging [52]. On the conceptual side, even if one makes

the effort to compute a cross-section with full mass dependence for initial-state massive

quarks and then subtracts all quasi-collinear singularities as appropriate for a massless MS

subtraction, it is known that collinear factorization is violated starting at NNLO with two

initial state massive fermions [53–55]. More about this topic can be found in the textbook

by Collins [56, section 14.6].

3 The effect of changing HFMP on αs and pdfs

In this work, we produce 6 sets with varying b−HFMP’s, in which the value of µb is set

to κ ·m with κ = 1, 2, 4, 6, 8, 10. For reasons of technical convenience we base our study

on the NNPDF3.0 family of pdf sets, although it could be performed with any existing

pdf set. The pdf set with κ = 1 coincides with the standard NNPDF3.0 pdf set with

αs(mZ) = 0.118. The strong coupling constant is fixed at the conventional reference scale,

i.e. the Z-pole mass, with mZ = 91.2 GeV and for nf = 5. All pdfs are parametrized below

the charm threshold (mc = 1.275 GeV) at the scale Q0 = 1.0 GeV, with nf = 3.

4Only in the sense of working to a given perturbative order.
5A similar numerical value was deduced in ref. [40] in the context of deep-inelastic sum rules due to

heavy flavour contributions and used in ref. [41].
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Figure 1. Schematic illustration for the evolution of αs and pdfs in our approach contrasting

the canonical case κ = 1 with the case κ > 1 as proposed in this work. The dashed blue lines

correspond to the backward evolution of the strong coupling constant (starting form an initial scale

mZ) while the black solid lines correspond to the forward evolution of pdfs starting form an initial

scale Q0.

Following the NNPDF setup, in our analysis the strong coupling constant is evolved

from the initial scale mZ to the scale Q of the data included in the fit, starting with nf = 5

and crossing all HFMP between mZ and Q. In turn, the pdfs are evolved from the initial

scale Q0 crossing at least the charm HFMP and up to the scale at which data are available.6

This is illustrated schematically in figure 1.

Notice that in the NNPDF3.0 default set, the top mass is set to infinity, thus the

maximum number of active flavors in both pdfs and αs evolution is nf = 5. The hadronic

observables included in the NNPDF3.0 analysis are computed in the ZM-VFN scheme, i.e.

no charm or bottom quark mass effects are included in the computation of Drell-Yan, jets

or vector boson production cross sections. Instead, in the computation of DIS observables,

the FONLL scheme is adopted, in which the massive calculation in the vicinity of the heavy

quark HFMP is matched to the massless computation far above it.

In order to fully define the sets with µb = κ ·m, with κ > 1, one needs to specify their

values at the initial scale Q0 = 1 GeV. This could be done in two ways. One may wish to

obtain the boundary condition for each set with κ > 1 by refitting the data as described

above and evolving consistently with HFMP set at µb = κ · m, as appropriate for that

set. This way, in general, one will obtain initial conditions which are different for pdf sets

with different κ. Alternatively, one may simply require that the initial condition for any

value of κ be the same (and in particular be the same as the canonical case κ = 1). The

rationale for the latter possibility is that one may imagine a lattice QCD-based prediction

(see e.g. refs. [57–59] for latest developments) which presumably will be insensitive to the

heavy quark content at high scales.7

One may wonder if in practice choosing one or the other approach leads to significant

differences in the pdf boundary conditions. We have checked this explicitly by producing

pdf sets based on both approaches. We observe very small differences, with PDFs at the

6This is because only data with Q2 > 3.5 GeV2 are included in the NNPDF3.0 analysis.
7We thank Gavin Salam for a discussion that led us to this argument. We also thank Jianwei Qiu for

an illuminating discussion.
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Figure 2. αs(Q) evolution at NLO and NNLO for various b-HFMP values. Shown is the ratio

between κ =2,4,6,8,10 and the standard κ =1.

initial scale deviating from each other by less than a tenth of the pdf uncertainty bands

for all values of x. As a result we have decided to use in this work only pdfs whose initial

value is the same as the one of the standard NNPDF3.0 set.

We next study the effect from changing the HFMP on the scale evolution of αs and

all pdfs. We plot them as functions of the factorization scale Q at NLO and NNLO. The

pdfs are shown for four values of the partonic momentum fraction x.

The evolution of αs is shown in figure 2. In figure 13 we show the gluon pdf while

the bottom pdf is shown in figure 14. The evolution of the quark singlet including (or

not) the bottom flavor is shown in figure 15 (figure 16), respectively. In all cases we

observe significant and progressively increasing discontinuities as the value of κ increases.

