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6 EFFECTIVE ALGEBRAIC INTEGRATION IN BOUNDED GENUS

JORGE VITÓRIO PEREIRA AND ROBERTO SVALDI

ABSTRACT. We introduce and study birational invariants for foliations on projective sur-
faces built from the adjoint linear series of positive powers of the canonical bundle of the
foliation. We apply the results in order to investigate the effective algebraic integration of
foliations on the projective plane. In particular, we describe the Zariski closure of the set
Σd,g of foliations onP2 of degreed admitting rational first integrals with fibers having
geometric genus bounded byg.
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1. INTRODUCTION

1.1. Effective algebraic integration. It seems fair to say that the simplest class of al-
gebraic ordinary differential equations consists of the class of equations having all its
solutions algebraic. In general, given an explicit differential equation, it is a difficult to
problem to decide whether or not it belongs to this distinguished class. Perhaps the first
positive result on the subject is Schwarz’s list of parameters for which Gauss’ hypergeo-
metric equation belongs to this class [35].

Motivated by this remarkable result, a lot of activity on thestudy of algebraic solutions
of linear differential equations took place in the XIXth century leading to a fairly good
understanding of the problem for homogeneous linear differential equations. Among the
works dealing with this question one can find contributions by Fuchs, Gordan, Jordan,
Halphen, and Klein just to name a few. At that time, the community seemed to believe
that it would be possible to decide whether or not all solutions of a given linear differential
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equations are algebraic, see for instance the concluding remarks1 of [20, Section 3, Chapter
V].

By the end of XIXth century mathematicians like Painlevé, Autonne, and Poincaré [32,
33] started to study the next case, that is, polynomial differential equations of first order
and of first degree. In modern language, they studied foliations on the projective plane with
special emphasis on the existence of methods/algorithms todecide whether or not all leaves
are algebraic. We will call this general line of enquiring effective algebraic integration. The
results obtained at the time relied on strong assumptions onthe nature of the singularities
of the foliations and were not considered definitive as one can learn from the Introduction2

of [33]. For a modern account of some of these classical results see [17] and [30, Chapter
7].

The results of the XIXth century on effective integration oflinear differential equations
were revisited in the course of the XXth century. It was then made clear that a full solution
for the problem was not available, but instead it was reducedto a similar problem for rank
one linear differential equations over curves. More precisely, in order to be able to decide
whether or not a homogeneous linear differential equationsP (x, y, y′, y′′, y′′′, . . . , y(n)) =
0 has all its solutions algebraic it suffices to be able to solvethe following problem: given
an elementu belonging to an algebraic extension of the fieldC(x), decide ifu is the
logarithmic derivative of an elementv also belonging to an algebraic extension ofC(x).
Some authors expressed doubts on the possibility of solvingthis problem. For instance, in
[19, page 51] one can find the view of Hardy3 on the subject.

Despite the scepticism of Hardy and others (cf. [34]), in thelate 1960’s Risch (loc.
cit.) showed that this problem, in its turn, can be reduced tothe following one: given
an explicit divisor on an explicit algebraic curveC, decide whether or not such divisor
is of finite order in the Jacobian ofC. Risch proved that this problem can be solved by
restricting the data modulo two distinct primes and using the resulting bounds in positive
characteristic to devise an explicit bound in characteristic zero. For a detailed account
on the case of second order homogeneous differential equations see [1]. More about the
history of effective algebraic integration of linear differential equations can be found in
[37, page 124], [18, Chapter III], and references therein.

The corresponding problem for (non-linear) differential equations of the first order and
of the first degree is still wide open and received considerably less attention. After being
dormant for a good while, the interest towards it has been revived by experts in foliation
theory who considered the problem of bounding the degree of algebraic leaves of foliations
onP2, see for instance [9, 7, 6, 16] and references therein. The influence of arithmetic on
the subject was rediscovered by Lins Neto [23] who determined algebraic families (pencils)
of foliations on the projective plane with fixed number and analytical type of singularities
and with algebraic leaves of arbitrarily large degree.

1 “Thus is the problem, which we formulated at the beginning ofthis paragraph [present all linear homogenous
differential equations of the second order with rational coefficients:y′′ +py′+ qy = 0 which possess altogether
algebraic solutions], fully solved.”

2 “Je me suis occupé de nouveau de la même question dans ces derniers temps, dan l’ espoir que je parviendrais
à généraliser les résultats obtenus. Cet espoir a été déçu. J’ai obtenu cependant quelques résultats partiels, que
je prends la liberté de publier, estimant qu’on pourra s’en servir plus tard pour obtenir, par un nouvel effort, une
solution plus satisfaisante du problème.”

3“But no method has been devised as yet by which we can always determine in a finite number of steps
whether a given elliptic integral is pseudo-elliptic, and integrate it if it is, and there is reason to suppose that no
such method can be given.”
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1.2. Degenerations of planar foliations admitting a rational first integrals. This work
investigates the problem of effective algebraic integration for foliations on projective sur-
faces. In order to focus the discussion and clarify the framework in which we are going to
carry it, we introduce the following conjecture.

Conjecture 1.1. The Zariski closure inPH0(P2, TP2(d − 1)) of the set of foliations of
degreed onP2 which admit a rational integral consists of transversely projective foliations.

This conjecture is inspired by a remark made by Painlevé4 ([28, pp. 216–217]) in his
Stockholm’s lectures. Knowledge of a transverse projective structure for a given foliation,
in view of their recent description [12, 24], would allow to reduce the problem to either the
determination of periods of differential forms – when, after passing to a ramified covering,
the foliation is defined by a closed rational1-form – or to the algebraic integrability of
Riccati equations.

The main results of this paper provide evidence in favor of this conjecture and are ob-
tained using birational techniques. More precisely, we usebasic results on adjoint linear
series, the birational classification of foliated surfacesaccording to their Kodaira dimen-
sion [26, 5, 27], and a variant of it which we now proceed to explain.

1.3. Adjoint dimension of foliations. The works of the Italian school of algebraic geom-
etry in the beginning of the XXth century showed how much of the geometry of a smooth
projective surfaceX can be determined by the order of growth of the function

n 7→ h0(X,KX
⊗n).

Whenever this function grows slower than a quadratic polynomial, one has a rather precise
description of the surface (the so called Enriques-Kodairaclassification). A similar clas-
sification is also available in dimension three thanks to theworks of the modern school of
birational geometry, and there is also a similar picture in arbitrary dimensions conditional
on the so-called Abundance Conjecture.

In the case of foliations on surfaces, McQuillan, Brunella and Mendes obtained a very
precise classification – analogue to the Enrique-Kodaira classification – in terms of the
Kodaira dimension of the foliation. As in the case of surfaces, the Kodaira dimension of a
foliationF , kod(F), measures the growth of the functionh0(X,KF

⊗n) whereKF is the
bundle of holomorphic1-forms along the leaves of the foliation.

As the terminology suggests the canonical bundle together with its dual are the most ob-
vious naturally determined line-bundles on a variety. Combined with the fact that integers
h0(X,KX

⊗n) (n > 0) are birational invariants for smooth projective varieties, its study
is rather natural if one wants to understand varieties birationally. For foliations of arbi-
trary dimension/codimension, besides the canonical bundle, one also has another naturally
attached line-bundle: the determinant of the conormal bundle. If F is a foliation on a pro-
jective surfaceX with canonical singularities then it turns out that for arbitraryn,m ≥ 0
the integersh0(X,KF

⊗n ⊗N∗
F
⊗m) are birational invariants. Most of the results obtained

in this paper steam from this simple observation. We define the adjoint dimension of a
foliation according to the order of growth of the functionh0(X,KF

⊗n ⊗ N∗
F
⊗m), see

Section 3.

4“J’ajoute qu’on ne peut espérer résoudre d’un coup qui consiste à limitern. L’énoncé vers lequel il faut
tendre doit avoir la forme suivante:“On sait reconnaître si l’intégrale d’une équationF (y′, y, x) = 0 donnée
est algébrique ou ramener l’équation aux quadratures.”Dans ce dernier cas, la question reviendrait à reconnaître
si une certaine intégrale abélienne (de première ou de troisième espèce) n’a que deux ou une périodes.”
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Building on the classification of foliations on surfaces according to their Kodaira di-
mension, in Section 6 we present a classification in functionof the adjoint dimension. The
results we obtain are summarized in Table 1. Thee outcome of the classification provides
a framework well-suited to deal with families of foliations(Section 7) mainly due to the
fact that it is more flexible with respect to type of singularities which are allowed (Section
4). The classification in terms of the adjoint dimension alsoreflects distinct cases of the
problem of effective algebraic integration (Section 8).

adj kod Description

−∞ −∞ Rational fibration
0 Finite quotient of Riccati foliation generated by global vector field
1 Riccati foliation

0 0 Finite quotient of linear foliation on a torus

1 0 Finite quotient ofE × C → C, g(C) ≥ 2
1 Finite quotient ofE × C → E, g(C) ≥ 2
1 Turbulent foliation
1 Non-isotrivial elliptic fibration

2 −∞ Irreducible quotient ofH×H → H

1 Finite quotient ofC1 × C2 → C1, g(Ci) ≥ 2
2 General type

TABLE 1. Classification of foliations according to their adjoint/Kodaira dimensions.

1.4. Plan of the paper and statement of main results.The bulk of the paper starts by
reviewing classification of foliations with respect to their Kodaira dimension in Section 2.
Then we introduce new birational invariants for foliationson surfaces, notably the effective
threshold and the adjoint dimension, in Section 3. Section 4is devoted to the study of a
variation of the concept of canonical singularities, the so-calledε-canonical singularities.
We prove in Corollary 4.10 that, forε > 0, this concept is stable for small perturbations
of the singularity of the foliation. This fact will be particularly important in the study of
families of foliations carried out in Section 7.

Section 5 is devoted to the proof of boundness of non-isotrivial fibrations of bounded
genus in families, see Theorem 5.7. In the particular case ofP2, the result reads as follows.

Theorem A. LetF be a foliation onP2. Assume thatF is birationally equivalent to a non-
isotrivial fibration of genusg ≥ 1. Then the degree of the general leaf ofF is bounded
by

(

7
(

42(2g − 2)
)

!
)2

deg(F).

Theorem A refines the main result of [29] where it was established the existence of a
bound for the degree of the general leaf depending on its genus and on the firstk > 0 for
which the linear system|KF

⊗k| defines a rational map with two dimensional image. The
existence of universalk working for every non-isotrivial fibration of genusg was not known
then - and is still not known at present time - hence the existence of a bound depending
only on the degree of the foliation and on the genus was unclear. In comparison to [29]
the proof of the result above has two new ingredients. The first is a bound on multiplicities
of irreducible components of fibers of relatively minimal non-isotrivial fibrations of genus
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g ≥ 2 (Proposition 5.6). The second new ingredient is the use of standard results on adjoint
linear series (recalled in Section 5.1) in order to obtain effective(n,m) ∈ N2 such that the
rational map defined by|KF

⊗n⊗KX
⊗m| has two dimensional image. By imposing further

assumptions on the nature of the singularities of a foliation onP2 we obtain significantly
better bounds (sub-linear ong), refining a classical result of Poincaré, cf. Theorem 5.9.

