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ABSTRACT. We introduce and study birational invariants for foliasoon projective sur-

faces built from the adjoint linear series of positive posvef the canonical bundle of the
foliation. We apply the results in order to investigate tffeative algebraic integration of

foliations on the projective plane. In particular, we déseithe Zariski closure of the set
Xgq,4 of foliations onP? of degreed admitting rational first integrals with fibers having
geometric genus bounded by
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1. INTRODUCTION

1.1. Effective algebraic integration. It seems fair to say that the simplest class of al-
gebraic ordinary differential equations consists of thesslof equations having all its
solutions algebraic. In general, given an explicit differal equation, it is a difficult to
problem to decide whether or not it belongs to this distisbad class. Perhaps the first
positive result on the subject is Schwarz’s list of paramseter which Gauss’ hypergeo-
metric equation belongs to this class|[35].

Motivated by this remarkable result, a lot of activity on 8tady of algebraic solutions
of linear differential equations took place in the XIXth tery leading to a fairly good
understanding of the problem for homogeneous linear @ifféal equations. Among the
works dealing with this question one can find contributiogsHoichs, Gordan, Jordan,
Halphen, and Klein just to name a few. At that time, the comityuseemed to believe
that it would be possible to decide whether or not all sohgiof a given linear differential
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equations are algebraic, see for instance the concludingrkﬂ of [20, Section 3, Chapter
V].

By the end of XIXth century mathematicians like Painlevét@xne, and Poincarg [32,
33] started to study the next case, that is, polynomial difiéal equations of first order
and of first degree. In modern language, they studied foligton the projective plane with
special emphasis on the existence of methods/algorithdexide whether or not all leaves
are algebraic. We will call this general line of enquirinfpefive algebraic integration. The
results obtained at the time relied on strong assumptioriB@®nature of the singularities
of the foliations and were not considered definitive as omdearn from the Introductidin
of [33]. For a modern account of some of these classical teesak[[17] and [30, Chapter
7.

The results of the XIXth century on effective integratiorlinkar differential equations
were revisited in the course of the XXth century. It was thexdmclear that a full solution
for the problem was not available, but instead it was redtcedsimilar problem for rank
one linear differential equations over curves. More prdgjsn order to be able to decide
whether or not a homogeneous linear differential equatiasy, ', v, v, .. ., y™) =
0 has all its solutions algebraic it suffices to be able to sttesfollowing problem: given
an element: belonging to an algebraic extension of the fi€ldr), decide ifu is the
logarithmic derivative of an elementalso belonging to an algebraic extension(if).
Some authors expressed doubts on the possibility of sothisgproblem. For instance, in
[19, page 51] one can find the view of Halidgn the subject.

Despite the scepticism of Hardy and others (¢f.1[34]), in ldte 1960’s Risch (loc.
cit.) showed that this problem, in its turn, can be reduceth&following one: given
an explicit divisor on an explicit algebraic cur¢e decide whether or not such divisor
is of finite order in the Jacobian @f. Risch proved that this problem can be solved by
restricting the data modulo two distinct primes and usirgréssulting bounds in positive
characteristic to devise an explicit bound in characteristro. For a detailed account
on the case of second order homogeneous differential eqsagee [1]. More about the
history of effective algebraic integration of linear diféatial equations can be found in
[37, page 124],/1118, Chapter Ill], and references therein.

The corresponding problem for (non-linear) differentiqliations of the first order and
of the first degree is still wide open and received considgilaks attention. After being
dormant for a good while, the interest towards it has beeivee\by experts in foliation
theory who considered the problem of bounding the degrelgebaaic leaves of foliations
onP?, see for instanceé [9] 7] 6, 116] and references therein. Theeimce of arithmetic on
the subject was rediscovered by Lins Néta [23] who deterdchiigebraic families (pencils)
of foliations on the projective plane with fixed number andlgtical type of singularities
and with algebraic leaves of arbitrarily large degree.

1“Thus is the problem, which we formulated at the beginninthisf paragraph [present all linear homogenous
differential equations of the second order with rationaftioients:y”’ + py’ + qy = 0 which possess altogether
algebraic solutions], fully solved.”

2“Je me suis occupé de nouveau de laméme question dans ciessiemmps, dan I' espoir que je parviendrais
a généraliser les résultats obtenus. Cet espoir a été dé¢wbtenu cependant quelques résultats partiels, que
je prends la liberté de publier, estimant qu’on pourra swis plus tard pour obtenir, par un nouvel effort, une
solution plus satisfaisante du probleme.”

3“But no method has been devised as yet by which we can alwagsndee in a finite number of steps
whether a given elliptic integral is pseudo-elliptic, antegrate it if it is, and there is reason to suppose that no
such method can be given.”
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1.2. Degenerations of planar foliations admitting a rational first integrals. This work
investigates the problem of effective algebraic integrafor foliations on projective sur-
faces. In order to focus the discussion and clarify the fraank in which we are going to
carry it, we introduce the following conjecture.

Conjecture 1.1. The Zariski closure irfPH® (P2, Tp=(d — 1)) of the set of foliations of
degreed onP? which admit a rational integral consists of transverselgjgctive foliations.

This conjecture is inspired by a remark made by Paiﬂ1e(\[28, pp. 216-217]) in his
Stockholm’s lectures. Knowledge of a transverse projeditvucture for a given foliation,
in view of their recent descriptioh [12, 4], would allow ®duce the problem to either the
determination of periods of differential forms — when, afiassing to a ramified covering,
the foliation is defined by a closed rationaform — or to the algebraic integrability of
Riccati equations.

The main results of this paper provide evidence in favor &f tonjecture and are ob-
tained using birational techniques. More precisely, wehssgc results on adjoint linear
series, the birational classification of foliated surfagaesording to their Kodaira dimen-
sion [26) 5[ 27], and a variant of it which we now proceed tolaixp

1.3. Adjoint dimension of foliations. The works of the Italian school of algebraic geom-
etry in the beginning of the XXth century showed how much &f geometry of a smooth
projective surfaceX can be determined by the order of growth of the function

n— (X, Kx®™).

Whenever this function grows slower than a quadratic patyiah one has a rather precise
description of the surface (the so called Enriques-Kodaassification). A similar clas-
sification is also available in dimension three thanks toabeks of the modern school of
birational geometry, and there is also a similar picturerbiteary dimensions conditional
on the so-called Abundance Conjecture.

In the case of foliations on surfaces, McQuillan, Brunelid &endes obtained a very
precise classification — analogue to the Enrique-Kodamasification — in terms of the
Kodaira dimension of the foliation. As in the case of sur&atke Kodaira dimension of a
foliation F, kod(F), measures the growth of the functibh( X, K »®™) whereK  is the
bundle of holomorphid-forms along the leaves of the foliation.

As the terminology suggests the canonical bundle togethkiite dual are the most ob-
vious naturally determined line-bundles on a variety. Ciorad with the fact that integers
hO(X, Kx®™) (n > 0) are birational invariants for smooth projective varisfigts study
is rather natural if one wants to understand varieties ibinatly. For foliations of arbi-
trary dimension/codimension, besides the canonical lsydie also has another naturally
attached line-bundle: the determinant of the conormal leunfl.F is a foliation on a pro-
jective surfaceX with canonical singularities then it turns out that for &y n,m > 0
the integers’ (X, K% @ N+®™) are birational invariants. Most of the results obtained
in this paper steam from this simple observation. We defireatffjoint dimension of a
foliation according to the order of growth of the functibA(X, K®" @ N:®™), see
Sectior 3.

4“J’ajoute gu'on ne peut espérer résoudre d’'un coup qui stasi limitern. L'énoncé vers lequel il faut
tendre doit avoir la forme suivantéOn sait reconnaitre si I'intégrale d'une équatiof'(y/, y, z) = 0 donnée
est algébrique ou ramener I'équation aux quadraturd3dns ce dernier cas, la question reviendrait a reconnaitre
si une certaine intégrale abélienne (de premiére ou déémoésespéce) n'a que deux ou une périodes.”
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Building on the classification of foliations on surfaces@ding to their Kodaira di-
mension, in Section 6 we present a classification in funaifdhe adjoint dimension. The
results we obtain are summarized in Tddle 1. Thee outconteeaflassification provides
a framework well-suited to deal with families of foliatiofSectior{¥) mainly due to the
fact that it is more flexible with respect to type of singuii@s which are allowed (Section
[4). The classification in terms of the adjoint dimension aksftects distinct cases of the
problem of effective algebraic integration (Secfidn 8).

| adj | kod [ Description |
—oo | —oo | Rational fibration

0 Finite quotient of Riccati foliation generated by globatte field
1 Riccati foliation

| Finite quotient of linear foliation on a torus |

0

0 Finite quotient ofE x C' — C, g(C) > 2
1 Finite quotient ofE x C' — E, g(C) > 2
1

1

0|

Turbulent foliation

Non-isotrivial elliptic fibration

2 —oo | Irreducible quotient ol x H — H

1 Finite quotient ofC; x Cy — C1, g(C;) > 2
2 General type

TABLE 1. Classification of foliations according to their adjokataira dimensions.

1.4. Plan of the paper and statement of main results.The bulk of the paper starts by
reviewing classification of foliations with respect to thikbdaira dimension in Sectidg 2.
Then we introduce new birational invariants for foliatiamrssurfaces, notably the effective
threshold and the adjoint dimension, in Secfidbn 3. Seéfimdevoted to the study of a
variation of the concept of canonical singularities, thecatbeds-canonical singularities.
We prove in Corollary 4.70 that, far > 0, this concept is stable for small perturbations
of the singularity of the foliation. This fact will be partitarly important in the study of
families of foliations carried out in Sectidn 7.

Sectior’b is devoted to the proof of boundness of non-idatriibrations of bounded
genus in families, see Theoréml5.7. In the particular ca®é,dahe result reads as follows.

Theorem A. Let.F be afoliation oriP2. Assume thaF is birationally equivalent to a non-
isotrivial fibration of genug; > 1. Then the degree of the general leaf/®fis bounded

by
(7(42(2g - 2)) !)2 deg(F).