As we demonstrate in the following sections, however, these discontinuities cancel each

other in observables.

Although this may appear somewhat counterintuitive, we would like to point out that

the discontinuity in the matching conditions has a beneficial effect on the b-quark pdf. As

can be seen from figure 14 going from LO towards NNLO the discontinuity in the matching

condition increases and the bottom pdf at large scales becomes less sensitive to the position

of the threshold. This happens because the large discontinuity at NNLO allows the b-quark

pdf to DGLAP-evolve starting from a non-zero value immediately after the HFMP. As an

example for how pdf continuity negatively affects pdfs one can take the LO case, not shown

here, where the matching condition is continuous for any position of the HFMP. For this

reason the b-quark pdf has to start from zero for any position of the HFMP, which means

any two pdfs derived with different HFMPs will only very slow converge towards each other

at large Q.

Finally, we also notice that in all cases, for very large Q all pdf sets with different

HFMPs converge towards each other and this convergence is well within the pdf uncertainty.

This is an important validation of our approach which needs to preserve the asymptotic

behavior for large Q (i.e. to preserve the DGLAP evolution and the resummation of terms

∼ lnn(Q/m)).
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4 Testing the approach with LHC processes

Our idea — to work with pdfs with high heavy flavor matching points — is motivated

formally, not phenomenologically. Therefore, in this section we want to verify that it

works in practice by quantifying to what extent the position of the HFMP affects a broad

range of LHC processes and observables. We will be paying particular attention to the

discontinuities in inclusive and differential cross-sections across the HFMP and the effect

of changing HFMP on precision LHC observables.

4.1 Effect of varying HFMP on processes sensitive to b-quark pdf

We consider the following three processes that are sensitive to the b-content of the proton:

the total t-channel single top cross-section at LHC 13 TeV with µF = µR = mt/2, the

total cross-section for the process bb̄Z at LHC 13 TeV and the differential cross-section of

Z + b-jet at LHC 13 TeV8 as a function of pT (Jb) with

µF =
1

4

√
m2
Z +

∑
j

p2
T,j . (4.1)

The coefficient 1/4 in the equation above is chosen so that for small pT,j the scale µF is

small enough and crosses as many values of µb as possible (see figure 9). At leading order,

the process bb̄Z contains bb̄ → Z in the 5 flavor scheme (FS) while in the 4FS it is given

by gg → Zbb̄. At higher orders it is defined in such a way that it involves all diagrams

containing a bb̄Z vertex dressed with QCD radiation, as appropriate.

All calculations through NLO QCD are derived with the MadGraph5 aMC@NLO

code [60]. All public and private pdf sets we use are incorporated through the LHAPDF

library [61]. The 5FS NNLO corrections to the t-channel single top cross-section are not

computed from first principles but are obtained by rescaling the NLO 5FS results with an

NNLO K-factor derived from the results of refs. [62, 63]. Specifically, the proxy to the

NNLO t-channel single-top cross-section in the 5FS is

σNNLO proxy(κ) =

(
σNNLO

σNLO

)
σNLO(NNLO pdf, κ) , (4.2)

where the ratio σNNLO/σNLO is constructed from the 13 TeV inclusive cross-section numbers

in table 1 of ref. [63] (i.e. for κ = 1) and σNLO(NNLO pdf, κ) is calculated exactly, using the

relevant pdf set with κ ≥ 1. Given the extremely flat scale dependence and small NNLO

correction such an approach is more than adequate for our purpose. For this reason we have

not extended the NNLO curves for scales outside the µF range considered in refs. [62, 63],

which is sufficient for our goals.

The 5FS cross-section for bb̄Z has been calculated at NNLO by using a private code [64],

which has been cross-checked at LO and NLO against MadGraph5 aMC@NLO. The 4FS

cross-section has been computed with MadGraph5 aMC@NLO. In both calculations the

8After this paper was completed a new measurement [65] of γ + b-jet appeared which would be an

interesting process to study within our approach.
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Figure 3. Single top t-channel cross-section at LHC 13 TeV at LO (left), NLO (center) and NNLO

(right) as a function of µF for several values of µb.

Figure 4. As in figure 3 but for the total bb̄Z production cross-section.

coupling of the Z boson to light quarks is set to zero, so that only bottom-initiated diagrams

are considered.