In Section 6 we carry out the classification of foliations on surfaces according to the
adjoint dimension, see Table 1. The proof strongly relies onthe classification of folia-
tions according to the Kodaira dimension, but it does need todwell with its subtlest point:
the classification of non–abundant foliations. A nice corollary of the classification is a
cohomological characterization of rational fibrations, which is a weak analogue of Castel-
nuovo’s Criterion for the rationality of surfaces, cf. [2, Thm. V.1].

Theorem B. LetF be a foliation with at worst canonical singularities on a smooth pro-
jective surfaceX . The foliationF is a rational fibration if, and only if,h0(X,KF

⊗n ⊗
N∗

F
⊗m) = 0 for everyn ≥ 1 and everym > 0.

Section 7 investigates families of foliations. There it is shown that the set of effective
thresholds in a family does not accumulate at zero (Theorem 7.5). More important, it
prepares the ground for the proof of the most compelling evidence we have so far in favor
of Conjecture 1.1.

Theorem C. The Zariski closure inP(H0(P2, TP2(d−1))) of the set of degreed foliations
admitting a rational first integral with general fiber of genus≤ g is formed by transversely
projective foliations.

Its proof is presented in Section 8 and relies on Theorem A, onthe birational classifica-
tion of foliations, and on basic properties of families of foliations.

1.5. Acknowledgments. This collaboration initiated while both authors where visiting
James McKernan at UCSD, and continued during a visit of the second author to IMPA.
We are grateful to both institutions for the favorable working conditions. The first author
is partially supported by Cnpq and FAPERJ. The second authorwas partially supported
by NSF research grant no: 1200656 and no: 1265263. During thefinal revision of this
work he was supported from funding from the European Research Council under the Eu-
ropean Union’s Seventh Framework Programme (FP7/2007–2013)/ERC Grant agreement
no. 307119.

2. KODAIRA DIMENSION OF FOLIATIONS

We start things off by reviewing the birational classification of foliations on surfaces
following [26] and [5]. No new results are presented in this section. We have only included
proofs of a few key properties of the Zariski decomposition of the canonical bundle of a
foliation which will be used in the sequel.

2.1. Singularities of foliations.

Definition 2.1. LetF be a foliation onX and letπ : Y → X be a birational morphism.
Denote byG the pull-back ofF underπ. If E is an exceptional divisor ofπ then the
discrepancy ofF alongE is

a(F , E) = ordE(KG − π∗KF) .

Definition 2.2. LetF be a foliation onX . A pointx ∈ X is canonical forF if and only if
a(F , E) ≥ 0 for every divisorE overx. A pointx ∈ X is log canonical forF if and only
a(F , E) ≥ −1 for every divisorE overx.
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Example 2.3. Consider the pencil of foliations onX = P2 defined by the vector fields
sx ∂

∂x
+ ty ∂

∂y
where(s : t) ∈ P1. If s · t · (s− t) 6= 0 thenF(s:t) is a foliation with trivial

canonical bundle and three singularities at the points(0 : 0 : 1), (0 : 1 : 0), and(1 : 0 : 0).
For (s : t) /∈ P1(Q) the three singularities are canonical. For(s : t) ∈ P1(Q) − {(0 :
1), (1 : 0), (1 : 1)}, two of the singularities are log canonical but not canonical, while
the third singularity is canonical. Finally, whens · t · (s − t) = 0, the vector field will
have one of the coordinate axis as a line of singularities. The corresponding foliation will
have canonical bundleOP2(−1) and only one singularity which is log canonical but not
canonical.

Any foliation on a projective surface is birationally equivalent a foliation having at worst
canonical singularities thanks to the following which is essentially due to Seidenberg.

Theorem 2.4. Let F be a foliation on a smooth projective surfaceX . Then there exists
a finite composition of blow-upsπ : Y → X such that all the singularities ofπ∗F are
canonical.

2.2. Kodaira dimension.

Definition 2.5. Let F be a foliation with at worst canonical singularities on a smooth
projective surfaceX . The Kodaira dimension ofF , kod(F), is by definition

kod(F) := kod(KF ) = max
m∈N

{φm(X)},

whereφm : X 99K P(H0(X,KF
⊗m)∗) and we adopt the convention thatdimφm(X) =

−∞ whenh0(X,KF
⊗m) = 0. (and it is not possible to define the associated map).

The numerical Kodaira dimension ofF , ν(F), is defined to be the numerical dimension
ofKF , that is:

• ν(F) = −∞ if KF is not pseudo-effective, while
• if KF is pseudoeffective with Zariski decompositonKF = P +N thenν(F) = 0

if P is numerically zero,ν(F) = 1 if P 6= 0 butP 2 = 0, andν(F) = 2 if P 2 > 0.

The classification of foliation with negative numerical Kodaira dimension stated in the
next result is due to Miyaoka.

Theorem 2.6.LetF be a foliation on a projective surfaceX . If KF is not pseudo-effective
thenF is birationally equivalent to aP1-bundle over a curve.

2.3. Relatively minimal models.

Definition 2.7. Let F be a foliation with canonical singularities on a smooth projective
surfaceX . An irreducible curveC ⊂ X is calledF -exceptional ifKX · C = −1 (i.e.
CP1 and C2 = −1) and the contraction ofC gives rise to a foliation with canonical
singularities.

Definition 2.8. Let F be a foliation with canonical singularities on a smooth projective
surfaceX . A relatively minimal model forF is the datum of a foliationG with canonical
singularities and withoutG-exceptional curves on a smooth projective surfaceY which is
birationally equivalent toF . We say thatG is a minimal model if for any birational map
π : Z 99K Y and any foliationH onZ with canonical singularities such thatπ∗H = G, π
is a birational morphism.

The definitions above and the next result are essentially dueto Brunella [3]. The only
minor difference is that in the original definition ofF -exceptional curve Brunella only
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considered reduced singularities instead of canonical singularities. Nonetheless, his proof
works also in this slightly more general situation.

Theorem 2.9. Let F be a foliation with at worst canonical singularities on a smooth
surfaceX . There exists a birational morphismπ : X → Y such thatπ∗F is a relatively
minimal model forF . Moreover,π∗F is a minimal model forF unlessF is birationally
equivalent to a rational fibration, a Riccati foliation, or Brunella’s special foliationH.

The reader will find the explicit construction of the foliationH from the theorem in the
paper just cited.

Remark 2.10. The above theorem highlights the main difference between the birational
classification of projective surfaces and that of foliations on surfaces: while surfaces of
non-negative Kodaira dimension always have a unique minimal model, there are foliations
of Kodaira dimension zero and one which do not have unique minimal models.

2.4. Zariski decomposition and nef models.If L is a pseudo-effective line bundle on a
smooth projective surface thenL is numerically equivalent toPL +NL wherePL is a nef
Q-divisor andNL is a contractible effectiveQ-divisor satisfyingPL ·NL = 0. This is the
so-called Zariski decomposition ofL. We will denote byi(F) the index ofKF , i.e., the
minimum of the set{n ∈ N | nN has integral coefficients}.

Theorem 2.11.LetF be a relatively minimal foliation on a smooth projective surfaceX .
If KF is pseudo-effective andP +N is its Zariski decomposition then the support ofN is
a disjoint union of Hirzebruch-Jung strings.

A Hirzebruch-Jung string is a chain of smooth rational curves of self-intersection smaller
≤ −2. At one end of the chain, the handle of the Hirzebruch-Jung string, the foliation has
only one singularity. Every other curve in the chain contains two singularities of the fo-
liation. There is only one singularity ofF on the Hirzebruch-Jung string which does not
coincide with a singularity of its support. There exists a unique leaf ofF not contained
in the Hirzebruch-Jung string that passes through this singularity. Such curve is called the
tail of the Hirzebruch-Jung string.

handle
tail

contraction

morphism
tail

Definition 2.12. Let F be a relatively minimal foliation with pseudo-effectiveKF on a
smooth projective surfaceX . The order of a maximal Hirzebruch-Jung string contained in
the support ofN is the determinant of the negative of the intersection matrix of its support.

The following proposition shows that the order and the indexare closely related.

Proposition 2.13. Notation as in the definition above. The following assertions hold true.

(1) The order of a maximal Hirzebruch-Jung stringJ contained in the support ofN
coincides with the smallesto ∈ N such that the coefficients ofN corresponding to
curves inJ belong to1

o
N.

(2) The contraction of a Hirzebruch-Jung string of ordero is locally isomorphic to
the quotient of a smooth foliation on(C2, 0) by the cyclic group generated by an
automorphism of the form(x, y) 7→ (ξo · x, ξ

a
o · y) whereξo is a primitive root of

unity of ordero anda is a natural number relatively prime too.
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Proof. The statement is local so we may very well assume that the support of N is con-
nected. Let us writeN =

∑k
i=1 aiEi whereEi are the irreducible components ofN . We

denote byE1 the handle of the Hirzebruch-Jung string while the other curves are numbered
following the order in which they appear in the chain.

Let A = (Ei · Ej)i,j be the intersection matrix of the Hirzebruch-Jung string and let
o = det(−A) be the order of the Hirzebruch-Jung string. To determine thecoefficients
a1, . . . , ak we have to solve the linear system(−A) · (a1, a2, . . . , ak)

T = (1, 0, . . . , 0)T .
Therefore the coefficientsai certainly lie in 1

o
N. To see thato is the minimal number with

such property it suffices to notice thatak = 1/o, cf. [26, proof of Proposition III.1.4]. This
proves item (1). Item (2) is [26, Reinterpretation III.2.bis.3.a] �

In the Lemma below, we collect some properties of tails of Hirzebruch-Jung strings for
later use.

Lemma 2.14.LetF be a relatively minimal foliation with pseudo-effective canonical bun-
dle on a smooth projective surfaceX . Let T be an irreducible invariant curve not con-
tained in the support ofN and leto1, . . . , ok be the orders of Hirzebruch-Jung strings
intersectingT . Then the following assertions hold true.

(1) The intersection of the positive part of the Zariski decomposition ofKF with T is
given by the formula

P · T = KF · T −

k
∑

i=1

1

oi
.

(2) If F admits a holomorphic first integralf : U → C defined on aF -invariant
neighborhood ofT which vanishes alongT then the vanishing order alongT is a
multiple of the least common multiple ofo1, . . . , ok.