TheorentA refines the main result 6f [29] where it was esthblisthe existence of a
bound for the degree of the general leaf depending on itsgyand on the firsk > 0 for
which the linear systerﬂ{;®k| defines a rational map with two dimensional image. The
existence of universaworking for every non-isotrivial fibration of gengsvas not known
then - and is still not known at present time - hence the axig®f a bound depending
only on the degree of the foliation and on the genus was uncleaomparison to[[29]
the proof of the result above has two new ingredients. Theigissbound on multiplicities
of irreducible components of fibers of relatively minimalnisotrivial fibrations of genus
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g > 2 (Propositiof 5.6). The second new ingredient is the useaofistrd results on adjoint
linear series (recalled in Sectibnb.1) in order to obtaiaative (n, m) € N? such that the
rational map defined byx »®"® K x ®| has two dimensional image. By imposing further
assumptions on the nature of the singularities of a foliatin P2 we obtain significantly
better bounds (sub-linear a), refining a classical result of Poincaré, cf. Theofen 5.9.

In Sectior[ 6 we carry out the classification of foliations amfaces according to the
adjoint dimension, see Tallé 1. The proof strongly relieshenclassification of folia-
tions according to the Kodaira dimension, but it does neabitell with its subtlest point:
the classification of non—abundant foliations. A nice clamyl of the classification is a
cohomological characterization of rational fibrationsjellis a weak analogue of Castel-
nuovo’s Criterion for the rationality of surfaces, c¢fl [Zhm. V.1].

Theorem B. Let F be a foliation with at worst canonical singularities on a sotio pro-
jective surfaceX. The foliationF is a rational fibration if, and only if2°(X, K" ®
N£®™) = 0 for everyn > 1 and everym > 0.

Sectiorn Y investigates families of foliations. There itli®wn that the set of effective
thresholds in a family does not accumulate at zero (Thebrén More important, it
prepares the ground for the proof of the most compellingeswig we have so far in favor
of Conjecturé 111.

Theorem C. The Zariski closure ifP(H° (P2, Tp=(d—1))) of the set of degreéfoliations
admitting a rational first integral with general fiber of gesig g is formed by transversely
projective foliations.

Its proof is presented in Sectibh 8 and relies on Thedrém Ahemirational classifica-
tion of foliations, and on basic properties of families ofidtions.

1.5. Acknowledgments. This collaboration initiated while both authors where tigj
James MKernan at UCSD, and continued during a visit of the secontaub IMPA.
We are grateful to both institutions for the favorable watkconditions. The first author
is partially supported by Cnpg and FAPERJ. The second awtherpartially supported
by NSF research grant no: 1200656 and no: 1265263. Durinfjrtakerevision of this
work he was supported from funding from the European Rekdaotincil under the Eu-
ropean Union’s Seventh Framework Programme (FP7/200B}20RC Grant agreement
no. 307119.

2. KODAIRA DIMENSION OF FOLIATIONS

We start things off by reviewing the birational classificatiof foliations on surfaces
following [26] and [5]. No new results are presented in tlastin. We have only included
proofs of a few key properties of the Zariski decompositibthe canonical bundle of a
foliation which will be used in the sequel.

2.1. Singularities of foliations.

Definition 2.1. Let F be a foliation onX and letw : Y — X be a birational morphism.
Denote byG the pull-back ofF undern. If E is an exceptional divisor of then the
discrepancy ofF along E' is

a(F,E) =ordg(Kg — " Kr).
Definition 2.2. Let.F be a foliation onX. A pointz € X is canonical forF if and only if

a(F, E) > 0for every divisorE overz. A pointz € X is log canonical forF if and only
a(F, E) > —1 for every divisorE overz.
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Example 2.3. Consider the pencil of foliations oA = P? defined by the vector fields
sta + ty S where(s 1 t) € P1. If s - ¢ - (s — t) # 0 thenF (.., is a foliation with trivial
canonical bundle and three singularities at the poifits 0 : 1), (0: 1: 0),and(1: 0 : 0).
For (s : t) ¢ PL(Q) the three singularities are canonical. F¢s : t) € P1(Q) — {(0 :
1),(1 : 0),(1 : 1)}, two of the singularities are log canonical but not canomjaghile
the third singularity is canonical. Finally, when- ¢ - (s — t) = 0, the vector field will
have one of the coordinate axis as a line of singularitiese dbrresponding foliation will
have canonical bundl®p: (—1) and only one singularity which is log canonical but not
canonical.

Any foliation on a projective surface is birationally eqalient a foliation having at worst
canonical singularities thanks to the following which isestially due to Seidenberg.

Theorem 2.4. Let F be a foliation on a smooth projective surfage Then there exists
a finite composition of blow-ups : Y — X such that all the singularities of* F are
canonical.

2.2. Kodaira dimension.

Definition 2.5. Let F be a foliation with at worst canonical singularities on a Sotio
projective surfaceX. The Kodaira dimension oF, kod(F), is by definition

kod(F) := kod(Kr) = max{em(X)},

whereg,,: X --+ P(H°(X, Kx%"™)*) and we adopt the convention thditn Odm(X) =
—oo whenh? (X, K®™) = 0. (and it is not possible to define the associated map).
The numerical Kodaira dimension 1, v(F), is defined to be the numerical dimension
of Kz, thatis:
e y(F) = —xif Kr is not pseudo-effective, while
o if Kz is pseudoeffective with Zariski decompositép = P + N thenv(F) =0
if P is numerically zeroy(F) = 1if P # 0 butP? = 0, andv(F) = 2if P? > 0.

The classification of foliation with negative numerical Kach dimension stated in the
next result is due to Miyaoka.

Theorem 2.6. Let F be a foliation on a projective surfacg. If K r is not pseudo-effective
thenF is birationally equivalent to &'-bundle over a curve.

2.3. Relatively minimal models.

Definition 2.7. Let F be a foliation with canonical singularities on a smooth grciive

surfaceX. An irreducible curveC C X is called F-exceptional ifKx - C = —1 (i.e.
CP! and C? = —1) and the contraction o> gives rise to a foliation with canonical
singularities.

Definition 2.8. Let F be a foliation with canonical singularities on a smooth ciive
surfaceX. A relatively minimal model fof is the datum of a foliatioy with canonical
singularities and withoug-exceptional curves on a smooth projective surfeEcehich is
birationally equivalent taF. We say that is a minimal model if for any birational map
m: Z --+Y and any foliatior{ on Z with canonical singularities such that# = G, «
is a birational morphism.

The definitions above and the next result are essentiallya&eunella [3]. The only
minor difference is that in the original definition gf-exceptional curve Brunella only
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considered reduced singularities instead of canonicgusimities. Nonetheless, his proof
works also in this slightly more general situation.

Theorem 2.9. Let F be a foliation with at worst canonical singularities on a sotio
surfaceX. There exists a birational morphism: X — Y such thatr, F is a relatively
minimal model forF. Moreover,r,.F is a minimal model fotF unlessF is birationally
equivalent to a rational fibration, a Riccati foliation, or@nella’s special foliatior.

The reader will find the explicit construction of the fol@ti? from the theorem in the
paper just cited.

Remark 2.10. The above theorem highlights the main difference betweebitational
classification of projective surfaces and that of foliasoon surfaces: while surfaces of
non-negative Kodaira dimension always have a unique mihinoael, there are foliations
of Kodaira dimension zero and one which do not have uniquémaimmodels.

2.4. Zariski decomposition and nef models.If £ is a pseudo-effective line bundle on a
smooth projective surface thehis numerically equivalent t&; + N, whereP, is a nef
Q-divisor andN, is a contractible effectiv@®-divisor satisfyingP, - N = 0. This is the
so-called Zariski decomposition df. We will denote byi(F) the index ofK £, i.e., the
minimum of the se{n € N | nN has integral coefficien}s

Theorem 2.11. Let F be a relatively minimal foliation on a smooth projectivefae X .
If K £ is pseudo-effective anl + N is its Zariski decomposition then the supporf\ois
a disjoint union of Hirzebruch-Jung strings.

A Hirzebruch-Jung string is a chain of smooth rational cavkself-intersection smaller
< —2. At one end of the chain, the handle of the Hirzebruch-Jumggstthe foliation has
only one singularity. Every other curve in the chain corgdino singularities of the fo-
liation. There is only one singularity of on the Hirzebruch-Jung string which does not
coincide with a singularity of its support. There exists aque leaf of 7 not contained
in the Hirzebruch-Jung string that passes through thisusamigy. Such curve is called the
tail of the Hirzebruch-Jung string.

contraction .
 tail morphism  © tail
handle ’ P

Definition 2.12. Let F be a relatively minimal foliation with pseudo-effectiie- on a
smooth projective surfackE. The order of a maximal Hirzebruch-Jung string contained in
the support ofV is the determinant of the negative of the intersection alfrits support.

The following proposition shows that the order and the inalexclosely related.

Proposition 2.13. Notation as in the definition above. The following assesibold true.

(1) The order of a maximal Hirzebruch-Jung stridgcontained in the support ¥
coincides with the smalleste N such that the coefficients &f corresponding to
curves inJ belong to2N.

(2) The contraction of a Hirzebruch-Jung string of ordeis locally isomorphic to
the quotient of a smooth foliation dit2, 0) by the cyclic group generated by an
automorphism of the forrt, y) — (&, - z,£2 - y) whereg, is a primitive root of
unity of ordero anda is a natural number relatively prime ta
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Proof. The statement is local so we may very well assume that theosippNV is con-
nected. Let us writéV = Zle a; E; whereE; are the irreducible components df. We
denote byF; the handle of the Hirzebruch-Jung string while the othevesiare numbered
following the order in which they appear in the chain.

Let A = (E; - E;); ; be the intersection matrix of the Hirzebruch-Jung string ket
o = det(—A) be the order of the Hirzebruch-Jung string. To determinectiedficients
ai,...,ax We have to solve the linear systémA) - (a1, as, . ..,ax)? = (1,0,...,0)T.
Therefore the coefficients certainly lie in%N. To see thab is the minimal number with
such property it suffices to notice that = 1/0, cf. [26, proof of Proposition I11.1.4]. This
proves item (1). Iltem (2) i$ [26, Reinterpretation I11.A13.a] O

In the Lemma below, we collect some properties of tails ofzeliruch-Jung strings for
later use.