We first consider the cross-sections with absolute normalization. They are plotted

in figures 3, 4, 5 in both 4FS (red line) and 5FS, the latter computed for a range of µb
values (blue lines). For all processes we present the predictions of orders (LO,LO) and

(NLO,NLO) while for t-channel single top and bb̄Z we show the (NNLO,NNLO) prediction

for the 5FS only (the 4FS cross-sections are not known at NNLO). With (NnLO,NmLO)

we denote the order of a hadronic cross-section computed with perturbative cross-section

accurate at order NnLO and pdf of order NmLO. Unless specified otherwise, when we say

a cross-section is of order NnLO we mean (NnLO,NnLO), i.e. the perturbative part and

pdfs are of the same order.

A number of generic features can be observed in figures 3, 4, 5. First we notice that by

going to higher orders the scale dependence decreases uniformly for all values of µb. While

this result should be expected, it is a nice check that the approach works as anticipated.

Second and more important, all 5FS curves that correspond to different values of µb become

more and more tightly packed together as we go to higher perturbative orders. This means

that at higher orders the predicted cross-sections become less sensitive to the position of

µb. These two observations apply universally for all three different processes.

In order to clarify the origin of the second feature mentioned above we perform further

checks. In figures 6, 7, 8 we plot the 5FS curves as the ratio:

σ5F(µb = κ ·m)

σ5F(µb = m)
, κ = (1, 2, 4, 6, 8, 10) . (4.3)

The differences in the accuracy of the matching conditions of the pdfs and αs are par-
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Figure 5. The differential cross-section of Z + b-jet at LHC 13 TeV as a function of pT (Jb) at LO

(left) and NLO (right) for several values of µb.

Figure 6. The ratio eq. (4.3) as a function of µF for t-channel single top at LHC 13 TeV.

ticularly relevant for our study. Therefore, in order to disentangle effects due to higher

order corrections to the coefficient functions and higher orders in the pdfs we plot all

possible combinations of accuracies, i.e. (LO,LO), (LO,NLO), and (LO, NNLO) shown

in first row, then (NLO,NLO) and (NLO,NNLO) in the second row and, when available,

(NNLO,NNLO) in the third row.

Strikingly, despite the very different nature of the three processes, there is an extreme

similarity between all of them. Clearly, we observe a process-independent feature: by

increasing the order of the perturbative cross-section the slope of the curves becomes smaller

(i.e. they become less scale-dependent) while by increasing the order of the pdfs the curves

become closer to each other. The improvement from the inclusion of higher order pdfs is

very significant and, at NNLO, the dependence on the position of the HFMP is dramatically

reduced irrespectively of the order of the perturbative cross-section.

4.2 Discontinuities in cross-sections across HFMPs

The size of the discontinuity of hadronic cross-sections during the transition between 4FS

and 5FS at the scale µb is an important criterion for our work. We first consider the
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Figure 7. The ratio eq. (4.3) as a function of µF for bb̄Z production at LHC 13 TeV.

Figure 8. The ratio eq. (4.3) as a function of pT (Jb) for Z + b-jet at LHC 13 TeV.

three processes already studied in section 4.1. In figure 9 we show the discontinuities in

the predicted cross-sections due to the transition from 4FS to 5FS, as a function of the

matching point µb. The discontinuity across threshold, as a function of µF , is defined as

Discontinuity = 1−
σ5F(M fixed, µF,R = µb + ε)

σ4F(M fixed, µF,R = µb − ε)
, (4.4)

where M stands for the relevant mass parameter for each process (mZ or mt) and ε is very

small. In the discontinuity eq. (4.4) above (as well as in eq. (4.5) below), the 5FS cross-

section is evaluated just to the right of the matching point while the 4FS one is computed

just to the left of it. Ideally, the discontinuity when going across the HFMP should be zero.
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Figure 9. Discontinuity between 5FS cross-section above threshold and 4FS cross-section below

threshold for LO (dotted) and NLO (dashed) for t-channel single top cross-section (left), bb̄Z pro-

duction cross-section (center) and the pT (Jb) differential distribution in Z + b (right). All are for

LHC at 13 TeV as a function of κ. The discontinuity is defined in eq. (4.4) and, in the ideal case,

it should be zero.

There are two important features in figure 9. First, by going from LO to NLO the

discontinuity decreases drastically. Second, we note that the 4FS-to-5FS discontinuity

tends to decrease when the HFMP is increased. The details are process dependent but

the trend is significant and generic. We, therefore, conclude that both the inclusion of

higher order corrections in observables and the increase in the value of the HFMP lead to

a decrease in the discontinuities in observables. We stress that in the case of the pT (Jb)

distribution only three b-quark matching points are crossed as pT (Jb) sweeps the interval

between zero and infinity. This is due to the specific functional form (4.1) adopted for the

factorization scale.