Proof. Item (1) is [26, Remark III.1.3.a]. To verify item (2) let us work locally on a
neighborhoodV of a Hirzebruch-Jung string intersectingT . Let π : V → W be the
contraction of the Hirzebruch-Jung string we are considering ando be its order. Perhaps
after restrictingV to a smaller neighborhood we can assume thatW is the quotient of a
neighborhood̃V of the origin inC2 by a cyclic group generated byϕ(x, y) = (ξo ·x, ξ

a
o ·y)

according to Proposition 2.13. We can also assume that the pull-backG of π∗(F|V ) to Ṽ
is the foliation defined by the level sets of the coordinate function y. The pull-back of
π∗(f|V ) to Ṽ is a holomorphic functiong constant along the leaves ofG. Theϕ invariance
of g implies thatg(x, y) = h(yo) for some one variable holomorphic functionh. Item (2)
follows. �

Definition 2.15. Let F be a relatively minimal foliation on a smooth surfaceX with
pseudo-effective canonical divisor. The nef model ofF is the foliation obtained by con-
tracting the negative part of the Zariski decomposition ofKF .

2.5. Canonical models.

Definition 2.16. A foliation F on a normal projective surfaceX is called a canonical
model ifKF is nef andKF · C = 0 impliesC2 ≥ 0 for every irreducible curveC ⊂ X .

Theorem 2.17. Let F be relatively minimal foliation with pseudo-effectiveKF on a
smooth surfaceX . Then there exists a morphismπ : X → Y from X to a normal
projective surfaceY such thatG = π∗F is a canonical model. The singular points ofY
and the corresponding exceptional fibers ofπ are of one of the following forms.
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(1) The singular point is a cyclic quotient singularity and the exceptional divisor over
it is a chain of rational curves of self-intersection at most−2

· · ·

The foliation around the singular is the quotient of a smoothfoliation; or the
quotient of a canonical foliation singularity on a (germ of)smooth surface;

(2) The singular point is dihedral quotient singularity and theexceptional divisor over
it has the following dual graph:

· · ·

The foliation around the singularity is again the quotient of a smooth foliation or
of a canonical singularity on a (germ of) smooth surface.

(3) The singular point is an elliptic Gorenstein singularity and the exceptional divisor
is a cycle of smooth rational curves each of self-intersection at most−2; or a
unique nodal rational curve of negative self-intersection

The foliation around the singular point is isomorphic to a cusp of a Hilbert mod-
ular foliation (cf. [26, Theorem IV.2.2]). The corresponding germ of foliation is a
transversely affine and transversely hyperbolic on the complement of the singular
point. Moreover, the canonical bundle of the foliation on the canonical model is
neverQ-Cartier.

When compared with the theory for projective surfaces, item(3) of the above Theorem
is quite surprising. The fact that the canonical bundle is neverQ-Cartier is a clear obstruc-
tion to the base point freeness of|KF

⊗n| and for the finite generation of the canonical
algebra of the foliation. It turns out that this is the only obstruction, cf. [26, Corollary
IV.2.3].

2.6. Kodaira dimension zero.

Theorem 2.18. LetF be a relatively minimal foliation on a smooth projective surfaceX
with ν(F) = 0. Letπ : X → Z be the contraction of the negative part ofKF , i.e. π∗F is
a nef model forF . Then there exists a smooth projective surfaceY and a quasi-étale cyclic
coveringp : Y → Z of degreei(F) such thatp∗π∗F is a foliation with trivial canonical
bundle. In particular,kod(F) = 0.

The resulting surfaceY belongs to the following list:

(1) Product of a hyperbolic curve and an elliptic curve;
(2) Abelian surfaces;
(3) Projective bundle over an elliptic curve;
(4) Rational surface.

Consequently the klt surfaceZ has Kodaira dimension1, 0, or−∞ according to whether
Y fits in case (1), (2), or (3)/(4). One can also determine the possibilities for the index of
F . This is done in [29]. There it is shown that

i(F) ∈ {1, 2, 3, 4, 5, 6, 8, 10, 12}



10 JORGE VITÓRIO PEREIRA AND ROBERTO SVALDI

whenF has Kodaira dimension zero.

2.7. Kodaira dimension one. The classification of foliations of Kodaira dimension one
is essentially due to Mendes, see [27, Theorem 3.3.1]

Theorem 2.19.LetF be a relatively minimal foliation on a smooth projective surfaceX .
Assume thatkod(F) = 1 and letf : X → C be the Iitaka fibration ofKF . If F coincides
with the foliation defined byf thenf is non-isotrivial elliptic fibration. OtherwiseF is
completely transverse to a general fiberF of f and we have the following possibilities:

(1) The genus ofF is zero andF is a Riccati foliation; or
(2) The genus ofF is one andF is a turbulent foliation; or
(3) The genus ofF is at least two andF is an isotrivial fibration of genus at least two.

2.8. Non-abundant foliations. The most striking difference between the birational clas-
sification of projective surfaces and the classification of rank one foliations in dimension
two is the existence of foliations having canonical bundle with numerical dimension one
and negative Kodaira dimension. This phenomenon is restricted to a rather special class of
foliations as pointed out by the next result.

Theorem 2.20.LetF be a relatively minimal foliation on a smooth projective surfaceX .
If the numerical dimension ofF does not coincide with the Kodaira dimension ofF then

(1) ν(F) = 1,
(2) kod(F) = −∞,
(3) X is the minimal desingularization of the Bayle-Borel compactification of an irre-

ducible quotitent ofH×H, and
(4) F is induced by one of the two natural fibrations onH×H.

Arguably this result constitutes the hardest part of the classification of foliations. The
known proofs of this result rely heavily on Brunella’s plurisubharmonic variation of the
Poincaré metric and where obtained by Brunella and McQuillan in a collaborative effort.

In Section 6 we will carry out a classification of foliations in terms of another birational
invariants. It relies heavily on the classification of foliations on surfaces according to their
Kodaira dimension but it does not need its full power. In particular, all that we need to
know about non-abundant foliations in contained in the following Lemma.

Lemma 2.21. LetF be a relatively minimal foliation withν(F) = 1 andkod(F) = −∞.
Thenh1(X,OX) = 0 andP · N∗

F = P · KX > 0 whereP is the positive part of the
Zariski decomposition ofKF .

Proof. If h1(X,OX) = h0(X,Ω1
X) 6= 0 then the restriction of a holomorphic1-form to

the leaves ofF either vanishes identically or gives rise to a non-zero section ofKF . Thus if
kod(F) = −∞ we obtain thatF factors through the Albanese map ofX and is a fibration.
Hencekod(F) ≥ 0 contrary to our assumptions. Thush1(X,OX) = 0.

Sinceh1(X,OX) = 0 we obtain thatχ(OX) ≥ 1. Let L = OX(mP ) wherem is a
sufficiently divisible positive integer. By Riemann-Roch,

χ(L) = χ(OX) + 1/2(m2P 2 −mP ·KX)

If P ·KX < 0 thenχ(L) > 0. Thush0(X,L)+h2(X,L) > 0. But if m is sufficiently large
thenKX⊗L∗ is not pseudoeffective and consequentlyh2(X,L) = h0(X,KX⊗L∗) = 0.
It follows thath0(X,KF

⊗m) = h0(X,L) > 0, contradictingkod(F) = −∞. �
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3. EFFECTIVE THRESHOLD AND ADJOINT DIMENSION

In this section we define the effective threshold and the adjoint dimension of a foliation
on a smooth projective surface and prove their birational invariance.

3.1. Effective threshold.

Definition 3.1. Let F be a foliation with canonical singularities on a smooth projective
surfaceX . If the canonical bundle ofF is pseudo-effective then we define the effective
threshold ofF , eff(F), as the largestε ∈ R≥0 ∪ {∞} such thatKF + εN∗

F is pseudo-
effective. IfKF is not pseudo-effective, then we seteff(F) = −∞.

Example 3.2. Let F be a very general foliation onP2 of degreed. It is well known
thatF has reduced, and in particular canonical, singularities. Recall that the degree of
F is defined as the number of tangencies betweenF and a general line. In this case
KF = OP2(d − 1) andN∗

F = OP2(−d − 2). If d = 0 thenKF is not pseudoeffective. If
insteadd ≥ 1 thenKF is pseudo-effective and

eff(F) =
d− 1

d+ 2
.

The reader should notice thateff(F) < 1 for every foliation onP2.

This is by no means a coincidence sinceKX = KF + N∗
F and foliations on a surface

X of negative Kodaira dimension will always haveeff(F) < 1 asKX is not pseudo-
effective. If insteadX has non-negative Kodaira dimension thenKX is pseudo-effective
and consequentlyeff(F) ≥ 1 for every foliation onX .

Similarly, one sees thateff(F) = ∞ if and only if bothKF andN∗
F are pseudo-

effective. Foliations with pseudo-effective conormal bundle have recently been classified
by Touzet, [36]. They fit in one of the following descriptions:

(1) after a finite étale coverF is defined by a closed holomorphic1-form; or
(2) there exists a morphism fromX to a quotient of a polydiscDm by an irreducible

lattice andF is the pull-back of one of them tautological foliations on the poly-
disk. In particularF is transversely hyperbolic.

Notice that the dimension of the ambient manifold is not necessarily equal to the dimension
of the polydisk.

Remark 3.3. Using the identityKX = KF +N∗
F we can write

KF + εN∗
F = (1 − ε)(KF +

ε

1− ε
KX),

whenε 6= 1.

Wheneff(F) is small, we will often work withKF + εKX as that is more convenient.

3.2. Adjoint dimension.

Definition 3.4. Let F be a foliation with canonical singularities on a projectivesurface
X . Consider the pluricanonical maps

ϕm,n : X 99K PH0(X,KF
⊗m ⊗N∗

F
⊗n)∗

for m ≥ 1, n ≥ 1. The adjoint dimension ofF , denotedadj(F), is the maximal dimension
of the image of these maps. Ifh0(X,KF

⊗m ⊗N∗
F
⊗n) = 0 for everym,n ≥ 1 then we set

adj(F) = −∞.
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Definition 3.5. Let F be a foliation with canonical singularities on a projectivesurface
X . The numerical adjoint dimension ofF , adjnum(F), is equal to−∞ if eff(F) ≤ 0 and
equal to the maximal numerical dimension ofKF + εN∗

F for ε ∈ (0, eff(F)) otherwise.

Of courseadj(F) ≤ adjnum(F).

3.3. Birational invariance. The significance of the concepts of effective threshold and of
(numerical) adjoint dimension for the purpose of the birational classification of foliations
on surfaces is assured by the next proposition.

Proposition 3.6. Let (X,F) and (Y,G) be two birationally equivalent foliations. IfF
and G have at worst canonical singularities theneff(F) = eff(G), adj(F) = adj(G)
andadjnum(F) = adjnum(G). Furthermore,h0(X,KF

⊗n ⊗ N∗
F
⊗m) = h0(Y,KG

⊗n ⊗

N∗
G
⊗m) for everyn,m ≥ 0.