Lemma 2.14. Let F be a relatively minimal foliation with pseudo-effectiveoaical bun-
dle on a smooth projective surfacé. LetT be an irreducible invariant curve not con-
tained in the support ofV and letoy, ..., o0, be the orders of Hirzebruch-Jung strings
intersectingl’. Then the following assertions hold true.

(1) The intersection of the positive part of the Zariski decositpm of K » with T" is
given by the formula

k
1
P-T=KrpT-Y —.
0;

i=1

(2) If F admits a holomorphic first integraf : U — C defined on aF-invariant
neighborhood of” which vanishes alon@ then the vanishing order alorifj is a
multiple of the least common multipleaf, . . . , ok.

Proof. Item (1) is [26, Remark 111.1.3.a]. To verify item (2) let usovk locally on a
neighborhood/ of a Hirzebruch-Jung string intersectifiy Letw : V — W be the
contraction of the Hirzebruch-Jung string we are consideaindo be its order. Perhaps
after restrictingl’ to a smaller neighborhood we can assume thais the quotient of a
neighborhood’ of the origin inC2 by a cyclic group generated oz, y) = (&-2,8%y)
according to Propositidn 2.113. We can also assume that théack G of 7.(F|) to 1%

is the foliation defined by the level sets of the coordinatecfiony. The pull-back of
T (fiv) to V is a holomorphic functiog constant along the leaves @f They invariance
of g implies thatg(z,y) = h(y°) for some one variable holomorphic functiénltem (2)
follows. d

Definition 2.15. Let F be a relatively minimal foliation on a smooth surfagé with
pseudo-effective canonical divisor. The nef modeFad$ the foliation obtained by con-
tracting the negative part of the Zariski decompositiorof.

2.5. Canonical models.

Definition 2.16. A foliation 7 on a normal projective surfac&’ is called a canonical
model ifK 7 is nef andK » - C = 0 impliesC? > 0 for every irreducible curv& C X.

Theorem 2.17. Let F be relatively minimal foliation with pseudo-effectiveér on a
smooth surfaceX. Then there exists a morphism: X — Y from X to a normal
projective surfac&” such thatG = =, F is a canonical model. The singular points f
and the corresponding exceptional fibersiadire of one of the following forms.
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(1) The singular pointis a cyclic quotient singularity and theeptional divisor over
it is a chain of rational curves of self-intersection at mest

The foliation around the singular is the quotient of a smofatliation; or the
quotient of a canonical foliation singularity on a (germ sfpooth surface;

(2) The singular pointis dihedral quotient singularity and #heeptional divisor over
it has the following dual graph:

The foliation around the singularity is again the quotiefitasmooth foliation or
of a canonical singularity on a (germ of) smooth surface.

(3) The singular pointis an elliptic Gorenstein singularitychtihe exceptional divisor
is a cycle of smooth rational curves each of self-intereectit most—2; or a
unique nodal rational curve of negative self-intersection

’
’
’

The foliation around the singular point is isomorphic to ssplof a Hilbert mod-
ular foliation (cf. [26, Theorem 1V.2.2]. The corresponding germ of foliation is a
transversely affine and transversely hyperbolic on the dement of the singular
point. Moreover, the canonical bundle of the foliation oe ttanonical model is
neverQ-Cartier.

When compared with the theory for projective surfaces, i(8jrof the above Theorem
is quite surprising. The fact that the canonical bundle isen®-Cartier is a clear obstruc-
tion to the base point freeness [df ~“"| and for the finite generation of the canonical
algebra of the foliation. It turns out that this is the onlysthction, cf. [26, Corollary
Iv.2.3].

2.6. Kodaira dimension zero.

Theorem 2.18. Let F be a relatively minimal foliation on a smooth projective fawe X
with v(F) = 0. Letw : X — Z be the contraction of the negative part&fr, i.e. 7, F is
a nef model fotF. Then there exists a smooth projective surfecand a quasi-étale cyclic
coveringp : Y — Z of degreei(F) such thatp*r, F is a foliation with trivial canonical
bundle. In particularkod(F) = 0.

The resulting surfac¥ belongs to the following list:

(1) Product of a hyperbolic curve and an elliptic curve;

(2) Abelian surfaces;

(3) Projective bundle over an elliptic curve;

(4) Rational surface.
Consequently the kit surfacé has Kodaira dimensionh, 0, or —oco according to whether
Y fits in case (1), (2), or (3)/(4). One can also determine thssibdities for the index of
F. Thisis done in[[29]. There it is shown that

i(F) € {1,2,3,4,5,6,8,10,12}
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whenF has Kodaira dimension zero.

2.7. Kodaira dimension one. The classification of foliations of Kodaira dimension one
is essentially due to Mendes, seel[27, Theorem 3.3.1]

Theorem 2.19. Let F be a relatively minimal foliation on a smooth projectivefaue X .
Assume thattod(F) = 1 and letf : X — C be the litaka fibration of . If F coincides
with the foliation defined by then f is non-isotrivial elliptic fibration. OtherwiseF is
completely transverse to a general fikéiof f and we have the following possibilities:

(1) The genus of' is zero andF is a Riccati foliation; or
(2) The genus of' is one andF is a turbulent foliation; or
(3) The genus of' is at least two andF is an isotrivial fibration of genus at least two.

2.8. Non-abundant foliations. The most striking difference between the birational clas-
sification of projective surfaces and the classificationamikrone foliations in dimension
two is the existence of foliations having canonical bundithwumerical dimension one
and negative Kodaira dimension. This phenomenon is réstirio a rather special class of
foliations as pointed out by the next result.

Theorem 2.20. Let F be a relatively minimal foliation on a smooth projectivefsiwe X .
If the numerical dimension of does not coincide with the Kodaira dimensionfothen
1) v(F) =1,
(2) kod(F) = —o0,
(3) X is the minimal desingularization of the Bayle-Borel contjjmation of an irre-
ducible quotitent ofl x H, and
(4) Fisinduced by one of the two natural fibrationsnx H.

Arguably this result constitutes the hardest part of thesifecation of foliations. The
known proofs of this result rely heavily on Brunella’s pkubharmonic variation of the
Poincaré metric and where obtained by Brunella and McQuitiaa collaborative effort.

In Sectiori 6 we will carry out a classification of foliatiomsterms of another birational
invariants. It relies heavily on the classification of ftilles on surfaces according to their
Kodaira dimension but it does not need its full power. In jgatar, all that we need to
know about non-abundant foliations in contained in theofsihg Lemma.

Lemma 2.21. Let F be a relatively minimal foliation witly(F) = 1 andkod(F) = —oc.
Thenh!(X,0x) = 0 and P - N3z = P - Kx > 0 whereP is the positive part of the
Zariski decomposition oK =.

Proof. If h'(X,0x) = hY(X, Q%) # 0 then the restriction of a holomorphieform to
the leaves ofF either vanishes identically or gives rise to a non-zeraseadf K ». Thus if
kod(F) = —oo we obtain thafF factors through the Albanese mapXfand is a fibration.
Hencekod(F) > 0 contrary to our assumptions. Tha§(X, Ox) = 0.

Sinceh!(X,0x) = 0 we obtain thaty(Ox) > 1. Let L = Ox(mP) wherem is a
sufficiently divisible positive integer. By Riemann-Roch,

X(£) = x(Ox) +1/2(m?*P?> —mP - Kx)

If P-Kx < 0theny(L£) > 0. Thush®(X, £)+h*(X, £) > 0. Butif m is sufficiently large
thenK x ® £* is not pseudoeffective and consequenfly X, £) = h%(X, Kx ® L*) = 0.
It follows thath? (X, Kx*™) = h(X, L) > 0, contradictingsod (F) = —oo. O
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3. EFFECTIVE THRESHOLD AND ADJOINT DIMENSION

In this section we define the effective threshold and theiatfimension of a foliation
on a smooth projective surface and prove their birationadriance.

3.1. Effective threshold.

Definition 3.1. Let F be a foliation with canonical singularities on a smooth grciive
surfaceX. If the canonical bundle aF is pseudo-effective then we define the effective
threshold ofF, eff(F), as the largest € R>o U {oo} such thatKr + e N3 is pseudo-
effective. IfK # is not pseudo-effective, then we e§{F) = —cc.

Example 3.2. Let F be a very general foliation oi? of degreed. It is well known
that 7 has reduced, and in particular canonical, singularitiesedall that the degree of
F is defined as the number of tangencies betwgeand a general line. In this case
Kr = Op2(d — 1) and N5 = Op2(—d — 2). If d = 0 thenK r is not pseudoeffective. If
insteadd > 1 then K = is pseudo-effective and

d-1

S d+2]

The reader should notice thaff(F) < 1 for every foliation oriP2.

eff (F)

This is by no means a coincidence sin€g = Kr + N3 and foliations on a surface
X of negative Kodaira dimension will always haw#(F) < 1 as Kx is not pseudo-
effective. If insteadX has non-negative Kodaira dimension th€r is pseudo-effective
and consequenthff (F) > 1 for every foliation onX.

Similarly, one sees thatff(F) = oo if and only if both K and N3 are pseudo-
effective. Foliations with pseudo-effective conormal Blenhave recently been classified
by Touzet,[[36]. They fit in one of the following descriptions

(1) after a finite étale coveF is defined by a closed holomorphigorm; or

(2) there exists a morphism froffl to a quotient of a polydis®™ by an irreducible
lattice andF is the pull-back of one of the: tautological foliations on the poly-
disk. In particularF is transversely hyperbolic.

Notice that the dimension of the ambient manifold is not ssadly equal to the dimension
of the polydisk.

Remark 3.3. Using the identityX x = Kr + N we can write

g
Kr+eNr=(1-¢)(Kr+ 1—_€KX),

whene # 1.
Wheneff (F) is small, we will often work withK = + K x as that is more convenient.
3.2. Adjoint dimension.