The processes just considered have two limitations as far as our study is concerned.

First, the 4FS predictions for these processes are not known at NNLO. Second, as the

matching point is varied in the range κ = 1 to κ = 10 the factorization scale µF , which

is kept equal to µb, can significantly deviate from the natural scale9 in the respective

process. This is not ideal since when the factorization and/or renormalization scales are

taken to be very different from their natural value the convergence of the perturbation

series gets affected.

In order to demonstrate that the above two limitations do not alter our conclusions we

extend our study as follows. We construct two families of (unphysical) processes for which

both the 4FS and 5FS predictions can be derived at NNLO. These families of processes are

constructed in such a way that for any value of the matching point µb the factorization scale

is always close to the natural scale for that process. Specifically, we study the cross-sections

for Z-like and tt̄-like production. By Z-like we mean Z production but with appropriately

chosen Z mass, such that mZ = µb as we change µb from m to 10m. Same for tt̄-like

production but with mt = 2µb. The factorization and renormalization scales are taken to

be µF = µR = µb thus avoiding large ratios between the natural scales and µF,R.

The 4FS predictions for these processes are not known at NNLO but we devise an

approximation which is sufficiently accurate for our purpose: we take the partonic-cross

section to be the 5F NNLO one for massless b-quark and we evaluate it with a 4F αs and

9Although the scale choice is not the subject of our work, we would like to stress that for each hard-

scattering process one can devise a possibly not unique “natural” scale.
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Figure 10. Discontinuities eq. (4.5) at NLO (dashed) and NNLO (solid) for tt̄-like (left) and

Z-like production (right). Both are for LHC at 13 TeV as a function of the mass mt = 2µb or

mZ = µb. The discontinuity is computed in both the canonical approach (“Standard”, in green)

and the variable HFMP approach advocated here (“Variable”, in blue).

DiscontinuityLO DiscontinuityNLO DiscontinuityNNLO

κ Variable Standard Variable Standard Variable Standard

1 −0.0020 −0.0911 0.0006 0.0059 0.0082 0.0082

2 −0.0015 −0.0699 −0.0027 0.0060 0.0034 -0.0120

4 −0.0011 −0.0634 −0.0122 −0.0171 −0.0095 −0.0348

6 −0.0008 −0.0615 −0.0167 −0.0280 −0.0157 −0.0454

8 −0.0007 −0.0603 −0.0187 −0.0335 −0.0187 −0.0482

10 −0.0006 −0.0593 −0.0195 −0.0363 −0.0204 −0.0475

Table 1. Discontinuity eq. (4.5) for Z-like production at LHC 13 TeV at LO, NLO and NNLO

in the variable HFMP approach (“Variable”) advocated here and in the canonical (“Standard”)

approach. Here mZ = µb and µR = µF = µb ± ε, as appropriate.

convolute it with 4F pdfs. We expect this to be a good approximation because the extra

diagrams present in the 5F NNLO partonic cross-sections are multiplied by vanishing pdfs

and thus do not contribute. Terms proportional to the b-quark mass that originate from

4F diagrams with b-quark loops or b-quark pair emission are also missed in the massless-b

5F diagrams but these terms should contribute little, especially at large scales. For these

reasons we expect the error we make with this approximation (i.e. the difference to the full

4F NNLO results) to be at the sub-percent level. With the help of explicit calculations

we have checked that at NLO the inclusive tt̄ and Z cross-sections are affected at the

permille level.

The definition of the discontinuity is adapted from eq. (4.4):

Discontinuity =


1− σ5F(M =µF,R−ε=κ·m ;µb=m)

σ4F(M =µF,R+ε=κ·m)
, for ‘standard’

1− σ5F(M =µF,R−ε=κ·m ;µb=κ·m)

σ4F(M =µF,R+ε=κ·m)
, for ‘variable’ ,

(4.5)

with M = mZ or mt, as appropriate for the process.
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DiscontinuityLO DiscontinuityNLO DiscontinuityNNLO

κ Variable Standard Variable Standard Variable Standard

1 −0.0011 −0.0011 0.0009 0.0017 −0.0122 −0.0156

2 0.0003 −0.0029 −0.0122 −0.0109 −0.0234 −0.0289

4 0.0010 −0.0043 −0.0185 −0.0219 −0.0273 −0.0341

6 0.0011 −0.0035 −0.0183 −0.0258 −0.0274 −0.0346

8 0.0013 −0.0021 −0.0186 −0.0272 −0.0268 −0.0340

10 0.0014 −0.0007 −0.0188 −0.0278 −0.0260 −0.0330

Table 2. As in table 1 but for tt̄-like production with mt = 2µb.