Proof. The proof is standard. Since we can choose a foliation(Z,H) on a smooth pro-
jective surfaceZ dominating both(X,F) and (Y,G), there is no loss of generality in
assuming the existence of a birational morphismπ : (X,F) → (Y,G). Indeed, we can
even assume (and will) thatπ is the blow-up of a pointp ∈ Y . Let E be the exceptional
divisor.

We will first prove thateff(F) = eff(G). First notice thatKG+εN∗
G = π∗(KF+εN∗

F).
Therefore ifKF + εN∗

F is pseudo-effective then the same holds true forKG + εN∗
G . This

shows thateff(G) ≥ eff(F). To prove the converse inequality, we will need to use that
G has canonical singularities. Sinceπ is the blow-up of a point by assumption, we have
thatKF − π∗KG = aE for somea ∈ {0, 1}. SinceKX − π∗KY = E we also have that
N∗

F−π∗N∗
G = (1−a)E, and consequentlyKF+εN∗

F = π∗(KG+εN∗
G)+(a+ε(1−a))E.

Therefore, ifKG + εN∗
G is pseudo-effective then the same holds true forKF + εN∗

F . We
conclude thateff(G) ≤ eff(F) and the equality between the effective thresholds follow.
The same argument also shows the equalityadjnum(F) = adjnum(G).

To conclude the proof of the proposition it suffices to verifythath0(X,KF
⊗n⊗N∗

F
⊗m) =

h0(Y,KG
⊗n ⊗N∗

G
⊗m) for everyn,m ≥ 0. Once these equalities are proved, the equality

adj(F) = adj(G) follows. Let us fixn,m ≥ 0. From the isomorphismKF
⊗n⊗N∗

F
⊗m =

π∗(KG
⊗n ⊗N∗

G
⊗m)⊗OX((na+m(1− a))E) we deduce the short exact sequence

0 → π∗(KG
⊗n ⊗N∗

G
⊗m) → KF

⊗n ⊗N∗
F
⊗m → OE((na+m(1 − a))E) → 0 .

Sinceh0(E,OE((na+ (1− a))E) = 0, we obtain the sought identity.
�

3.4. Convention. For an arbitrary foliationF on a smooth projective surfaceX we de-
fine the adjoint dimension, the numerical adjoint dimensionand the effective threshold
as the corresponding quantity for any foliationG with canonical singularities birationally
equivalent toF .

4. SINGULARITIES

4.1. Adjoint discrepancy and ε-canonical singularities.

Definition 4.1. LetF be a foliation onX and letπ : Y → X be a birational morphism.
Denote byG the pull-back ofF underπ. If E is an exceptional divisor ofπ then the adjoint
discrepancy ofF alongE is the function

a(F , E) : [0,∞) −→ R

t 7−→ ordE(KG + tN∗
G − (π∗KF + tπ∗N∗

F)) .
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Definition 4.2. Let F be a foliation onX andε ≥ 0 a real number. A pointx ∈ X is
ε–canonical if and only if the adjoint discrepancy ofF along any divisorE overx satisfies
a(F , E)(t) ≥ 0 for everyt ≥ ε. The foliationF is said to haveε–canonical singularities
if every pointx ∈ X is ε–canonical. The smallestε for whichx ∈ X is ε–canonical will
be called the canonical threshold ofF at x.

Proposition 4.3. Let (X,F) and (Y,G) be two foliations on smooth projective surfaces.
Assume thatF andG are birationally equivalent. If bothF andG haveε-canonical sin-
gularities, then for any pair of integersn,m satisfyingm/n ≥ ε we have that

h0(X,KF
⊗n ⊗N∗

F
⊗m) = h0(Y,KG

⊗n ⊗N∗
G
⊗m) .

In particular, if eff(F) ≥ ε theneff(F) = eff(G).

Proof. The proof is completely analogue to the proof of Proposition3.6. �

Remark 4.4. We point out thatε′-canonical singularities areε-canonical for everyε ≥
ε′. In particular, canonical singularities areε-canonical singularities for everyε ≥ 0.
Also note that the canonical threshold of a log canonical singularity is at most1/2, i.e.
log canonical singularities areε-canonical for everyε ≥ 1/2. This is a straightforward
consequence of the simple fact that for every divisorE exceptional overX extracted on a
smooth birational surfaceπ : Y → X thenordE(KY − π∗KX) ∈ Z>0.

Notation 4.5. If p, q ≥ 1 are relatively prime integers then we will write

p

q
= [u0, u1, . . . , un] = u0 +

1

u1 +
1

· · ·+
1

un

for the continued fraction presentation of their quotient.

Definition 4.6. Letp, q ≥ 1 be relatively prime positive integers and consider the germof
foliation onX = (C2, 0) defined byv = px ∂

∂x
+ qy ∂

∂y
. Letπ : Y → X be the minimal

reduction of singularities ofF , let G be the transformed foliationπ∗F , and letE be the
irreducible component of the exceptional divisor which is not G invariant. We will denote
the order ofKY − π∗KX alongE byϕ(p, q) .

Lemma 4.7. Notations as in Definition 4.6. If we writep/q = [u0, u1, . . . , un] then the
following assertions hold true.

(1) π is the composition of exactly
∑n

i=0 ui blow-ups; and
(2) the order ofKY − π∗KX alongE satisfiesϕ(p, q) ≥

∑n

i=0 ui.

Proof. The key observation is that the reduction of singularities of v follows step-by-step
Euclid’s algorithm for the computation ofgcd(p, q).

Assume thatp ≥ q and writep/q as a continued fraction[u0, u1, . . . , un]. The proof
will by induction on the numberN =

∑n

i=1 ui.
If p = q = 1 then clearlyN = 1 and the result is obvious in this case. Assumep > q

and consider the blow-ups : Z → X of the origin with exceptional divisorE0. Over the
exceptional divisor we will find two singularities with eigenvalues(p−q, q) and(p, q−p).
Since we are assuming thatp > q then the pair(p, q − p) corresponds to a canonical
singularity while the pair(p − q, q) corresponds to a non-canonical singularity. Observe
that

p− q

q
= [u0 − 1, u1, . . . , un]
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Assuming that the result is true forN − 1 then the firs part of the statement follows.
To verify item (2), notice thatKZ = s∗KX + E0. If π : Y → Z is the minimal

desingularization ofr∗F then by induction hypothesisordE(KY − r∗KZ) ≥ N − 1.
Sinceπ = s ◦ r, we can write

ordE(KY − π∗KX) = ordE(KY − r∗(KZ − E0))

≥ ordE(KY − r∗KZ) + ordE(r
∗E0) ≥ N .

Then the Lemma follows by induction. �

Remark 4.8. The inequality in part (2) of the Lemma becomes an equality only for singu-
larities with eigenvalues of the form(1, q). If p andq are both strictly greater than one, at
some intermediate step we will be forced to blow-up at the intersection of two exceptional
divisors and one will get a greater order at the end. For instance, ifp/q = [u0, u1] then
order ofKY − π∗KX along the last exceptional divisor isϕ(p, q) = (u1 + 1)u0 − 1.

As a consequence of the above description we are able to characterizeε-canonical sin-
gularities for small values ofε > 0.

Proposition 4.9. LetF be a germ of foliation on(C2, 0). If the canonical threshold ofF
at 0 is strictly less than1/4 then0 is a log-canonical singularity.

Proof. Let v be a generator ofTF . Assume first that the linear part ofv is zero. Ifπ :
Y → (C2, 0) is the blow-up of the origin,G = π∗F andE is the exceptional divisor then
KG = π∗KF − aE, wherea ≥ 1. On the other handN∗

G = π∗N∗
F +(a+1)E. Therefore,

if ε < 1/2 then the origin is notε-canonical.
Assume now that the linear part ofv is non-zero but nilpotent. We will use the de-

scription of the resolution process of this kind of singularities presented in [5, Chapter 1,
proof of Theorem 1]. If we blow-up the origin then we obtain only one singularity over
the exceptional divisor which is invariant by the transformed foliation. This new singular-
ity can have zero linear part or non-zero but nilpotent linear part. Let us analyze the two
possibilities. Start with the case where the linear part is zero and letπ : Y → (C2, 0)
be the composition of the two obvious blow-ups. As before we will set G = π ∗ F and
will let E1, E2 be the two irreducible components of the exceptional divisor of π with E2

corresponding to the last blow-up. Notice thatKG = KF − aE2 for somea ≥ 1 and
N∗

G = π∗N∗
F +E1+(a+2)E2. Hence ifε < 1/3 then0 is not anε-canonical singularity.

Let us now deal with the second possibility. If the blow-up ofa nilpotent singularity with
non-zero linear part is still a singularity with these two properties then one further blow-up
gives rise to a singularity with trivial linear part. Let nowπ : Y → (C2, 0) be the compo-
sition of the three obvious blow-ups, and letE1, E2, E3 be the irreducible components of
the exceptional divisor numbered according to the order of appearance. If we setG = π∗F
thenKG = π∗KF − aE3 for somea ≥ 1 andN∗

G = π∗N∗
F + E1 + 2E2 + (a + 3)E3.

Thus if ε < 1/4 then0 is not aε-canonical singularity.
Therefore ifε < 1/4 then the linear part ofv is non-nilpotent and we can apply [26,

Fact I.1.8] to conclude that0 is a log-canonical singularity ofF . �

Corollary 4.10. LetF be a germ of foliation on(C2, 0) defined by a germ of vector field
v. If 0 < ε < 1/4 then0 is a ε-canonical singularity ofF if and only if the linear part of
v is non-nilpotent and one of the following holds:

(1) the singularity ofv is canonical; or
(2) the singularity ofv is not canonical,v is analytically conjugated topx ∂

∂x
+ qy ∂

∂y

with p, q relatively prime positive integers, andϕ(p, q) ≥ 1−ε
ε

.
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Proof. Proposition 4.9 implies that the linear part ofv is non-nilpotent. If0 is not a
canonical singularity then by [26, Fact I.1.9] we know thatv is analytically conjugated to
px ∂

∂x
+ qy ∂

∂y
for suitable relatively prime positive integersp, q. If π : Y → X = (C2, 0)

is the minimal reduction of singularities ofF , E denotes the last exceptional divisor and
G = π∗F thenKG = π∗KF − E. Therefore the adjoint discrepancy ofF alongE is (cf.
Remark 3.3)

a(F , E)(t) = (1− t) ordE(KG +
t

1− t
KY − π∗(KF +

t

1− t
KX)) =

= (1− t)(−1 +
t

1− t
ϕ(p, q)).