Definition 3.4. Let F be a foliation with canonical singularities on a projectisarface
X. Consider the pluricanonical maps
Omm i X --» PHY(X, Kz®™ @ N39")*

form > 1,n > 1. The adjoint dimension of, denotechdj(F), is the maximal dimension
of the image of these mapsiff(X, K ®™ @ N:®™) = 0 for everym, n > 1 then we set
adj(F) = —o0.
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Definition 3.5. Let F be a foliation with canonical singularities on a projectisarface
X. The numerical adjoint dimension &%, adj,um(F), is equal to—oc if eff (F) < 0 and
equal to the maximal numerical dimensionfof + e N for ¢ € (0, eff (F)) otherwise.

Of courseadj(F) < adjuum (F).

3.3. Birational invariance. The significance of the concepts of effective threshold dnd o
(numerical) adjoint dimension for the purpose of the binadil classification of foliations
on surfaces is assured by the next proposition.

Proposition 3.6. Let (X, F) and (Y, G) be two birationally equivalent foliations. IF
and G have at worst canonical singularities theft (F) = eff(G), adj(F) = adj(G)
andadjpum(F) = adjuum(G). Furthermoreh®(X, K" @ N:¥™) = hO(Y, Kg®" ®
N3®™) for everyn, m > 0.

Proof. The proof is standard. Since we can choose a foliatiéy#{) on a smooth pro-
jective surfaceZ dominating both(X, F) and (Y, G), there is no loss of generality in
assuming the existence of a birational morphism (X, ) — (Y,G). Indeed, we can
even assume (and will) thatis the blow-up of a poinp € Y. Let E be the exceptional
divisor.

We will first prove thaeff(F) = eff(G). First notice thaf(g +<cNg = 7. (K +eN5).
Therefore ifK 7 + ¢ N3 is pseudo-effective then the same holds trueifgr+ ¢ Ng. This
shows thaeff(G) > eff(F). To prove the converse inequality, we will need to use that
G has canonical singularities. Singeis the blow-up of a point by assumption, we have
that Kr — 7*Kg = aF for somea € {0,1}. SinceKx — n*Ky = E we also have that
N3—m*N§ = (1—a)E, and consequentli{ r+e Nz = 7" (Kg+eNg)+(a+e(1—a))E.
Therefore, ifKg + N is pseudo-effective then the same holds trueifer + e Nx. We
conclude thatff(G) < eff(F) and the equality between the effective thresholds follow.
The same argument also shows the equality,,, (F) = adjnum (G)-

To conclude the proof of the proposition it suffices to vetfifgth? (X, K;®”®N}®m) =
oY, Kg®" ® N§®m) for everyn, m > 0. Once these equalities are proved, the equality
adj(F) = adj(G) follows. Let us fixn, m > 0. From the isomorphisik 7" @ N+ =
™ (Kg®" @ N;®™) ® Ox((na +m(1 — a))E) we deduce the short exact sequence

0 — 7 (Kg®" @ NG®™) — Kz®" @ N3*™ — Op((na+m(1 —a))E) = 0.
Sinceh?(E, Og((na + (1 — a))E) = 0, we obtain the sought identity.
O

3.4. Convention. For an arbitrary foliationF on a smooth projective surfaceé we de-
fine the adjoint dimension, the numerical adjoint dimensaon the effective threshold
as the corresponding quantity for any foliatiGrwith canonical singularities birationally
equivalent taF.

4. SNGULARITIES

4.1. Adjoint discrepancy and e-canonical singularities.

Definition 4.1. Let F be a foliation onX and letw : Y — X be a birational morphism.
Denote by the pull-back ofF underr. If E is an exceptional divisor of then the adjoint
discrepancy ofF along E is the function

a(F,E):[0,00) — R
t— ordp(Kg +tNG — (" Kr +tn"Nx)).
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Definition 4.2. Let F be a foliation onX andes > 0 a real number. A point € X is
e—canonical if and only if the adjoint discrepancyBfalong any divisorE overz satisfies
a(F,E)(t) > 0for everyt > ¢. The foliationF is said to have—canonical singularities
if every pointz € X is e—canonical. The smallestfor whichz € X is e—canonical will
be called the canonical threshold #fat .

Proposition 4.3. Let (X, F) and (Y, G) be two foliations on smooth projective surfaces.
Assume thaf and G are birationally equivalent. If bottF and G havee-canonical sin-
gularities, then for any pair of integers, m satisfyingm/n > ¢ we have that

RO(X, K" @ N:®™) = hO(Y, Kg®™ @ NG©™).
In particular, if eff (F) > e theneff (F) = eff (G).
Proof. The proofis completely analogue to the proof of Propos[Hdh O

Remark 4.4. We point out that’-canonical singularities are-canonical for every >
¢’. In particular, canonical singularities are-canonical singularities for every > 0.
Also note that the canonical threshold of a log canonicagsiarity is at mostl /2, i.e.
log canonical singularities are-canonical for every > 1/2. This is a straightforward
consequence of the simple fact that for every divis@xceptional oveX extracted on a
smooth birational surface: Y — X thenordg(Ky — 7*Kx) € Z~o.

Notation 4.5. If p, ¢ > 1 are relatively prime integers then we will write

1
gz[u07u17"'7un]:u0+ 1—
up + ———
' 1

v —
Un

for the continued fraction presentation of their quotient.

Definition 4.6. Letp, ¢ > 1 be relatively prime positive integers and consider the gefm
foliation on X = (C?,0) defined by = pzZ + qya%. Letr : Y — X be the minimal
reduction of singularities ofF, let G be the transformed foliation* 7, and letE' be the
irreducible component of the exceptional divisor whichas @ invariant. We will denote
the order ofKy — n* K x alongE by ¢(p, q) .

Lemma 4.7. Notations as in Definition 416. If we write/q = [ug,u1, ..., u,] then the
following assertions hold true.

(1) = is the composition of exactly’!" , u; blow-ups; and

(2) the order ofKy — 7* K x alongE satisfiesp(p, ¢) > >°7"  u;.

Proof. The key observation is that the reduction of singularities tollows step-by-step
Euclid’s algorithm for the computation @td(p, ).

Assume thap > ¢ and writep/q as a continued fractiofug, u1, . .., u,]. The proof
will by induction on the numbeN = >~ | u;.

If p = ¢ = 1then clearlyN = 1 and the result is obvious in this case. Assyme ¢
and consider the blow-up: Z — X of the origin with exceptional divisoE,. Over the
exceptional divisor we will find two singularities with eigealuesp — ¢, ¢) and(p, g — p).
Since we are assuming that> ¢ then the pair(p, ¢ — p) corresponds to a canonical
singularity while the paifp — ¢, ¢) corresponds to a non-canonical singularity. Observe
that

P=9q_ [up — 1, u1, ..., up]
q
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Assuming that the result is true fof — 1 then the firs part of the statement follows.

To verify item (2), notice that; = s*Kx + Ey. If m: Y — Z is the minimal
desingularization of* F then by induction hypothesisdg(Ky — r*Kz) > N — 1.
Sincer = s o r, we can write

OI‘dE(Ky — W*Kx) = OI‘dE(KY — T*(KZ — Eo))
>ordg(Ky —r"Kz) +ordg(r*Ey) > N .
Then the Lemma follows by induction. O

Remark 4.8. The inequality in part (2) of the Lemma becomes an equalilty fon singu-
larities with eigenvalues of the for(1, ¢). If p andq are both strictly greater than one, at
some intermediate step we will be forced to blow-up at thergetction of two exceptional
divisors and one will get a greater order at the end. For imste, ifp/q = [ug,u1] then
order of Ky — m* K x along the last exceptional divisor is(p, ¢) = (u; + 1)ug — 1.

As a consequence of the above description we are able tootbdras-canonical sin-
gularities for small values af > 0.

Proposition 4.9. Let F be a germ of foliation oriC?, 0). If the canonical threshold of
at0 is strictly less thari /4 then0 is a log-canonical singularity.

Proof. Let v be a generator df'=. Assume first that the linear part ofis zero. Ifr :
Y — (C?,0) is the blow-up of the origing = 7* F and E is the exceptional divisor then
Kg = 7" Kr —akE,wherea > 1. On the other hand/; = 7*Nx + (a + 1) E. Therefore,
if ¢ < 1/2 then the origin is not-canonical.

Assume now that the linear part ofis non-zero but nilpotent. We will use the de-
scription of the resolution process of this kind of singitias presented iri [5, Chapter 1,
proof of Theorem 1]. If we blow-up the origin then we obtairlyoane singularity over
the exceptional divisor which is invariant by the transfedoliation. This new singular-
ity can have zero linear part or non-zero but nilpotent limeat. Let us analyze the two
possibilities. Start with the case where the linear parei®zand letr : Y — (C2,0)
be the composition of the two obvious blow-ups. As before viksgt G = 7 « F and
will let £, E5 be the two irreducible components of the exceptional diviger with £,
corresponding to the last blow-up. Notice tHég = K — aF, for somea > 1 and
N§ = Nx+ Ey + (a+2)E»>. Hence ife < 1/3 then0 is not ane-canonical singularity.
Let us now deal with the second possibility. If the blow-upadfilpotent singularity with
non-zero linear part is still a singularity with these twoperties then one further blow-up
gives rise to a singularity with trivial linear part. Let now: Y — (C2,0) be the compo-
sition of the three obvious blow-ups, and Iéf, F», E'5 be the irreducible components of
the exceptional divisor numbered according to the ordeppéarance. If we s¢t = 7*F
thenKg = 7" Kr — aE3 for somea > 1 andN§ = n*Nx + Ey + 2E> + (a + 3)Es.
Thus ife < 1/4 then0 is not as-canonical singularity.