κ σLO [pb×104] σNLO [pb×104] σNNLO [pb×104]

1 4.42964 5.42333 5.64074

2 4.46018 (+0.7%) 5.43158 (+0.1%) 5.62619 (−0.3%)

4 4.51340 (+1.9%) 5.40903 (−0.3%) 5.60047 (−0.7%)

6 4.55424 (+2.8%) 5.38918 (−0.6%) 5.58349 (−1.0%)

8 4.58731 (+3.6%) 5.37355 (−0.9%) 5.57117 (−1.2%)

10 4.61520 (+4.2%) 5.36088 (−1.2%) 5.56158 (−1.4%)

Table 3. Dependence of the total Z cross section at LHC 13 TeV on the threshold scale µb = κ ·m
(recall that κ = 1 represents the standard choice in all publicly available pdf sets). Shown is the

5FS cross-section predicted at LO, NLO and NNLO for mZ = µR = µF = 91.1876 GeV.

The results for Z-like and tt̄-like production are given in table 1 and table 2, respec-

tively. Both are plotted in figure 10. The discontinuities are given at LO, NLO and NNLO

in the variable HFMP approach advocated here (“Variable”) as well as in the canonical

approach (“Standard”). The numbers in the canonical approach are derived in the follow-

ing way: we take standard 4FS and 5FS pdf sets (with µb = m, as usual) and evaluate the

ratio (4.5) at the points κ ·m. In other words we extend the 4FS pdf set from scales ∼ m
all the way up to κ ·m which reflects the current practice within the canonical approach.

The way to read figure 10 is to recall that in a given process the value of M is fixed

(with M being mZ or mt). Thus, one should choose between computing the cross-section

for that process in either the standard or variable approaches and at LO, NLO or NNLO.

It is evident from figure 10 that the variable µb approach advocated here has smaller

discontinuities than the standard approach for the whole range of masses M considered

here and for any perturbative order (except the Z-like cross-section for small values of M

at NLO where numerical effects play a role). The discontinuity at NLO is smaller than the

NNLO one for tt̄-like production with small masses. However, as the mass mt increases the

NNLO discontinuity becomes competitive with the NLO one. For Z-like production, the

NNLO discontinuity in the variable approach is smallest for the whole range of mZ values.

4.3 Effect of changing the value of µb on standard LHC candles

Another important test for our approach is how increasing the value of the HFMP affects

standard precision LHC candles. We note that these processes have typical scales that are
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κ σLO [pb] σNLO [pb] σNNLO [pb]

1 560.86 735.21 806.15

2 566.28 (+1.0%) 736.49 (+0.2%) 807.50 (+0.2%)

4 570.59 (+1.7%) 739.52 (+0.6%) 809.22 (+0.4%)

6 572.63 (+2.1%) 741.78 (+0.9%) 810.33 (+0.5%)

8 573.86 (+2.3%) 743.53 (+1.1%) 811.14 (+0.6%)

10 574.70 (+2.5%) 744.95 (+1.3%) 811.78 (+0.7%)

Table 4. As in table 3 but for the tt̄ total cross-section with mt = µR = µF = 173.3 GeV.

κ σLO [pb] σNLO [pb] σNNLO [pb]

1 18.375 35.055 44.423

2 18.836 (+2.5%) 35.327 (+0.8%) 44.466 (+0.1%)

4 19.332 (+5.2%) 35.442 (+1.1%) 44.480 (+0.1%)

6 19.635 (+6.7%) 35.466 (+1.2%) 44.481 (+0.1%)

8 19.855 (+8.1%) 35.469 (+1.2%) 44.478 (+0.1%)

10 20.028 (+9.0%) 35.465 (+1.2%) 44.475 (+0.1%)

Table 5. As in table 3 but for the ggH total cross-section with mH = 2µR = 2µF = 125.0 GeV.