Since the adjoint discrepancy is clearly non-negative along all the other divisors in the
minimal resolution it follows that0 is anε-canonical singularity if and only ifϕ(p, q) ≥
1−ε
ε

. �

4.2. Example: log canonical foliations on the projective plane.For a foliationF on
the projective plane with log-canonical singularities onecan easily verify the following
assertions.

(1) If d = deg(F) ≥ 4 theneff(F) = d−1
d+2 .

(2) If d = deg(F) = 3 theneff(F) = 2/5 unlessF has radial singularities.
(3) If d = deg(F) = 2 then eff(F) = 1/4 unlessF has radial singularities or

dicritical singularities of type(1, 2).

One could try to pursue a case-by-case analysis in order to provide an explicit lower
bound for the positive effective thresholds of foliations of degree two and three with log-
canonical singularities. We will show later in Section 7 that the positive effective thresholds
of foliations varying in an algebraic family do not accumulate at zero. Unfortunately, our
proof is not effective and, a priori, the bound might depend on the family.

5. NON-ISOTRIVIAL FIBRATIONS

5.1. Seshadri constants.Our original motivation to introduce and study the adjoint di-
mension of foliations lies on our poor understanding of the linear systems|KF

⊗n|. When
F is a foliation of general type we are not aware of lower boundsonn such that|KF

⊗n|
is not empty. For the linear systems|KF

⊗n ⊗KX
⊗m| the situation is considerably better.

We can apply the current knowledge on adjoint linear systemsto obtain effective bounds
onn,m such that|KF

⊗m ⊗KX
⊗n| defines a rational map with two dimensional image.

To be more precise we recall the definition of Seshadri constants and a pair of funda-
mental results about them.

Definition 5.1. Let L be a nef line-bundle on a projective manifoldX andx ∈ X be a
closed point. The Seshadri constantε(X,L;x) = ε(L;x) is the non-negative real number

ε(L;x) = max{ε ≥ 0 |µ∗L − ε · E is nef} ,

whereµ is the blow-up ofX at x.

Knowledge of lower bounds of Seshadri constants allows to produce plenty of sections
of adjoint linear systems through the use of Kawamata-Viehweg vanishing Theorem.

Proposition 5.2. LetX be a projective manifold of dimensionn andL be a big and nef
line-bundle onX . If ε(L;x) > n+ s thenKX + L separatess-jets atx. In particular, if
ε(L;x) > n+ 1 then the image of|KX ⊗ L| has dimensionn.
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Proof. This is contained [22, Proposition 5.1.19]. �

Combined with the homogeneity of Seshadri constants, i.e.ε(L⊗m;x) = mε(L, x) for
any integerm > 0, this result reduces the problem of finding sections of adjoint linear
systems to the one of providing a lower bound for Seshadri constants. In this direction we
recall the main result of [15].

Theorem 5.3. LetL be a nef and big line-bundle on an irreducible projective varietyX
of dimensionn. Thenε(L;x) ≥ 1/n for all x ∈ X outside a countable union of proper
closed subvarieties.

5.2. Producing sections.We can, rather straightforwardly, apply the results just intro-
duced to produce sections of the linear systemsKX + nKF | for suitablen.

Proposition 5.4. LetF be a foliation with canonical singularities on a smooth projective
surface. Ifkod(F) = 2 then the linear system|KX + 7 i(F)KF | defines a rational map
with two dimensional image.

Proof. Suppose first thatkod(F) = 2. Then i(F)KF = i(F)P + i(F)N is a sum of
a nef and big divisor with an effective divisor. Theorem 5.3 implies that the Seshadri
constant ofi(F)P is at least1/2. Therefore we can apply Proposition 5.2 to guarantee that
|KX +7 i(F)P | defines a rational map with two dimensional image. Then the same holds
true for|KX + 7 i(F)KF |, as7 i(F)N is an effective Cartier divisor. �

The proposition above is certainly not optimal. There are are many refinements of the
results of Section 5.1 in the literature that lead to better constants. See for instance [14]
and references therein. The real question underlying the whole issue here is whether or not
one can provide universal bounds which do not depend on the index of the foliation. The
reader will find a more precise formulation of this question in Problem 6.8.

5.3. Bound for the index of hyperbolic fibrations. In order to use the results above to
provide explicit bounds for the degree of leaves of non-isotrivial hyperbolic fibrations we
need to obtain bounds for the index of the foliation.

Lemma 5.5. Let F be a relatively minimal foliation on a smooth projective surfaceX .
AssumeF is defined by a fibrationf : X → C and that the general fiber off has genus
at least two. IfT is an irreducible curve invariant byF which intersects the support of the
negative part ofKF and it is not contained in it (i.e.T is a tail) then one of the following
holds:

(1) P · T = 0 andT intersects exactly two connected components of the supportof
N , both of them of order2; or

(2) P · T ≥ 1
42 .

Proof. It follows from Lemma 2.14 that

(5.1) P · T = KF · T −
k

∑

i=1

1

oi
= −χ(T ) + s+ k −

k
∑

i=1

1

oi

wheres is the number of singularities ofF onT which do are not contained in the support
of N , [5, Chapter 2, Prop. 3].

AssumeP · T = 0. If s = 0 then we have the following possibilities fork ando =
(o1, . . . , ok): k = 3 and o = (3, 3, 3); or k = 3 and o = (2, 3, 6); or k = 4 and
o = (2, 2, 2, 2). In all cases the whole fiberF containgT is the union ofk Hirzebruch-
Jung strings joined by a single common tailT andχ(F ) = χorb(T̃ ) = 0. Sinceχ(F ) < 0
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by assumption, we get thatP · T > 0 contradicting our assumption. The only remaining
possibility iss = 1, k = 2 ando = (2, 2). Item (1) follows.

If P · T > 0 then it is an elementary and well known fact that the lower bound for (5.1)
is equal to1/42 and is attained bys = 0, k = 3, ando = (2, 3, 7). �

Proposition 5.6. Let F be a relatively minimal foliation on a smooth projective surface
X . AssumeF is defined by a fibrationf : X → C and that the general fiber off has
genusg ≥ 2. Then

i(F) ≤ (42(2g − 2))! .

Proof. LetF =
∑

miCi be a fiber off and letKF = P+N be the Zariski decomposition
of KF . If Ci is a tail then, according to Lemma 5.5, either the Hirzebruch-Jung strings
intersecting it have order two orP · Ci ≥ 1/42. In the later case we get thatmi ≤
42(2g − 2) sinceP · F = KF · F = −χ(F ) = 2g − 2. Moreover, Lemma 2.14 item
(b) implies that the least common multiple of the orders of the Hirzebruch-Jung strings
intersectingCi dividesmi ≤ 42(2g − 2). The Lemma follows. �

5.4. Boundness of fibers of non-isotrivial fibrations of a given genus. Theorem A of
the Introduction will follow rather easily from the more general result below.

Theorem 5.7. LetF be a foliation with canonical singularities on a projectivesurfaceX .
Suppose thatF is a fibration with general fiberF of genusg. If kod(F) = 2 (i.e. the
fibration is a non isotrivial hyperbolic fibration) then for every big and nef divisorH we
have

F ·H ≤ M(KX + 7 i(F)KF) ·H,

whereM = M(g) satisfies the following inequality

M ≤ 2(7 i(F) + 1)(2g − 2) ≤
(

7
(

42(2g − 2)
)

! + 1
)

(4g − 4) .

Proof. Let L = KX ⊗ KF
⊗7 i(F) andF be a general leaf ofF . If m ≥ 1 is an integer

thenL⊗m
|F = K

⊗m(7 i(F)+1)
F . On the one hand, Riemann-Roch Theorem implies that

h0(F,L⊗m
|F ) = m(7 i(F) + 1)(2g − 2)− g + 1.

On the other hand, since according to Theorem 5.3 the linear system|L| defines a rational
map with two dimensional image,h0(X,L⊗m) ≥

(

m+2
2

)

. If we takeM = 2(7 i(F) +

1)(2g(F )− 2) thenh0(X,L⊗M ) − h0(F,L⊗M
|F ) ≥

(

M+2
2

)

−M(7 i(F) + 1)(2g − 2) +

g − 1 = g. In particular, there exists a non-zero sectionσ of L⊗M vanishing onF .
If H is an arbitrary big and nef divisor onX then the intersection ofF with H is

bounded by the intersection of the divisor cut out byσ with H . But the later intersection
number is nothing butM(KX +7 i(F)KF) ·H . Proposition 5.6 then concludes the proof.

�

5.5. Proof of Theorem A. Let F be a foliation ofP2. Notice that its canonical bundle is
isomorphic toOP2(deg(F) − 1). Letπ : X → P2 a birational morphism such that all the
singularities ofG = π∗F are canonical. If we takeH = π∗OP2(1) then the degree of an
algebraic leafL of F is given by

deg(L) = H · π∗L = H · L̂ ,
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whereL̂ is the strict transform ofL. We can thus apply Theorem 5.7 to deduce that

deg(L) ≤
(

7
(

42(2g − 2)
)

! + 1
)

(4g − 4)(KX + 7 i(F)KF) ·H

≤
(

7
(

42(2g − 2)
)

! + 1
)

(−3 + 7
(

42(2g − 2)
)

!(deg(F)− 1))

≤
(

7
(

42(2g − 2)
)

!
)2

deg(F) .

This concludes the proof of Theorem A. �

5.6. Log canonical foliations onP2 of high degree. The bounds appearing in Theorem
5.7 are ridiculously large and far from optimal. Proposition 5.8 below combined with the
results presented in Section 7 (notably Theorem 7.5) indicate that the dependence ofM
on g in Theorem 5.7 should be at worst linear ong. The results of [25] also indicate
the existence of such linear bounds which are not universal but depend on the family of
foliations in question.

Proposition 5.8. LetF be a foliation with canonical singularities on a projectivesurface
X . Assume thatF is a fibration with general fiberF of geometric genusg ≥ 2 and that
H0(X,KF

⊗a ⊗ N∗
F
⊗b) admits three algebraically independent sections for somea > 0

andb ≥ 0. Then for every nef divisorH we have

F ·H ≤ 2a(2g − 2)(aKF + bN∗
F) ·H .

Proof. Let L = KF
⊗a ⊗N∗

F
⊗b andF be a general leaf ofF . If m ≥ 1 is an integer then

L⊗m
|F = K⊗am

F . On the one hand, by Riemann-Roch Theorem

h0(F,L⊗m
|F ) = ma(2g − 2)− g + 1.

On the other hand, our assumption onH0(X,L) implies thath0(X,L⊗m) ≥
(

m+2
2

)

. If
we takem = 2a(2g − 2) then

h0(X,L⊗m)− h0(F,L⊗m
|F ) ≥

(

2a(2g − 2) + 2

2

)

− 2a2(2g − 2)2 + (g − 1)

= 6a(g − 1) + g > 0.