Therefore ife < 1/4 then the linear part of is non-nilpotent and we can apply [26,
Fact 1.1.8] to conclude thatis a log-canonical singularity of. O

Corollary 4.10. Let F be a germ of foliation oriC2,0) defined by a germ of vector field
v. If 0 < e < 1/4 then0 is ae-canonical singularity ofF if and only if the linear part of
v is non-nilpotent and one of the following holds:
(1) the singularity ofv is canonical; or
(2) the singularity ofv is not canonicaly is analytically conjugated tpxa—am + qya%
with p, g relatively prime positive integers, angp, ¢) > %
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Proof. Propositio 4.0 implies that the linear part ©fis non-nilpotent. If0 is not a
canonical singularity then by [26, Fact I.1.9] we know thas analytically conjugated to
pr + qy for suitable relatively prime positive integepsg. If 7: Y — X = (C2,0)
is the minimal reduction of singularities &f, E denotes the last exceptional divisor and
G = m*FthenKg = 7*Kr — E. Therefore the adjoint discrepancybfalongE is (cf.
Remark3.B)

t

a(F, B)(t) = (1~ t) ordp(Kg + —— Ky — " (K7 + %KX)) _

=(1-t)(-1+ %s@(p, q))-

Since the adjoint discrepancy is clearly non-negative glalh the other divisors in the
minimal resolution it follows thab is ane-canonical singularity if and only ip(p, ¢) >
l—¢

==, O

€

4.2. Example: log canonical foliations on the projective plane.For a foliationF on
the projective plane with log-canonical singularities aas easily verify the following
assertions.
(1) If d = deg(F) > 4 theneff (F) = 4.
(2) If d = deg(F) = 3theneff(F) = 2/5 unlessF has radial singularities.
(3) If d = deg(F) = 2 theneff(F) = 1/4 unlessF has radial singularities or
dicritical singularities of typé1, 2).

One could try to pursue a case-by-case analysis in orderotada an explicit lower
bound for the positive effective thresholds of foliatiofglegree two and three with log-
canonical singularities. We will show later in Sectidn 7tithe positive effective thresholds
of foliations varying in an algebraic family do not accuntelat zero. Unfortunately, our
proof is not effective and, a priori, the bound might dependte family.

5. NON-ISOTRIVIAL FIBRATIONS

5.1. Seshadri constants.Our original motivation to introduce and study the adjoiit d
mension of foliations lies on our poor understanding of thedr system$k " |. When
F is a foliation of general type we are not aware of lower bousnda such that i " |
is not empty. For the linear systerfs ™ @ K x ™| the situation is considerably better.
We can apply the current knowledge on adjoint linear systenubtain effective bounds
onn,m such that K =™ @ K x®"| defines a rational map with two dimensional image.
To be more precise we recall the definition of Seshadri cotstand a pair of funda-
mental results about them.

Definition 5.1. Let £ be a nef line-bundle on a projective manifollandx € X be a
closed point. The Seshadri constaX, £; 2) = ¢(£; x) is the non-negative real number

e(L;z) =max{e > 0| pu*L — e - Eisnef},
wherey is the blow-up ofX at z.

Knowledge of lower bounds of Seshadri constants allowsaduyxce plenty of sections
of adjoint linear systems through the use of Kawamata-Veghvanishing Theorem.

Proposition 5.2. Let X be a projective manifold of dimensienand £ be a big and nef
line-bundle onX. If e(£; z) > n + s thenKx + L separates-jets atz. In particular, if
e(L;x) > n+ 1 then the image dfK x ® £| has dimensiom.
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Proof. This is contained [22, Proposition 5.1.19]. O

Combined with the homogeneity of Seshadri constantss (£°™; x) = me(L, z) for
any integern > 0, this result reduces the problem of finding sections of adjlimear
systems to the one of providing a lower bound for Seshadstemrts. In this direction we
recall the main result of [15].

Theorem 5.3. Let £ be a nef and big line-bundle on an irreducible projectiveiggr X
of dimensiom. Thene(£;x) > 1/n for all z € X outside a countable union of proper
closed subvarieties.

5.2. Producing sections.We can, rather straightforwardly, apply the results juston
duced to produce sections of the linear systéfis+ n K x| for suitablen.

Proposition 5.4. Let F be a foliation with canonical singularities on a smooth grciive
surface. Ifkod(F) = 2 then the linear systenix + 7i(F)K x| defines a rational map
with two dimensional image.

Proof. Suppose first thatod(F) = 2. Theni(F)Kr = i(F)P + i(F)N is a sum of

a nef and big divisor with an effective divisor. Theorém| 5®lies that the Seshadri
constant of (F) P is at leastl /2. Therefore we can apply Propositionl5.2 to guarantee that
|Kx + 7i(F)P| defines a rational map with two dimensional image. Then theedzolds
true for|Kx + 7i(F)K x|, as7i(F)N is an effective Cartier divisor. O

The proposition above is certainly not optimal. There aperaany refinements of the
results of Sectiof 51 in the literature that lead to betterstants. See for instande [14]
and references therein. The real question underlying ttidanbsue here is whether or not
one can provide universal bounds which do not depend on thexiaf the foliation. The
reader will find a more precise formulation of this questioProbleni 6.B.

5.3. Bound for the index of hyperbolic fibrations. In order to use the results above to
provide explicit bounds for the degree of leaves of nonrigial hyperbolic fibrations we
need to obtain bounds for the index of the foliation.

Lemma 5.5. Let F be a relatively minimal foliation on a smooth projective feuwe X .
AssumeF is defined by a fibratiorf : X — C and that the general fiber of has genus
at least two. Ifl" is an irreducible curve invariant by which intersects the support of the
negative part of = and it is not contained in it (i.€T is a tail) then one of the following
holds:

(1) P-T = 0 andT intersects exactly two connected components of the support
N, both of them of orde®; or
(2) P-T> 4.

Proof. It follows from Lemmd 2.1} that

ko P
51 P-T=Kz -T-— — = —x(T k— —
(5.1) * ;0 X(T) + s+ ;O

wheres is the number of singularities 6f onT" which do are not contained in the support
of N, [5, Chapter 2, Prop. 3].

AssumeP - T = 0. If s = 0 then we have the following possibilities férando =
(01,...,01): k = 3ando = (3,3,3); ork = 3ando = (2,3,6); ork = 4 and
o = (2,2,2,2). In all cases the whole fiber containgT is the union oft Hirzebruch-

Jung strings joined by a single common @Biandy (F) = x.(T) = 0. Sincex(F) < 0
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by assumption, we get th&t - 7' > 0 contradicting our assumption. The only remaining
possibility iss = 1, k = 2 ando = (2, 2). Item (1) follows.

If P-T > 0thenitis an elementary and well known fact that the lowemabior (5.1)
is equal tol /42 and is attained by = 0, k = 3, ando = (2,3, 7). O

Proposition 5.6. Let F be a relatively minimal foliation on a smooth projective faue
X. AssumeF is defined by a fibratiorf : X — C and that the general fiber of has
genusy > 2. Then

i(F) < (42(2g — 2))!.

Proof. Let F = 5 m;C; be afiber off and letK > = P+ N be the Zariski decompaosition
of K. If C; is a tail then, according to Lemmiab.5, either the Hirzebrilehg strings
intersecting it have order two af - C; > 1/42. In the later case we get that, <
42(2g — 2) sinceP - F = Kr - F = —x(F) = 2g — 2. Moreover, Lemma2.14 item
(b) implies that the least common multiple of the orders @&f iirzebruch-Jung strings
intersecting’; dividesm; < 42(2g — 2). The Lemma follows. O
5.4. Boundness of fibers of non-isotrivial fibrations of a given geus. TheoreniA of
the Introduction will follow rather easily from the more g&al result below.

Theorem 5.7. Let F be a foliation with canonical singularities on a projectiserfaceX .
Suppose thaf is a fibration with general fibeF of genusg. If kod(F) = 2 (i.e. the
fibration is a non isotrivial hyperbolic fibration) then forery big and nef divisoH we
have

F-H<M(Kx +7i(F)Kr) - H,
whereM = M (g) satisfies the following inequality

M <2(Ti(F) +1)(29g —2) < (7(42(29 — 2))! + 1) (49 — 4)..

Proof. Let £ = Kx ® K®7'7) and F be a general leaf oF. If m > 1 is an integer
thenZ™ = K™ (777" 0n the one hand, Riemann-Roch Theorem implies that

hO(F, L") = m(Ti(F) +1)(2g —2) — g + 1.

On the other hand, since according to Theorerh 5.3 the linysters|£| defines a rational
map with two dimensional imag&’ (X, £2™) > ("/?). If we take M = 2(7i(F) +
1)(29(F) — 2) thenh(X, £L5M) — hO(F, LGY) > (M%) = M(Ti(F) +1)(29 - 2) +
g — 1 = g. In particular, there exists a non-zero sectioof L& vanishing onF.

If H is an arbitrary big and nef divisor oX then the intersection of' with H is
bounded by the intersection of the divisor cut outdowith . But the later intersection
number is nothing but/ (K x + 7i(F)Kr) - H. Propositio 516 then concludes the proof.

O

5.5. Proof of Theorem[A. Let F be a foliation ofP2. Notice that its canonical bundle is
isomorphic toOp: (deg(F) — 1). Letw : X — P? a birational morphism such that all the
singularities ofg = =*F are canonical. If we také&l = 7*Op=(1) then the degree of an
algebraic leaf_ of F is given by

deg(L)=H -n*L=H-L,
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whereL is the strict transform of.. We can thus apply Theordm 5.7 to deduce that
deg(L) < (7(42(29 —2))! + 1) (49 — 4)(Kx + Ti(F)Kr) - H
< (7(42(29 — 2))1 4+ 1) (=3 + 7(42(2g — 2))!(deg(F) — 1))

2
< (7(42(29 - 2))!) deg(F).
This concludes the proof of Theorén A. O

5.6. Log canonical foliations onP? of high degree. The bounds appearing in Theorem
[5.7 are ridiculously large and far from optimal. Proposifin8 below combined with the
results presented in Sectibh 7 (notably Theokerh 7.5) inglitteat the dependence &f
on g in Theoren[ 5.7 should be at worst linear gn The results of[[25] also indicate
the existence of such linear bounds which are not univergadiépend on the family of
foliations in question.

Proposition 5.8. Let F be a foliation with canonical singularities on a projectisarface
X. Assume thafF is a fibration with general fibeF' of geometric genug > 2 and that
HY(X,Kr®*® N}®b) admits three algebraically independent sections for same0
andb > 0. Then for every nef divisail we have

F-H<2a29—-2)(aKr+bNx) - H.

Proof. Let £ = K7%* ® N}®b andF be a general leaf of. If m > 1 is an integer then
L7 = K™ On the one hand, by Riemann-Roch Theorem

RO (F, E%,m) =ma(29 —2)—g+ 1.