κ σLO [pb] σNLO [pb] σNNLO [pb] RLO
t/t̄ RNLO

t/t̄ RNNLO
t/t̄

1 119.19 138.28 139.90 1.654 1.660 1.638

2 90.26 (−24.2%) 130.78 (−5.4%) 138.48 (−1.0%) 1.668 1.658 1.641

4 62.22 (−47.8%) 124.10 (−10.2%) 136.30 (−2.6%) 1.680 1.662 1.644

6 46.30 (−61.2%) 120.34 (−13.0%) 134.90 (−3.6%) 1.687 1.666 1.645

8 35.23 (−70.4%) 117.69 (−14.9%) 133.86 (−4.3%) 1.691 1.670 1.647

10 26.78 (−77.5%) 115.63 (−16.4%) 133.03 (−4.9%) 1.694 1.673 1.649

Table 6. As in table 3 but for the t-channel single-top total cross-section and the ratio Rt/t̄ of

single top versus single antitop cross-sections with mt = 173.3 GeV and µF,R = mt/2.

much larger than any of the b-quark matching points considered here. In table 3 we show

the Z cross section at LO, NLO and NNLO, by using the full range of NNPDF3.0-based

sets with varying µb constructed by us. Similarly, in table 4 we show the results for the

tt̄ cross-section, in table 5 for the Higgs inclusive cross-section in gluon fusion while in

table 6 we show the t-channel single top cross-section and the ratio of single top versus

single antitop cross-sections, Rt/t̄. All results are for LHC at 13 TeV.

We observe that for all processes the changes between the canonical approach κ = 1

and any of the variable ones with κ as large as 10 at NNLO are small compared to the

theoretical and experimental errors. We note that the increased order of the prediction

significantly decreases this difference. The most sizable effect is observed in single top,

where for µb = 10m we have a NNLO prediction that we estimate to be almost 5% lower
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Figure 11. Ratio of total inclusive tt̄ and Z cross-sections for
√
s = 13 TeV for a series of µb = κmb

values versus the ATLAS measurement [67] (shaded band).

than the current prediction. This change is significantly larger than the NNLO scale error

(which is around 1%) but the two are compatible within the experimental error (which

currently is below 10%). The long-term prospective for measuring the single top cross-

section at the LHC points towards 5% precision for this observable. This means that it

may not be easy to use single top LHC data to discriminate between these two approaches.

An alternative may be the measurement of the ratio σ(tt̄)/σ(Z) which, as can be seen in

figure 11, is currently known with accuracy of about 2.8% [67]. Future improvements in

this ratio may become the leading candidate for distinguishing the predictions based on

these two approaches.

5 Conclusions

In this work we advocate a new approach to constructing heavy-flavor pdfs, namely, a

standard ZM-VFNS but with heavy flavor matching point µb which is taken to be signifi-

cantly higher than the conventional value µb = m. We extensively test our proposal on a

range of NLO and NNLO precision observables at the LHC. We find that our approach is

competitive with the current state-of-the-art GM-VFNS approaches. Its main advantage

over existing GM-VFN schemes is its transparency and simplicity; it is straightforward to

formulate and implement in practice for any process at hadron colliders and it avoids the

need for adding by hand rescaling or damping factors. Our proposed approach typically

leads to smaller discontinuities in observables across the heavy flavor matching point com-

pared to conventional approaches. It is straightforward to implement in practice thanks to

the existence of public tools like xFitter [68], APFEL [69] and LHAPDF [61].

We demonstrate that our proposal satisfies all requirements for constructing a good pdf

set: first, it maintains collinear resummation provided the HFMP µb is not chosen to be

too large; we consider the range µb = 5m− 10m to be optimal. Second, power corrections

O(m) of the heavy quark mass, which constitute the main problem in constructing heavy-

flavor pdfs, are under control. Despite the fact that in the nf = nl + 1 scheme we only use

purely massless coefficient functions (which greatly simplifies scheme’s implementation) the
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neglected power corrections can be made negligible, by construction. We have verified this

explicitly by a direct comparison with FONLL predictions for the case of DIS production

of bottom (at NLO and NNLO) and charm (at NNLO); see appendix A for details.

We pay close attention to the issue of continuity of observables when one crosses the

HFMP. As the HFMP is moved away from the point µb = m and both αs and pdfs be-

come more discontinuous across that point, one may naively expect that observables may

also become more discontinuous (which would be bad). Our analysis shows precisely the

opposite: typically, using pdfs of higher orders or with higher HFMPs, leads to smaller

discontinuities in observables. We suspect that pdfs with full N3LO accuracy will further

improve continuity, mainly as a result of higher-order corrections to the heavy-flavor match-

ing conditions. The results of ref. [66] suggest that large shifts in predictions compared to

N2LO should not be expected. The significant cancellation between various contributions

we observe is in line with the expectation that observables should be continuous to all

orders. This demonstration of the self-consistency of the theory is, in our opinion, not as

apparent in other schemes.