In particular, there exists a non-zero sectionσ of L⊗2a(2g−2) vanishing onF .
If H is an arbitrary nef divisor onX then the intersection ofF with H is bounded

by the intersection of the divisor cut out byσ with H . But this intersection number is
2a(2g − 2)(aKF + bN∗

F) ·H . �

In the case of foliations of the projective plane with log canonical singularities and of
degree greater or equal to5, we can actually obtain bounds that are better than linear using
a simple variation of the argument used to prove Proposition5.8.

Theorem 5.9.LetF be a foliation onP2 of degreed ≥ 5. Assume thatF has log canonical
singularities and admits a rational first integral with general fiber of geometric genus
g ≥ 2. If F is a general leaf ofF then

deg(F ) ≤
⌈4(2g − 2)

(d− 4)2

⌉

(d− 4) .

Proof. Since the singularities ofF areε-canonical forε = 1/2 (see Remark 4.4) we have
that the dimension of the vector spacesH0(P2,KF

⊗2m ⊗ N∗
F
⊗m), m > 0 is unaltered

after replacingF by a model with at worst canonical singularities.
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Let F be a general fiber of the rational first integral ofF and consider the real valued
function

f(m) =

(

m(d− 4) + 2

2

)

− 2m(2g − 2)− g + 1.

Its values on positive integers correspond to the difference h0(P2,KF
⊗2m ⊗ N∗

F
⊗m) −

h0(F̃ ,K⊗2m

F̃
), whereF̃ is the normalization ofF . Sincef(4(2g − 2)/(d − 4)2) =

(dg + 8g − 12)/(d − 4) which is clearly positive and moreover the derivative off sat-
isfiesf ′(4(2g− 2)/(d− 4)2) = (3/2)d+4g − 10 > 0, it follows that ifm is the smallest
integer greater than4(2g− 2)/(d− 4)2 then there exists a section ofKF

⊗2m ⊗N∗
F
⊗m ≃

OP2(m(d− 4)) vanishing identically onF . The Theorem follows. �

As already mentioned in the Introduction, this Theorem 5.9 refines a classical result of
Poincaré, see [32, pages 169 and 176] and [30, Chapter 7, Corollary 14].

6. CLASSIFICATION VIA ADJOINT DIMENSION

In this section we apply the results recalled in Section 2 to obtain a classification of
foliations on surfaces according to their adjoint dimension.

6.1. KX-negative extremal rays.Recall that for a smooth projective surfaceX theKX -
negative extremal rays are spanned by numerical classes of rational curves of self-intersection
either−1, 0 or 1. The first case corresponds to the exceptional divisor of theblow-up of
a smooth point, the second to a smooth fiber of aP1-bundle, while the last one is just the
class of a line inP2.

Lemma 6.1. LetF be relatively minimal foliation with pseudo-effectiveKF on a smooth
projective surfaceX , and letKF = P +N be the Zariski decomposition ofKF . Assume
there exists aKX–negative extremal curveC ⊂ X andP · C = 0. Then the Kodaira
dimension ofF is either0 or 1. Moreover, ifkod(F) = 1, then the image ofC in the
canonical modelπ : X → Z ofF is proportional toπ∗KF .

Proof. If C is an extremal ray withC2 ≥ 1 then Hodge index theorem implies thatP is
numerically zero. Theorem 2.18 implieskod(F) = 0.

If insteadC2 = 0 thenP is numerically proportional to a non-negative multiple ofC
and we deduce that eitherν(F) = 0 or ν(F) = 1. The caseν(F) = 0 follows as before.
If ν(F) = 1 and sinceP is numerically proportional to an effective divisor, we canapply
Theorem 2.20 and Lemma 2.21 to deduce thatkod(F) = 1.

From now on assume thatC2 = −1 and letπ : X → Y be the contraction ofF into
its canonical model. IfC is not contracted byπ then writeπ∗π∗C = C +

∑

aiEi where
ai > 0 and theEi areπ-exceptional divisors. Thusπ∗P · π∗C = P · π∗π∗C = P · C
sinceP is the pull-back of a nef divisor fromY and henceπ-exceptional curves intersect
P trivially. As we are assumingP · C = 0 we deduce from Hodge index Theorem that
eitherP is numerically trivial, or thatπ∗C

2 = 0 andπ∗P is numerically equivalent to a
positive multiple ofπ∗C. Henceν(F) ∈ {0, 1}. As before, we obtain that in both cases
ν(F) = kod(F).

Suppose now thatC is contracted byπ. In this caseC is F -invariant according to
Theorem 2.17. SinceC2 = −1 andF is relatively minimal we have thatZ(F , C) ≥ 3.
Notice thatKF · C = −2 + Z(F , C) and, as we are assumingP · C = 0, according
to Lemma 2.14 we also have thatKF · C =

∑k
i=1 1/oi whereoi are the orders of the

Hirzebruch-Jung strings intersectingC. Then we must havek = 2 ando1 = o2 = 2; or
k = 3 and(o1, o2, o3) ∈ {(2, 3, 6), (3, 3, 3)}; or k = 4 and(o1, o2, o3, o4) = (2, 2, 2, 2).
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If we contract the Hirzebruch-Jung strings intersectingC, we obtain that the direct image
of C has self-intersection≥ 0, cf. [26, Remark III.2.2]. ThusC cannot be contracted byπ
contrary to our assumption. �

6.2. Kodaira dimension zero.

Lemma 6.2. LetF be a relatively minimal foliation with pseudo-effectiveKF on a smooth
projective surfaceX . If π : X → Z is the contraction of the negative part ofKF (i.e. π∗F
is a nef model ofF ) and we writeKX +∆ = π∗KZ theni(F)N −∆ is effective.

Proof. If E1, . . . , Ek are the exceptional divisors ofπ then∆ is defined by the relations

∆ ·Ei = −KX ·Ei = 2 + E2
i .

Notice that2 + E2
i ≤ 0 for everyi, while 2 + E2

i ≥ (E1 + · · ·+ Ek) · Ei for everyi and
the latter inequality is strict whenEi is either a handle or a tail in a Hirzebruch-Jung string.
Therefore by [21, Corollary 4.2] the coefficients of∆ lie in [0, 1). SinceN is effective the
lemma follows. �

Proposition 6.3. LetF be a relatively minimal foliation of Kodaira dimension zeroon a
smooth projective surfaceX . If π : X → Z is the contraction of the negative part of the
Zariski decomposition ofKF and (X,∆) is the pair satisfyingKX + ∆ = π∗KZ then
the adjoint dimension and the numerical adjoint dimension of F coincide with the Kodaira
dimension of(X,∆). Moreover, whenadj(F) ≥ 0 theneff(F) ≥ 1

i(F)+1 ≥ 1
13 .

Proof. Let KF = P + N be the Zariski decomposition ofKF . Since we are assuming
thatF has Kodaira dimension zero we have thatP = 0. Letπ : X → Z be the contraction
of the support ofN and notice that we can write

KF + εKX = επ∗KZ + (N − ε∆).

Assume thatε is rational and satisfiesε < 1/ i(F). Lemma 6.2 implies that(N − ε∆)
is effective. Hence for anyk sufficiently divisible,h0(X, k(επ∗KZ + (N − ε∆))) ≥
h0(X, kπ∗KZ) = h0(Z, kKZ). Since every irreducible componentE of the support of
(N − ε∆) is π-exceptional we also have the opposite inequality. This shows that the
Kodaira dimension ofZ is equal to the adjoint dimension ofF .

To verify that the adjoint dimension and the numerical adjoint dimension ofF coincide
first observe that every irreducible componentE of of N − ε∆ satisfiesπ∗KZ · E = 0.
Therefore the numerical dimension ofKF +εKX coincides with the numerical dimension
of KZ . As the numerical dimension ofKZ and the Kodaira dimension of(X,∆) coincide,
the Proposition follows. �

6.3. Kodaira dimension one.

Proposition 6.4. Let F be a relatively minimal foliation of Kodaira dimension one on a
smooth projective surfaceX . Letg be the genus of a general fiber of the Iitaka’s fibration
ofF . If g = 0 thenadj(F) = adjnum(F) = −∞. Otherwise

adj(F) = adjnum(F) = min{g, 2} and eff(F) ≥
1

4 i(F) + 1
.

Proof. Let f : X → B be the Iitaka’s fibration ofF . Assume first thatg = 0. Then for a
general fiberF of f we have thatKF · F = 0 andKX · F = −2. HenceKF + εKX is
not pseudoeffective for everyε > 0. It follows thatadj(F) = adjnum(F) = −∞.

Assume now thatg ≥ 1. LetKF = P +N be the Zariski decomposition ofKF and let
π : X → Z be the contraction of the negative part ofKF . Denote byG the direct image of
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F . We claim that4 i(F)KG+KZ is nef. Suppose not, and letD be an effective divisor such
that(4 i(F)KG+KZ)·D < 0. By the Cone Theorem we can numerically decomposeD as
a sum

∑

aiCi +R whereR is a pseudo-effective divisor and satisfiesKX ·R ≥ 0; Ci are
KZ–negative extremal rays satisfying0 < −KZ · Ci ≤ 4 andai ∈ R>0. Therefore, there
exists aKZ–negative extremal rayC such that(4 i(F)KG +KZ) · C < 0. If KG · C = 0
then Lemma 6.1 implies thatC is numerically proportional toKG . ConsequentlyC is
proportional to a general fiber off ◦ π−1 and must intersectKZ non-negatively. Thus
KG · C > 0. Sincei(F )KG is Cartier we deduce that4 i(F)KG · C ≥ 4. It follows that
also in this case(4 i(F)KG + KZ) · C ≥ 0. We conclude that4 i(F)KG + KZ is nef.
Consequently we obtain that

(6.1) KF +
1

4 i(F)
KX = π∗

(

KG +
1

4 i(F)
KZ

)

+

(

N −
1

4 i(F)
∆

)

where∆ is defined byKX + ∆ = π∗KZ . Since the singularities ofZ are klt, it follows
thatN − 1

4 i(F)∆ is effective and thatKF + 1
4 i(F)KX is pseudo-effective. Thuseff(F) ≥

1
4 i(F)+1 .

It remains to determine the adjoint dimension ofF . For that, notice that (6.1) is the
Zariski decomposition ofKF + 1

4 i(F)KX . Wheng = 1, sinceKX is trivial when re-

stricted to the general fiber off it follows that the positive partπ∗
(

KG + 1
4 i(F)KZ

)

is

numerically proportional a general fiber and also that thereexists an a effectiveQ-divisor

D onB such thatπ∗
(

KG + 1
4 i(F)KZ

)

= f∗B. Henceadjnum(F) = adj(F) = 1.