On the other hand, our assumption Bl (X, £) implies thath®(X, £&™) > (™1?). If
we takem = 2a(2g — 2) then

2a(2g g 2) + 2> — 20229 — 2>+ (g — 1)

=6a(g—1)+g>0.

hO(Xv £®m) - hO(Fa ‘C%«"m) > <

In particular, there exists a non-zero sectioof £%2%(29-2) vanishing onF.

If H is an arbitrary nef divisor o then the intersection of" with H is bounded
by the intersection of the divisor cut out laywith H. But this intersection number is
2a(2g — 2)(aKr +bN%) - H. O

In the case of foliations of the projective plane with log eaital singularities and of
degree greater or equalipwe can actually obtain bounds that are better than linéagus
a simple variation of the argument used to prove PropogHi@n

Theorem 5.9.Let F be a foliation oriP? of degreel > 5. Assume thaF has log canonical
singularities and admits a rational first integral with geaéfiber of geometric genus
g > 2. If F'is a general leaf ofF then

4(29 - 2)
deg(F) < [7] d—4).
g(F) < |77 |@-4)
Proof. Since the singularities of arec-canonical for = 1/2 (see Remark4l4) we have
that the dimension of the vector spadé8(P?, K®*™ @ N:®™), m > 0 is unaltered
after replacingF by a model with at worst canonical singularities.
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Let F' be a general fiber of the rational first integral/Bfand consider the real valued

function P
flm) = (m( _2 )+ )—2m(2g—2)—g—|—1.

Its values on positive integers correspond to the diffeedri¢P?, K »®*™ @ N£&™) —
hO(F, K£*™), where F' is the normalization oft". Since f(4(2g — 2)/(d — 4)?) =
(dg + 8g — 12)/(d — 4) which is clearly positive and moreover the derivativefoat-
isfiesf/(4(2g — 2)/(d — 4)?) = (3/2)d + 4g — 10 > 0, it follows that if m is the smallest
integer greater that(2g — 2)/(d — 4)? then there exists a section Bf**" @ N1 ~
Op2(m(d — 4)) vanishing identically orF'. The Theorem follows. O

As already mentioned in the Introduction, this Theofenh Bffhes a classical result of
Poincaré, se¢ [32, pages 169 and 176] and [30, Chapter 7lj@gprb4].

6. CLASSIFICATION VIA ADJOINT DIMENSION

In this section we apply the results recalled in Secfibn 2ktaio a classification of
foliations on surfaces according to their adjoint dimensio

6.1. Kx-negative extremal rays. Recall that for a smooth projective surfa&ethe K x -
negative extremal rays are spanned by numerical classasmfal curves of self-intersection
either—1,0 or 1. The first case corresponds to the exceptional divisor obtbe-up of

a smooth point, the second to a smooth fiber Bf ebundle, while the last one is just the
class of a line irfP2.

Lemma 6.1. Let F be relatively minimal foliation with pseudo-effectie- on a smooth
projective surfaceX, and letK» = P + N be the Zariski decomposition &f ». Assume
there exists a x—negative extremal curv€ C X and P - C = 0. Then the Kodaira
dimension ofF is either0 or 1. Moreover, ifkod(F) = 1, then the image of’ in the

canonical modet : X — Z of F is proportional tor. K .

Proof. If C is an extremal ray witlC? > 1 then Hodge index theorem implies thatis
numerically zero. Theorem 2118 impliksd(F) = 0.

If insteadC? = 0 then P is numerically proportional to a non-negative multiple®f
and we deduce that eithefF) = 0 or v(F) = 1. The case/(F) = 0 follows as before.

If v(F) = 1 and sinceP is numerically proportional to an effective divisor, we apply
Theoreni2.20 and Lemria2]21 to deduce kel F) = 1.

From now on assume thét? = —1 and letr : X — Y be the contraction af into
its canonical model. I€ is not contracted by then writer*7,.C = C + _ a; E; where
a; > 0 and theF; arer-exceptional divisors. Thus,P - n,C = P - m*n,C = P - C
sinceP is the pull-back of a nef divisor frori” and hencer-exceptional curves intersect
P trivially. As we are assuming - C = 0 we deduce from Hodge index Theorem that
either P is numerically trivial, or thatr,C? = 0 and~, P is numerically equivalent to a
positive multiple ofr,.C. Hencev(F) € {0,1}. As before, we obtain that in both cases
v(F) = kod(F).

Suppose now that’ is contracted byr. In this caseC is F-invariant according to
Theoreni217. Sinc€? = —1 and.F is relatively minimal we have that(F,C) > 3.
Notice thatKr - C = —2 4+ Z(F,C) and, as we are assumirdg- C = 0, according
to Lemma 2.I4 we also have thatr - C = Zle 1/0; whereo; are the orders of the
Hirzebruch-Jung strings intersectiag Then we must have = 2 ando; = 0y = 2; or
k = 3 and(o1,092,03) € {(2,3,6),(3,3,3)}; or k = 4 and (o1, 02, 03,04) = (2,2,2,2).
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If we contract the Hirzebruch-Jung strings intersectifigve obtain that the direct image
of C has self-intersectior 0, cf. [26, Remark 111.2.2]. Thug’ cannot be contracted by
contrary to our assumption. O

6.2. Kodaira dimension zero.

Lemma 6.2. Let F be arelatively minimal foliation with pseudo-effectidg- on a smooth
projective surfaceX. If 7 : X — Z is the contraction of the negative partifr (i.e. 7. F
is a nef model ofF) and we writeK x + A = 7* Kz theni(F)N — A is effective.

Proof. If E1, ..., E} are the exceptional divisors afthenA is defined by the relations
A-BEi=-Kx-E; =2+E?.

Notice that2 + E? < 0 for everyi, while2 + E? > (E; + - - - + Ey) - E; for everyi and
the latter inequality is strict wheh; is either a handle or a tail in a Hirzebruch-Jung string.
Therefore by[[211, Corollary 4.2] the coefficientsAflie in [0,1). SinceN is effective the
lemma follows. O

Proposition 6.3. Let F be a relatively minimal foliation of Kodaira dimension zam a
smooth projective surfac¥. If 7 : X — Z is the contraction of the negative part of the
Zariski decomposition oK = and (X, A) is the pair satisfyingkx + A = #*K then
the adjoint dimension and the numerical adjoint dimensibA coincide with the Kodaira

dimension of X, A). Moreover, whendj(F) > 0 theneff(F) > (77 > 13-

Proof. Let Kx = P + N be the Zariski decomposition df . Since we are assuming

that F has Kodaira dimension zero we have tRat 0. Letw : X — Z be the contraction
of the support ofV and notice that we can write

Kr+eKx =en™Kz+ (N —eA).

Assume that is rational and satisfies < 1/i(F). Lemmd®&.R implies thatV — cA)
is effective. Hence for any sufficiently divisible,h°(X, k(en* Kz + (N — €A))) >
(X, kn*Kz) = h°(Z,kKz). Since every irreducible componehtof the support of
(N — eA) is m-exceptional we also have the opposite inequality. Thisvshthat the
Kodaira dimension of is equal to the adjoint dimension &f.

To verify that the adjoint dimension and the numerical attjdimension ofF coincide
first observe that every irreducible componénof of N — A satisfiest*Kz - E = 0.
Therefore the numerical dimension&fr + ¢ K x coincides with the numerical dimension
of Kz. As the numerical dimension &f ; and the Kodaira dimension ¢X, A) coincide,
the Proposition follows. O

6.3. Kodaira dimension one.

Proposition 6.4. Let F be a relatively minimal foliation of Kodaira dimension one a
smooth projective surfac&. Letg be the genus of a general fiber of the litaka’s fibration
of . If g = 0 thenadj(F) = adjyum (F) = —oo. Otherwise

>

T4i(F)+ 1

Proof. Let f : X — B be the litaka’s fibration ofF. Assume first thay = 0. Then for a
general fiberF' of f we have thatr - FF = 0andKx - F = —2. HenceKr + eKx is
not pseudoeffective for eveey> 0. It follows thatadj(F) = adjpum (F) = —o0.
Assume now thag > 1. Let K = P + N be the Zariski decomposition &€ » and let
w: X — Z be the contraction of the negative part/6j-. Denote byg the direct image of

adj(F) = adjpum (F) = min{g, 2} and eff (F)
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F. We claimthatti(F)Kg+ K 7 is nef. Suppose not, and |[Btbe an effective divisor such
that(4i(F)Kg+Kz)-D < 0. By the Cone Theorem we can numerically decomposes
asumy_ a,;C; + R whereR is a pseudo-effective divisor and satisfi€s - R > 0; C; are
K z—negative extremal rays satisfyifg< —K 7 - C; < 4 anda; € R. Therefore, there
exists ak z—negative extremal ra¢’ such tha{4i(F)Kg + Kz)-C < 0. If Kg-C =0
then Lemmd 611 implies thaf' is numerically proportional td<g. Consequenthy is
proportional to a general fiber gf o 7! and must interseck’ z non-negatively. Thus
Kg - C > 0. Sincei(F)Kg is Cartier we deduce thati(F)Kg - C > 4. It follows that
also in this casé4i(F)Kg + Kz) - C > 0. We conclude thati(F)Kg + Kz is nef.
Consequently we obtain that

1 1 1
——Kx =7 K, —K N-—-——7A
nE) X" < ST Z>+< 1i(F) )
whereA is defined byK x + A = n* K. Since the singularities of are klt, it follows

that vV — ﬁA is effective and thak r + ﬁKX is pseudo-effective. Thust(F) >
1

(6.1) Kr+

1i(F)+1°
It remains to determine the adjoint dimension/f For that, notice tha{{6.1) is the

Zariski decomposition ofX = + ﬁl{x. Wheng = 1, sinceKx is trivial when re-

stricted to the general fiber gf it follows that the positive part™ (Kg + ﬁKZ) is
numerically proportional a general fiber and also that tlesists an a effectiv&-divisor
D on B such thatr* (Kg + ﬁKz) = f*B. Henceadjnum (F) = adj(F) = 1.