For the sake of simplicity in our consideration we have mostly focused on the case

of a single heavy flavor which we have taken to be the bottom. However, this need not

be the case; all heavy flavors (charm, bottom and top) can be treated this way and their

corresponding matching points may be set independently. Our ideas are particularly well

suited for applications in top production. No calculations for top production exist in the 6F

scheme,10 despite the fact that top quarks with pT in the TeV range are already routinely

measured at the LHC. This fixed-flavor-like treatment clearly contradicts the spirit of all

existing GM-VFNS. On the contrary, our proposal indicates that, especially when working

with the factorization scale proposed in ref. [70], top production should be described within

the 5FS for pT ’s as large as 3 TeV if κt = 10 is chosen.

Similarly, the recently introduced pdfs with full SM content at very-high energies [78]

represent another natural application for the ideas introduced in the present work.

Our proposal may be useful also in the context of fragmentation functions, especially

when treating heavy quark contributions to the fragmentation of light hadrons (this prob-

lem was recently considered in ref. [71] within a FONLL-inspired GM-VFNS framework).

While typically the uncertainties in fragmentation function analyses are larger than in pdf

ones, recent advances in this subject have introduced NNLO QCD precision into global

fragmentation function fits [72, 73] which suggest that a more refined treatment of HFMPs

in fragmentation functions may also be beneficial.

Finally, we would like to emphasize that in order to fully explore the phenomenological

implications of our proposal, a more complete analysis along the lines of the global fits per-

formed by the pdf fitting collaborations will be required. This will allow one to precisely

determine the impact of our proposal on precision observables like Z and single top pro-

duction where we see differences with respect to standard approaches that are significant

yet not sufficient at present to differentiate between the two approaches. We hope that

10The original FONLL approach [33] would work in 6FS but to the best of our knowledge it has never

been applied to top production.
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future work will ultimately help clarify the proper interpretation of such differences, i.e.

if they should be considered as due to difference in approach or as a genuine uncertainty

within existing approaches not fully exhibited until now.

Acknowledgments

V.B. is particularly grateful to Fred Olness for illuminating discussions on the role of the

HFMPs in pdf fits. M.U. is grateful to Davide Napoletano for their discussions on the

FONLL scheme. A.M. thanks the Department of Physics at Princeton University for hos-

pitality during the completion of this work. This work was initiated at the KITP workshop

“LHC Run II and the Precision Frontier” which is supported by NSF PHY11-25915. V.B.

is supported by the European Research Council Starting Grant “PDF4BSM”. The work of

A.M. and A.P. is supported by the U.K. STFC grants ST/L002760/1 and ST/K004883/1

and by the European Research Council Consolidator Grant “NNLOforLHC2”. M.U. is

supported by a Royal Society Dorothy Hodgkin Research Fellowship and this work has

been partially supported by the STFC consolidated grant ST/P000681/1.

A Example: charm and bottom fits from DIS data

In this appendix we explicitly demonstrate in the context of inclusive DIS that the power

corrections O(m) indeed become negligible as the HFMP is increased. We perform fits to

inclusive DIS data for bottom and charm production at NLO and NNLO. The size of the

power corrections can be established by comparing pdf fits based on our approach and on

the FONLL approach which is designed to contain the bulk of those power corrections.

Specifically, we perform a series of pdf fits by implementing the method proposed

in this paper and using the open-source fitting code xFitter (former HERAFitter) [68]

interfaced to the APFEL code [69]. The dataset included in these fits comprises the combined

HERA1+2 H1 and ZEUS inclusive DIS cross-section data [74], the combined H1 and ZEUS

charm production cross-section measurements [75] and the separate bottom production

cross sections from H1 [76] and ZEUS [77]. This dataset provides sufficient information

for a reliable determination of pdfs. Furthermore, thanks to the inclusion of heavy-quark

tagged data, it is also sensitive to heavy-quark mass effects which allows us to assess the

impact of different prescriptions for describing heavy flavors.

In order to validate our method, we perform fits both at NLO and NNLO moving

separately the charm and bottom HFMPs µc,b by a factor κ = 1, 2, 5, 10 with respect to

the masses mc,b. We then compare to the corresponding fits performed in the FONLL

scheme. In the case of charm, given that mb/mc ∼ 3, in all fits we set µb = 5mb in such a

way that the bottom HFMP is always sufficiently above the charm one even for κc = 10.