To prove the claim forg ≥ 2 it suffices to verify thatπ∗ (KG + εKZ)
2
> 0 for ε

sufficiently small. If this were not the case thenKG ·KZ = 0 andKZ ·KZ = 0. Hodge
index theorem would imply thatπ∗KZ is proportional to a general fiberf . But this is not
possible sinceπ∗KZ · F = 2g − 2 > 0 for any fiberF of f . �

6.4. Kodaira dimension two and non-abundant foliations.

Lemma 6.5. LetF be a relatively minimal foliation with canonical singularities which is
not a fibration by rational curves. LetKF = P +N be the Zariski decomposition ofKF .
If kod(F) /∈ {0, 1} thenP + 1

3 i(F)KX is nef.

Proof. Aiming at a contradiction, letC be a curve such that(P + 1/3 i(F)KX) · C < 0.
As in the proof of Proposition 6.3 we can assume thatC is aKX -negative extremal curve
and thereforeKX · C ∈ {−3,−2,−1}. By Lemma 6.1,P · C > 0. Hence

−KX · Ci > 3 i(F)(P · Ci) ≥ 3

gives the sought contradiction. �

Proposition 6.6. LetF be a relatively minimal foliation with canonical singularities and
pseudo-effective canonical bundle. Ifkod(F) /∈ {0, 1} thenadjnum(F) = adj(F) = 2.

Proof. Let KF = P + N be the Zariski decomposition ofKF . Sincekod(F) 6= 0 we
have thatν(F) ≥ 1. Lemma 6.5 implies thatP + εKX is nef for ε sufficiently small.
If F is not of adjoint general type then(P + εKX)2 must vanish identically. It follows
P 2 = P ·KX = KX

2 = 0. Lemma 2.21 implies thatkod(F) ≥ 0. Since this is excluded
by assumption, the result follows. �
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6.5. Characterization of rational fibrations (Proof of Theorem B). One immediate
consequence of the classification of foliations according to their adjoint dimension is the
characterization of rational fibrations stated in the Introduction as Theorem B.

Theorem 6.7. Let F be a foliation with canonical singularities on a smooth projective
surfaceX . ThenF is a rational fibration if and only ifh0(X,KF

⊗m ⊗ N∗
F
⊗n) = 0 for

everym > 0 and everyn ≥ 0.

Proof. If adj(F) ≥ 0 thenh0(X,KF
⊗m ⊗N∗

F
⊗n) 6= 0 for somem,n > 0 by definition.

If insteadadj(F) = −∞ andF is not a fibration by rational curves thenF is either a
finite quotient of a Riccati foliation of Kodaira dimension zero orF is a Riccati foliation
of Kodaira dimension one. In both casesh0(X,KF

⊗m) 6= 0 for somem > 0. �

For foliations on smooth surfaces of Kodaira dimension0 or 1, h0(X,KF
⊗n) > 0 for

somen between1 and12, see [31] and [11, Section 4]. It is a simple matter to obtain
effective non-vanishing ofh0(X,KF

⊗n⊗N∗
F
⊗m) for foliationsF of adjoint general type

as functions of their indexi(F). This is what we did in the proof of 5.4 whenκ(F) = 2.
The real question here is if one can do that that regardless ofthe index of the the foliation.

Problem 6.8. Find universal bounds on(n,m) ∈ Z>0 × Z>0 in order to ensure the non-
vanishing ofh0(X,KF

⊗m ⊗N∗
F
⊗n) for foliations of adjoint general type.

For bounded families of foliations, the results of Section 7imply the existence of bounds
depending on the family.

7. VARIATION IN MODULI

7.1. Families of foliations. We start by spelling out the definition of family of foliated
surfaces.

Definition 7.1. Letπ : X → T be a family of smooth projective surfaces, i.e.X andT
are irreducible complex manifolds andπ is a proper submersion with projective surfaces
as fibers. A family of foliations parametrized byT is a foliationF of dimension one on
X which is everywhere tangent to the fibers ofπ. If X , T, π andF are all algebraic then
we say thatF is an algebraic family of foliations.

Notice that in the definition above we do not impose any condition on the nature of
singularities ofF , contrary to what is done in [4]. Also when the dimension ofT is at
least two it may happen that some fibers ofπ are contained in the singular set ofF .

It is useful to think of an algebraic family of foliations parametrized byT as a foliation
defined over the function fieldC(T ). Algebraic properties of a very general memberFt of
the family – like existence of invariant algebraic curves, rational first integrals, transversely
projective structures – are displayed already when one considers the foliation as defined
overC(T ). Also the Kodaira dimension (resp. the adjoint dimension) of the foliation
defined overC(T ) coincides with the Kodaira dimension (adjoint dimension) of a very
general member of the family.

7.2. Partial reduction of singularities for families. One of the sources of difficulties of
applying birational techniques to understand the behaviorof the plurigenera in families
of foliations comes from the fact that canonical singularities are not stable in the Zariski
topology, i.e. the set of foliations with at worst canonicalsingularities can fail to be Zariski
open as the family of foliations onC2 parametrized byC and defined byxdy − tydx
shows. In this family the singularity at the origin is canonical if and only ift /∈ Q+. Thus
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a very general foliation in the family has canonical singularities, but the set of foliations
with non-canonical singularities is Zariski dense. This unpleasant situation can be avoided
if instead one considersε-canonical singularities forε > 0.

Lemma 7.2. Let F be an algebraic family of foliations parametrized by an algebraic
varietyT . If 0 < ε < 1/4 then the subset ofT corresponding to foliations with isolated
andε-canonical singularities is a Zariski open subset ofT .

Proof. This is a simple consequence Corollary 4.10. If a singularity is not ε-canonical,
0 < ε < 1/4, then either its linear part is nilpotent or the singularityis formally equivalent
to one of finitely many singularities of the formpx ∂

∂x
+ qy ∂

∂y
with p, q relatively prime

positive integers satisfyingϕ(p, q) < ε
1−ε

(see Definition 4.6 for the meaning ofϕ). Since
both conditions are clearly closed the lemma follows. �

Proposition 7.3. Given an algebraic family of foliationF parametrized by an algebraic
variety T and a real numberε > 0, there exists a Zariski open subsetU ⊂ T and a
family of foliationsG onY → U obtained fromF|U by a finite composition of blow-ups
over (multi)-sections such that for every closed pointt ∈ U , the foliationGt has at worst
ε-canonical singularities.

Proof. First considerF as foliation defined overC(T ) and apply Seidenberg’s Theorem
to obtain a foliation overC(T ) with reduced singularities. Then restrict to a Zariski open
subset ofT in order to guarantee that we still have a family of foliations in the sense of
Definition 7.1 and apply Lemma 7.2 to conclude. �

7.3. Families of foliations of negative adjoint dimension.Foliations of negative adjoint
dimension also behave better in families compared to foliations of negative Kodaira di-
mension.

Lemma 7.4. Let (π : X → T,F ) be an algebraic family of foliations. If for a very gen-
eral closed pointt0 ∈ T the foliationFt0 is reduced and has negative adjoint dimension
then there exists a Zariski open subsetU ⊂ T such that for every closed pointt ∈ U the
foliation Ft has negative adjoint dimension.

Proof. Assume first that for a very general pointt ∈ T the foliation Ft has Kodaira
dimension one. Since the adjoint dimension is negative,Ft must be a Riccati foliation.
It follows from [11, Proposition 4.3] that for somen ≤ 42 the linear system|K⊗n

Ft
| is

non-empty and defines the reference rational fibration. Moreover, the general fiber of the
reference fibration intersectsKFt

trivially. By semi-continuity the same holds true over
a Zariski open subsetU of T . Consequently we can apply [5, Proposition 4.1] to deduce
that for everyt ∈ U the foliationFt is a Riccati foliation and as such has negative adjoint
dimension.

Assume now that for a very general pointt ∈ T the foliationFt has Kodaira dimension
zero. InterpretF as a foliation defined overC(T ) and apply Theorem 2.18. We deduce
that after restrictingT to a Zariski open subsetU and base changing the familyF through
an étale coveringV → U we obtain that the resulting familyX ′ → U is birationally
equivalent to a finite quotient of a smooth family of foliationsG on Z → V defined by
global holomorphic vector fields. Since we are assuming thatfor a very generalt ∈ T the
foliation has negative adjoint dimension it follows that the very general fiber ofZ → V
is a surface of negative Kodaira dimension and the corresponding foliation is a Riccati
foliation. It follows that for everyt ∈ U , Ft has negative adjoint dimension.
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Finally, if for a very generalt ∈ T the foliationFt is a rational fibration then for every
t ∈ T the foliation admits a rational first integral, and by semi-continuity of the genus of
curves, for everyt ∈ T the foliationFt is birationally equivalent to a rational fibration.�

7.4. Boundness of the effective threshold in families.We have now all the ingredients
to prove the result mentioned at the end of Section 4.2.

Theorem 7.5. Let (π : X → T,F ) be an algebraic family of foliations. Then there
existsδ > 0 such that, for everyt ∈ T , the following holds true:adj(Ft) = −∞ or
eff(Ft) ≥ δ. In other words, ifeff(Ft) < δ thenadj(Ft) = −∞.

Proof. Proposition 7.3 guarantees that there is no loss of generality in assuming thatFt

has canonical singularities for a very generalt ∈ T .
If adj(Ft) ≥ 0 for a very generalt ∈ T then there existsm,n > 0 such that

h0(Xt,KF t
⊗m⊗N∗

F t
⊗n) > 0 for a very generalt ∈ T . Chooseε > 0 small enough and

apply Proposition 7.3 to obtain a Zariski openU ⊂ T such thatFt has at worstε-canonical
singularities for everyt ∈ U . By semi-continuity it follows thateff(Ft) ≥ n

m
for every

t ∈ U .
If insteadadj(Ft) = −∞ for a very generalt ∈ T then Lemma 7.4 implies that the

same holds true for everyt in a Zariski open subset ofT .
In any case, we have just proved that the result is true for therestriction ofF to a

Zariski open subset ofT . The Theorem follows by Noetherian induction. �

8. FOLIATIONS WITH RATIONAL FIRST INTEGRALS

This section is devoted to the proof of the following result.

Theorem 8.1. Let (π : X → T,F ) be an algebraic family of foliations andg ≥ 0 be
an integer. LetΣg ⊂ T be the Zariski closure of the set of parameters corresponding to
foliations birationally equivalent to a fibration of geometric genus at mostg. Then for
everyt ∈ Σg the foliationFt is transversely projective.

If one considers the universal family of degreed foliations onP2 then one promptly
realizes that Theorem C is nothing but a particular case of this more general statement.

8.1. Example. Before dealing with the proof of Theorem 8.1 let us analyze the Zariski
closure of the set of foliations admitting a rational first integral in a family derived from
Gauss hypergeometric equation.