To prove the claim fory > 2 it suffices to verify thatt* (K¢ + 5KZ)2 > 0 for e
sufficiently small. If this were not the case thély - Kz = 0 andKz - Kz = 0. Hodge

index theorem would imply that* K~ is proportional to a general fibgt But this is not
possible since* Kz - F' = 2g — 2 > 0 for any fiberF of f. O

6.4. Kodaira dimension two and non-abundant foliations.

Lemma 6.5. Let F be a relatively minimal foliation with canonical singuléigs which is
not a fibration by rational curves. Lét » = P + N be the Zariski decomposition &f =.

If kod(F) ¢ {0, 1} thenP + 5705 Kx is nef.

Proof. Aiming at a contradiction, le€ be a curve such thdP + 1/3i(F)Kx) - C < 0.
As in the proof of Proposition 6.3 we can assume tfias a K x-negative extremal curve
and thereford(y - C' € {—3,—2,—1}. By LemmdG&.1LP - C > 0. Hence

gives the sought contradiction. O

Proposition 6.6. Let F be a relatively minimal foliation with canonical singulégs and
pseudo-effective canonical bundlektid(F) ¢ {0, 1} thenadjnum (F) = adj(F) = 2.

Proof. Let Kx = P + N be the Zariski decomposition df . Sincekod(F) # 0 we
have that/(F) > 1. Lemmal6.b implies thaP + K x is nef fore sufficiently small.
If F is not of adjoint general type thei® + £ K x)? must vanish identically. It follows
P?2=P.Kx = Kx? = 0. Lemmd2.2lL implies thatod(F) > 0. Since this is excluded
by assumption, the result follows. O
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6.5. Characterization of rational fibrations (Proof of Theorem B)). One immediate
consequence of the classification of foliations accordintheir adjoint dimension is the
characterization of rational fibrations stated in the ldtrction as TheoremlB.

Theorem 6.7. Let F be a foliation with canonical singularities on a smooth give
surfaceX. ThenF is a rational fibration if and only i’ (X, Kz®™ @ N:®") = 0 for
everym > 0 and everyn > 0.

Proof. If adj(F) > 0thenh?(X, Kz®™ @ N3¥™) # 0 for somem, n > 0 by definition.
If insteadadj(F) = —oo andF is not a fibration by rational curves théefiis either a
finite quotient of a Riccati foliation of Kodaira dimensioarn or F is a Riccati foliation
of Kodaira dimension one. In both casé¥ X, Kz®™) = 0 for somem > 0. O

For foliations on smooth surfaces of Kodaira dimengiar 1, 2°(X, K®™) > 0 for
somen betweenl and12, see[[31] and[[11, Section 4]. It is a simple matter to obtain
effective non-vanishing df’( X, K ®" @ N+®™) for foliations.F of adjoint general type
as functions of their indeX.F). This is what we did in the proof 6f 5.4 whei{F) = 2.
The real question here is if one can do that that regardletbeadhdex of the the foliation.

Problem 6.8. Find universal bounds ofn,m) € Z~q X Z~ in order to ensure the non-
vanishing ofl®(X, K®™ @ N+%") for foliations of adjoint general type.

For bounded families of foliations, the results of Secfibmly the existence of bounds
depending on the family.

7. VARIATION IN MODULI

7.1. Families of foliations. We start by spelling out the definition of family of foliated
surfaces.

Definition 7.1. Letr : 2" — T be a family of smooth projective surfaces, i\%¥. andT
are irreducible complex manifolds andis a proper submersion with projective surfaces
as fibers. A family of foliations parametrized Byis a foliation.# of dimension one on
2" which is everywhere tangent to the fibersroff .27, T', # and.# are all algebraic then
we say that# is an algebraic family of foliations.

Notice that in the definition above we do not impose any caomdion the nature of
singularities of.%, contrary to what is done in[4]. Also when the dimensiorilbfs at
least two it may happen that some fibersradre contained in the singular set.&f.

It is useful to think of an algebraic family of foliations @anetrized byl" as a foliation
defined over the function fiel@ (7). Algebraic properties of a very general memiggrof
the family — like existence of invariant algebraic curvedianal first integrals, transversely
projective structures — are displayed already when oneiderssthe foliation as defined
over C(T). Also the Kodaira dimension (resp. the adjoint dimensionjhe foliation
defined overC(T') coincides with the Kodaira dimension (adjoint dimensiohposery
general member of the family.

7.2. Partial reduction of singularities for families. One of the sources of difficulties of
applying birational techniques to understand the behadfidhe plurigenera in families
of foliations comes from the fact that canonical singuiasitare not stable in the Zariski
topology, i.e. the set of foliations with at worst canonisialgularities can fail to be Zariski
open as the family of foliations oft? parametrized byC and defined byrdy — tydx
shows. In this family the singularity at the origin is canzadiif and only ift ¢ Q.. Thus
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a very general foliation in the family has canonical singititss, but the set of foliations
with non-canonical singularities is Zariski dense. Thipleasant situation can be avoided
if instead one consideescanonical singularities far > 0.

Lemma 7.2. Let .%# be an algebraic family of foliations parametrized by an &igec
varietyT. If 0 < e < 1/4 then the subset &f corresponding to foliations with isolated
ande-canonical singularities is a Zariski open subseflof

Proof. This is a simple consequence Corollary 4.10. If a singylasinots-canonical,
0 < e < 1/4, then either its linear part is nilpotent or the singulaistjormally equivalent
to one of finitely many singularities of the form;% + qya% with p, ¢ relatively prime
positive integers satisfying(p, ¢) < = (see Definitio 4)6 for the meaning @j. Since
both conditions are clearly closed the lemma follows. O

Proposition 7.3. Given an algebraic family of foliatior# parametrized by an algebraic
variety 7' and a real numbee > 0, there exists a Zariski open subgétC 7 and a
family of foliations¥ on%" — U obtained from% ; by a finite composition of blow-ups
over (multi)-sections such that for every closed poiat U, the foliation¥; has at worst
e-canonical singularities.

Proof. First consider# as foliation defined ove€(T") and apply Seidenberg’s Theorem
to obtain a foliation ove€(T") with reduced singularities. Then restrict to a Zariski open
subset ofl" in order to guarantee that we still have a family of foliagdn the sense of
Definition[Z.1 and apply Lemnia 4.2 to conclude. O

7.3. Families of foliations of negative adjoint dimension.Foliations of negative adjoint
dimension also behave better in families compared to foliatof negative Kodaira di-
mension.

Lemma7.4. Let(r : 2 — T,.%) be an algebraic family of foliations. If for a very gen-
eral closed point, € T the foliation.#,, is reduced and has negative adjoint dimension
then there exists a Zariski open sub&et- 7' such that for every closed poititc U the
foliation .#; has negative adjoint dimension.

Proof. Assume first that for a very general poihte T the foliation.#, has Kodaira
dimension one. Since the adjoint dimension is negati@emust be a Riccati foliation.

It follows from [11, Proposition 4.3] that for some < 42 the linear systenTqu;ﬂ is
non-empty and defines the reference rational fibration. blare the general fiber of the
reference fibration intersecfs #, trivially. By semi-continuity the same holds true over
a Zariski open subséf of 7. Consequently we can apply [5, Proposition 4.1] to deduce
that for everyt € U the foliation.#; is a Riccati foliation and as such has negative adjoint
dimension.

Assume now that for a very general poirg 7 the foliation.#; has Kodaira dimension
zero. InterpretZ as a foliation defined oveE(T') and apply Theorem 2.18. We deduce
that after restricting” to a Zariski open subsét and base changing the famif§ through
an étale covering — U we obtain that the resulting famil”’ — U is birationally
equivalent to a finite quotient of a smooth family of foliat&axs on 2 — V defined by
global holomorphic vector fields. Since we are assumingftired very general € T the
foliation has negative adjoint dimension it follows thag thery general fiber o — V
is a surface of negative Kodaira dimension and the corredipgrfoliation is a Riccati
foliation. It follows that for every € U, .%; has negative adjoint dimension.
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Finally, if for a very generat € T the foliation.#; is a rational fibration then for every
t € T the foliation admits a rational first integral, and by semitnuity of the genus of
curves, for every € T the foliation.%; is birationally equivalent to a rational fibration[J

7.4. Boundness of the effective threshold in familiesWe have now all the ingredients
to prove the result mentioned at the end of Sedtioh 4.2.

Theorem 7.5. Let (r : 2" — T,.%#) be an algebraic family of foliations. Then there
existsé > 0 such that, for every € T, the following holds true:adj(.%#;) = —oo or
eff(#,) > 6. In other words, ieff (%) < ¢ thenadj(#,) = —cc.

Proof. Propositiorl 7.8 guarantees that there is no loss of gethenalassuming thatz;
has canonical singularities for a very general T'.

If adj(<#:) > 0 for a very generat € T then there existsn,n > 0 such that
hO( 21, K7™ ® N%,®™) > 0 foravery general € T. Choose: > 0 small enough and
apply Propositioh 713 to obtain a Zariski op@nc T such that#, has at worst-canonical
singularities for every € U. By semi-continuity it follows thatff(.7;) > - for every
tel.

If insteadadj(#;) = —oo for a very generat € T then Lemma7]4 implies that the
same holds true for everyin a Zariski open subset df.

In any case, we have just proved that the result is true forak&iction of.# to a
Zariski open subset @f. The Theorem follows by Noetherian induction. O

8. FOLIATIONS WITH RATIONAL FIRST INTEGRALS

This section is devoted to the proof of the following result.

Theorem 8.1. Let (7 : & — T,.%) be an algebraic family of foliations ang > 0 be
an integer. Let, C T be the Zariski closure of the set of parameters correspanttin
foliations birationally equivalent to a fibration of geometgenus at mosy. Then for
everyt € ¥, the foliation.#; is transversely projective.

If one considers the universal family of degrédoliations onP? then one promptly
realizes that Theorem C is nothing but a particular caseisftiore general statement.

8.1. Example. Before dealing with the proof of Theordm B.1 let us analyzeZhriski
closure of the set of foliations admitting a rational firsteigral in a family derived from
Gauss hypergeometric equation.