The aim of these fits is to show that, as κ increases, the fits using our method and the

FONLL scheme become closer. In order to assess the difference between our method and

the FONLL scheme, in figure 12 we display the quantity:

δχ2(κ) =
χ2(this work)− χ2(FONLL)

χ2(FONLL)
, (A.1)
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Figure 12. Behavior of δχ2 as defined in eq. (A.1) as a function of the HFMP rescaling parameter

κ for pdf fits at NLO and NNLO in which both the charm and the bottom HFMPs are displaced

by a factor κ relative to their mass.

Heavy quark Pert. order Scheme
χ2 / d.o.f.

κ = 1 κ = 2 κ = 5 κ = 10

Charm

NLO
FONLL 1.144 1.179 1.166 1.227

This work 1.255 1.239 1.283 1.305

NNLO
FONLL 1.207 1.194 1.214 1.226

This work 1.598 1.292 1.205 1.246

Bottom

NLO
FONLL 1.148 1.143 1.144 1.146

This work 1.262 1.149 1.145 1.146

NNLO
FONLL 1.204 1.208 1.207 1.212

This work 1.697 1.218 1.208 1.212

Table 7. Values of the total χ2 normalized to the number of degrees of freedom for the fits with

different values of κ for the charm and bottom HFMPs, at NLO and NNLO, derived using the

FONLL scheme and the proposal in this work.

as a function of the threshold rescaling parameter κ when the charm threshold is moved

at NLO (red curve) and NNLO (orange curve) and when the bottom threshold is moved

at NLO (blue curve) and NNLO (green curve).

First we observe that, as expected, the FONLL scheme at κ = 1 provides a much

better description than the conventional ZM-VFNS. As the value of κ increases, however,

the difference between our prescription and the FONLL scheme starts to decrease. Notably,

in the case of bottom, a low value of κ = 2 is sufficient to bring δχ2 close to zero both at

NLO and NNLO. This is partly due to the fact that the value αs(µb) is sufficiently small.

The picture for charm is more complicated. At NLO the FONLL fit is systematically

better than our prescription even for large values of κ. The large value of αs(µc) plays
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Figure 13. Ratio between the gluon pdf for κ =2,4,6,8,10 and the standard κ =1 at NLO (left)

and NNLO (right) as a function of the factorization scale Q and for four values of the partonic

fraction x.
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Figure 14. As in figure 13 but for the bottom pdf.
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Figure 15. As in figure 13 but for Σ = u+ ū+ d+ d̄+ s+ s̄+ c+ c̄+ b+ b̄.
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Figure 16. As in figure 13 but for Σ = u+ ū+ d+ d̄+ s+ s̄+ c+ c̄.
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a role here since likely it enhances the discontinuity around the HFMP. As can be seen

from table 7, however, one should keep in mind that the quality of the FONLL fit is

significantly degraded for NLO charm compared to the other cases we consider. This most

likely indicates that the perturbative description of charm is simply problematic at low

orders. The situation is greatly improved at NNLO where the convergence between the fits

derived in our method and in the FONLL scheme is reached around κ ' 5, fully in line

with our expectations.

In table 7 we give the values of the total χ2 normalized to the number of degrees of

freedom for each of the fits discussed above. In order to assess the significance of deviations,

it is useful to keep in mind that all fits discussed here have been performed with the same

dataset and using the same pdf parametrization. Therefore, the number of degrees of

freedom is common to all fits and equals 1207. This means that variations of the order of a

few permill at the level of the normalized χ2’s are statistically significant.11 For the case of

charm at NLO it is clear that going from κ = 1 to κ = 10 the χ2 deteriorates significantly,

by about 7%, for FONLL and about 4% for our fits. As a results of this we believe that the

χ2 values in the first two lines of table 7 do not provide a basis for assessing the goodness

of our prescription; see also the related discussion in ref. [51].

The variation of the χ2 between κ = 1 and κ = 10 for charm at NNLO is much smaller,

about 1.5% for FONLL. This reduced sensitivity to the charm threshold position allows one

to reliably estimate the quality of the method proposed in this work. Indeed, as mentioned

above, the fits based on our prescription approach the FONLL ones for κ = 5 which is fully

in line with our expectations of κ being in the interval κ = 5− 10.

As far as the bottom is concerned, the picture at NLO and NNLO is essentially the

same as for the charm at NNLO. In particular, the fits in the FONLL scheme are very

stable upon displacement of the HFMP. Correspondingly, the quality of the fit within our

method quickly approaches that of the FONLL scheme as κ increases and already at κ = 2

the two are essentially equivalently good.
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