Whenever ¢ Z, Gauss hypergeometric equation

2(1=2)w" + (c— (a+b+1)2)w — abw = 0,
admits as general solution in a neighboorhoud of the orlggrftinction
©(z) = C1F(a,b,c;2) + Coz' " Fla —c+1,b—c+1,2 — ¢; 2),

whereC', C, are arbitrary constants to be determined by boundary dondiand
a)n(O)n
F(a,b,¢;2) = 1+Z%Z , (P =pp+D)(P+2)---(p+n—1).

The change of variablg(z) = —dlogw(z) associates a Riccati equation/foliation to any
second order differential equation. In this new coordirlagefamily of foliations induced
by Gauss hypergeometric equation can be written as

w=z(1-2)dy—2(1—2)y>+ (c— (a+b+1)2)y + abdz.
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If ©(2) is an arbitrary solution of Gauss hypergeometric equatienty = —dlog ¢(z)

is a solution of the corresponding Riccati equation. If weatec € Q — Z, a € Zo,
andb = ¢ — 1 + g wheres € Z.q then it is clear from the explicit form of the solutions
that all leaves of the foliation corresponding to this clecdd parameters are algebraic. It
follows that the set of foliations in this family admittingational integral is Zariski dense.
Since there are parameters for which the foliation is natsvarsely affine it follows that
one cannot replace transversely projective by transwyeadihe in the conjecture proposed
at the Introduction. Indeed, one can show that for the choiqearameters made above
the foliations are birationally equivalent to fibrationstagional curves. We conclude that
one cannot hope to replace transversely projective byveassly affine in the statement
of Theoreni 8.11.

8.2. Non-isotrivial fibrations. We now start the proof of Theordm 8.1. We first treat the
case of foliations birationally equivalent to non-isoi@hfibrations.

Proposition 8.2. Letg > 1 be a natural number and I€tr : 2" — T,.%) be an algebraic
family of foliations. The Zariski closure i of the set of parameters corresponding to
foliations birationally equivalent to non-isotrivial fiations of genus at mogtconsists of
foliations admitting rational first integrals.

Proof. According to [13, Proposition 2.1] it suffices to prove thia¢ tfibers of the non-
isotrivial fibrations in the family belong to a bounded fayriff curves.

For g = 1 the boundness is clear since the fibers of non-isotrivigitalfibration .%;
are contained in zero sets of sectiongf °'?, see for instancé 11, Proposition 4.2]. The
boundness of fibers of non-isotrivial fibrations of gepus 2 is guaranteed by Theorem
Al O

8.3. Isatrivial fibrations of adjoint general type. For isotrivial fibrations of adjoint gen-
eral type the situation is better when compared to non#salkifibrations as there is no
need to bound the genus in order to obtain boundness of thedea

Proposition 8.3. Let (r : & — T, %) be an algebraic family of foliations. The Zariski
closure inT' of the set of parameters corresponding to foliations of adjgeneral type
birationally equivalent to isotrivial fibrations consist$ foliations admitting rational first
integrals.

Proof. If F is an isotrivial fibration of adjoint general type on a pradjee surfaceX then
F has Kodaira dimension one and the litaka fibratiorkof is an isotrivial fibration of
genug > 2. Accordingto[[11, Proposition 4.10] there are at least twedrly independent
sectionsoy, oo of K #%F for somek < 42. Consider the rational map = (o1 : 02) :
X --» P! defined by them. The foliatiog definedf coincides with the foliation defined
by the litaka fibration of{ . Its normal bundle is of the forivg = f*Tp @ Ox (—A) =
K7%%% @ Ox(—A) whereA is an effective divisor. Since the leavesBfare contained
in fibers of the litaka fibration of{g, we repeat the argument to obtain the existence of
ak’ < 42 such that the leaves of are contained in zero set of sectionsfé}{gk, ®
K;®2’“/’“ ® Ox (—Kk'A). This suffices to prove the boundness of the leaves of foliatin
a family having adjoint general type and birationally e@lént to isotrivial fibrations. [

8.4. First integrals and transverse structures. A foliation on projective surfaceX is
called a transversely affine if for any ratioriaform wy definingF, there exists a rational
1-formw; such that

dwo = wo A w1 and dw; =0.
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Similarly, a foliationF on X is called transversely projective if for any ratioialorm
wp defining F there exists rationdl-formsw; andws such that

dwo = Wo N wi
dwi = 2wg A wo
d(.UQ = w1 /\QJQ .

For a thorough discussion about transversely affine andveasely projective folia-
tions of codimension one on projective manifolds the reatteuld consult [12] and [24]
respectively.

Proposition 8.4. Let F be a foliation on a projective surfack. If adj(F) < 2 thenF is
a transversely projective foliation. Moreoveraidj(F) € {0, 1} thenF is a transversely
affine foliation.

Proof. This is a straight-forward consequence of the classifinatid  has adjoint di-
mension zero then it is birationally equivalent to a finitetient of a foliation defined by
a closed rational-form. Since the property of being transversely is invariandominant
rational maps,F is transversely affine. I has adjoint dimension one théfis either
a fibration (and therefore clearly transversely affine)-as a turbulent foliation which is
well-known to be transversely affine (see for instance [30pBsition 22]). Finally ifF
has negative adjoint dimension then it is either a fibrateoRiccati foliation, or a finite
quotient of a Riccati foliation. In any case we have tifais a transversely projective
foliation. O

Proposition 8.5. Let (7 : 2~ — T, .%#) be an algebraic family of foliations. If for a very
general closed poing € T the foliation.%;, is a transversely projective foliation then for
every closed point € 7' the foliation.#; is a transversely projective foliation. Similarly,
if for a very general closed poiriy € 7" the foliation.#;, is a transversely affine foliation
then for every closed pointe T the foliation.7; is a transversely affine foliation.

Proof. We can interpret the family of foliation as a single foliatidefined over the func-
tion field C(T'). By assumption, this foliation is transversely projectiience there exists
a triplet (wo, w1, w2) of rational differentiall-forms with coefficients inC(7"), the alge-
braic closure ofC(T'), satisfying the equations
dwg = wg A w1
dwl = 2(.00 A w2
dws = w1 A ws .
and such thaty is a1-form differential form defined ove€(7T) which defines#. Ac-
cording to [8, Lemma 3.2] we can assume thatw, are also defined ovét(T") ( no need
to pass to the algebraic closure). Therefore, @yere have the equations
dwo Ndm = wo Awy Adm
dwi Ndm = 2wy A wse Adr
dwo Ndm = wi Awa Adm.
If t € T'is such thatr—!(¢) is not contained in the polar set @f;), fori = 0,1,2 norin
the zero set ok then the restriction of the triplevy, w1, w2 ) to the fiber ovet defines a
(singular) projective structure for the foliatioh, on X; = 7—1(¢).
Letus fixt, € T such thatX, = 7~ 1(¢¢) is contained in the polar setaf (i = 0,1, 2)
or in the zero set ab, and letf € 7*Or 4, be a rational function oiX, corresponding to a



EFFECTIVE ALGEBRAIC INTEGRATION IN BOUNDED GENUS 27

generator of the maximal ideal 6¥r,,. Notice that we can replace the triplety, w;, w2)
by (f*wo, w1, f~*ws). Thus, there is no loss of generality in assuming thalt(, ) is not
contained inwp)eo U (wo)o-

Fori =0,1,2, leta; be the order of; alongX, and sety; = Resx, f~%w; A % As
mentioned above we will assume that= 0 and, thereforey, is just the restriction ofy
to the fiberX.

If a1 is negative then, comparing the orders alégof dwo Adf and ofwy Awy Adf, we
deduce thatyyA«; = 0 and we can writeyy = ga; for some rational functiop € C(Xj).
Let G € C(Z) be a rational function o™ extendingg. According to formula (14) of
[10] we can replace the triplétg, w1, w2) by the triplet

(wo, w1 — 7" Gy, wa + [~ Gwy + [ Gwo — f~*1dG) .

This increases;. After a finite number of changes we may assume that= 0 and
ay Z 0.

Finally, if a2 is negative and, > 0 thenay is closed and it is clear tha¥,, is trans-
versely projective. Ifinstead, < 0 andag = a; = 0 then comparing the orders aloii
of dwi A df andwg A wo A df we deduce thady A as = 0. Thus we can writexs = hag
for a suitable rational functioh € C(X,). From the equatiodws A df = wy A wa A df
we deduce thaday = a1 A az. Combining these two identities we obtain

dh
d(hao) =a1 A\ (hOéo) — dag = (a1 — T) N Q.
Finally, comparing this identity witday = ap A a1 (first equation) we obtain thaly, =
—(1/2)49 A ap. ThusZ, is transversely projective also in this case. O

8.5. Proof of Theorem[8.1 (and of Theoreni T).Let (r : 2~ — T,.%) be an algebraic
family of foliations andg > 0 be an integer. We want to prove that the Zariski closure
of ¥, C T (subset parametrizing foliations with rational first intaigof genus at mos)
corresponds to transversely projective foliations.

If a very general member of the family, s&j, is not of adjoint general type then
Propositio 84 implies thak; is transversely projective. We can apply Propositioh 8.5 to
conclude that every foliation in the family is also transady projective.

If instead a very general member is of adjoint general typs the will argue as in
the proof of Theore 715 to obtain a non-empty Zariski opdssstiofT’ such that every
foliation parametrized by this subset is of adjoint gengyaé.

Propositior 7B allow us to assume the existence of a nortyedgiski open subset
Uy C T that for a very general (i.e. outside a countable union ofskaclosed subsets)

t € Uy, the foliation.#; has canonical singularities. Sin€es uncountable we also know
that there exist&, m > 0 and an open subsét; C T such that for every € Uy, the
linear |K #,*™ ® N%,“"| defines a rational map with two dimensional image. Notice
that there may exist foliations itip N U; which are not of adjoint general type because
of the presence of non-canonical singularities. To rembiywe take= > 0 sufficiently
small in order to obtain from LemniaT.2 a non-empty Zarislkemp>, C T such that
7, hase-canonical singularities. Every foliation parametrizgchmn-empty Zariski open

U = Uy N U, NUs is of adjoint general type.

Proposition§ 8]2 arfd 8.3 imply that the Zariski closur&'iof X, N U corresponds to
foliations with rational first integrals. The Theorem fails by Noetherian induction. [
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