Wheneverc /∈ Z, Gauss hypergeometric equation

z(1− z)w′′ + (c− (a+ b+ 1)z)w′ − abw = 0,

admits as general solution in a neighboorhoud of the origin the function

ϕ(z) = C1F (a, b, c; z) + C2z
1−cF (a− c+ 1, b− c+ 1, 2− c; z),

whereC1, C2 are arbitrary constants to be determined by boundary conditions and

F (a, b, c; z) = 1 +
∑ (a)n(b)n

(c)n
zn, (p)n := p(p+ 1)(p+ 2) · · · (p+ n− 1).

The change of variabley(z) = −d logw(z) associates a Riccati equation/foliation to any
second order differential equation. In this new coordinatethe family of foliations induced
by Gauss hypergeometric equation can be written as

ω = z(1− z)dy − z(1− z)y2 + (c− (a+ b+ 1)z)y + abdz .
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If ϕ(z) is an arbitrary solution of Gauss hypergeometric equation theny = −d logϕ(z)
is a solution of the corresponding Riccati equation. If we choosec ∈ Q − Z, a ∈ Z<0,
andb = c − 1 + β whereβ ∈ Z<0 then it is clear from the explicit form of the solutions
that all leaves of the foliation corresponding to this choice of parameters are algebraic. It
follows that the set of foliations in this family admitting arational integral is Zariski dense.
Since there are parameters for which the foliation is not transversely affine it follows that
one cannot replace transversely projective by transversely affine in the conjecture proposed
at the Introduction. Indeed, one can show that for the choiceof parameters made above
the foliations are birationally equivalent to fibrations byrational curves. We conclude that
one cannot hope to replace transversely projective by transversely affine in the statement
of Theorem 8.1.

8.2. Non-isotrivial fibrations. We now start the proof of Theorem 8.1. We first treat the
case of foliations birationally equivalent to non-isotrivial fibrations.

Proposition 8.2. Letg ≥ 1 be a natural number and let(π : X → T,F ) be an algebraic
family of foliations. The Zariski closure inT of the set of parameters corresponding to
foliations birationally equivalent to non-isotrivial fibrations of genus at mostg consists of
foliations admitting rational first integrals.

Proof. According to [13, Proposition 2.1] it suffices to prove that the fibers of the non-
isotrivial fibrations in the family belong to a bounded family of curves.

For g = 1 the boundness is clear since the fibers of non-isotrivial elliptic fibrationFt

are contained in zero sets of sections ofKF
⊗12
t , see for instance [11, Proposition 4.2]. The

boundness of fibers of non-isotrivial fibrations of genusg ≥ 2 is guaranteed by Theorem
A. �

8.3. Isotrivial fibrations of adjoint general type. For isotrivial fibrations of adjoint gen-
eral type the situation is better when compared to non-isotrivial fibrations as there is no
need to bound the genus in order to obtain boundness of the leaves.

Proposition 8.3. Let (π : X → T,F ) be an algebraic family of foliations. The Zariski
closure inT of the set of parameters corresponding to foliations of adjoint general type
birationally equivalent to isotrivial fibrations consistsof foliations admitting rational first
integrals.

Proof. If F is an isotrivial fibration of adjoint general type on a projective surfaceX then
F has Kodaira dimension one and the Iitaka fibration ofKF is an isotrivial fibration of
genusg ≥ 2. According to [11, Proposition 4.10] there are at least two linearly independent
sectionsσ1, σ2 of KF

⊗k for somek ≤ 42. Consider the rational mapf = (σ1 : σ2) :
X 99K P1 defined by them. The foliationG definedf coincides with the foliation defined
by the Iitaka fibration ofKF . Its normal bundle is of the formNG = f∗TP1 ⊗OX(−∆) =

KF
⊗2k ⊗ OX(−∆) where∆ is an effective divisor. Since the leaves ofF are contained

in fibers of the Iitaka fibration ofKG , we repeat the argument to obtain the existence of
a k′ ≤ 42 such that the leaves ofF are contained in zero set of sections ofKX

⊗k′

⊗

KF
⊗2k′k ⊗OX(−k′∆). This suffices to prove the boundness of the leaves of foliations in

a family having adjoint general type and birationally equivalent to isotrivial fibrations. �

8.4. First integrals and transverse structures. A foliation on projective surfaceX is
called a transversely affine if for any rational1-formω0 definingF , there exists a rational
1-formω1 such that

dω0 = ω0 ∧ ω1 and dω1 = 0 .
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Similarly, a foliationF onX is called transversely projective if for any rational1-form
ω0 definingF there exists rational1-formsω1 andω2 such that

dω0 = ω0 ∧ ω1

dω1 = 2ω0 ∧ ω2

dω2 = ω1 ∧ ω2 .

For a thorough discussion about transversely affine and transversely projective folia-
tions of codimension one on projective manifolds the readershould consult [12] and [24]
respectively.

Proposition 8.4. LetF be a foliation on a projective surfaceX . If adj(F) < 2 thenF is
a transversely projective foliation. Moreover, ifadj(F) ∈ {0, 1} thenF is a transversely
affine foliation.

Proof. This is a straight-forward consequence of the classification. If F has adjoint di-
mension zero then it is birationally equivalent to a finite quotient of a foliation defined by
a closed rational1-form. Since the property of being transversely is invariant by dominant
rational maps,F is transversely affine. IfF has adjoint dimension one thenF is either
a fibration (and therefore clearly transversely affine) orF is a turbulent foliation which is
well-known to be transversely affine (see for instance [30, Proposition 22]). Finally ifF
has negative adjoint dimension then it is either a fibration,a Riccati foliation, or a finite
quotient of a Riccati foliation. In any case we have thatF is a transversely projective
foliation. �

Proposition 8.5. Let (π : X → T,F ) be an algebraic family of foliations. If for a very
general closed pointt0 ∈ T the foliationFt0 is a transversely projective foliation then for
every closed pointt ∈ T the foliationFt is a transversely projective foliation. Similarly,
if for a very general closed pointt0 ∈ T the foliationFt0 is a transversely affine foliation
then for every closed pointt ∈ T the foliationFt is a transversely affine foliation.

Proof. We can interpret the family of foliation as a single foliation defined over the func-
tion fieldC(T ). By assumption, this foliation is transversely projective. Hence there exists
a triplet (ω0, ω1, ω2) of rational differential1-forms with coefficients inC(T ), the alge-
braic closure ofC(T ), satisfying the equations

dω0 = ω0 ∧ ω1

dω1 = 2ω0 ∧ ω2

dω2 = ω1 ∧ ω2 .

and such thatω0 is a1-form differential form defined overC(T ) which definesF . Ac-
cording to [8, Lemma 3.2] we can assume thatω1, ω2 are also defined overC(T ) ( no need
to pass to the algebraic closure). Therefore, overC, we have the equations

dω0 ∧ dπ = ω0 ∧ ω1 ∧ dπ

dω1 ∧ dπ = 2ω0 ∧ ω2 ∧ dπ

dω2 ∧ dπ = ω1 ∧ ω2 ∧ dπ .

If t ∈ T is such thatπ−1(t) is not contained in the polar set of(ωi)∞ for i = 0, 1, 2 nor in
the zero set ofω0 then the restriction of the triple(ω0, ω1, ω2) to the fiber overt defines a
(singular) projective structure for the foliationFt onXt = π−1(t).

Let us fixt0 ∈ T such thatX0 = π−1(t0) is contained in the polar set ofωi (i = 0, 1, 2)
or in the zero set ofω0 and letf ∈ π∗OT,t0 be a rational function onX0 corresponding to a
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generator of the maximal ideal ofOT,t0 . Notice that we can replace the triplet(ω0, ω1, ω2)
by (fkω0, ω1, f

−kω2). Thus, there is no loss of generality in assuming thatπ−1(t0) is not
contained in(ω0)∞ ∪ (ω0)0.

For i = 0, 1, 2, let ai be the order ofωi alongX0 and setαi = ResX0
f−aiωi ∧

df
f

. As
mentioned above we will assume thata0 = 0 and, therefore,α0 is just the restriction ofω0

to the fiberX0.
If a1 is negative then, comparing the orders alongX0 of dω0∧df and ofω0∧ω1∧df , we

deduce thatα0∧α1 = 0 and we can writeα0 = gα1 for some rational functiong ∈ C(X0).
Let G ∈ C(X ) be a rational function onX extendingg. According to formula (14) of
[10] we can replace the triplet(ω0, ω1, ω2) by the triplet

(

ω0, ω1 − f−a1Gω0, ω2 + f−a1Gω1 + f−2a1G2ω0 − f−a1dG
)

.

This increasesa1. After a finite number of changes we may assume thata0 = 0 and
a1 ≥ 0.

Finally, if a2 is negative anda1 > 0 thenα0 is closed and it is clear thatFt0 is trans-
versely projective. If insteada2 < 0 anda0 = a1 = 0 then comparing the orders alongX0

of dω1 ∧ df andω0 ∧ ω2 ∧ df we deduce thatα0 ∧ α2 = 0. Thus we can writeα2 = hα0

for a suitable rational functionh ∈ C(X0). From the equationdω2 ∧ df = ω1 ∧ ω2 ∧ df
we deduce thatdα2 = α1 ∧ α2. Combining these two identities we obtain

d(hα0) = α1 ∧ (hα0) =⇒ dα0 = (α1 −
dh

h
) ∧ α0.

Finally, comparing this identity withdα0 = α0 ∧ α1 (first equation) we obtain thatdα0 =
−(1/2)dh

h
∧ α0. ThusFt0 is transversely projective also in this case. �

8.5. Proof of Theorem 8.1 (and of Theorem C).Let (π : X → T,F ) be an algebraic
family of foliations andg ≥ 0 be an integer. We want to prove that the Zariski closure
of Σg ⊂ T (subset parametrizing foliations with rational first integral of genus at mostg)
corresponds to transversely projective foliations.

If a very general member of the family, sayFt, is not of adjoint general type then
Proposition 8.4 implies thatFt is transversely projective. We can apply Proposition 8.5 to
conclude that every foliation in the family is also transversely projective.

If instead a very general member is of adjoint general type then we will argue as in
the proof of Theorem 7.5 to obtain a non-empty Zariski open subset ofT such that every
foliation parametrized by this subset is of adjoint generaltype.

Proposition 7.3 allow us to assume the existence of a non-empty Zariski open subset
U0 ⊂ T that for a very general (i.e. outside a countable union of Zariski closed subsets)
t ∈ U0, the foliationFt has canonical singularities. SinceC is uncountable we also know
that there existsn,m > 0 and an open subsetU1 ⊂ T such that for everyt ∈ U1, the
linear |KF t

⊗m ⊗ N∗
F t

⊗n| defines a rational map with two dimensional image. Notice
that there may exist foliations inU0 ∩ U1 which are not of adjoint general type because
of the presence of non-canonical singularities. To remedy this we takeε > 0 sufficiently
small in order to obtain from Lemma 7.2 a non-empty Zariski openU2 ⊂ T such that
Ft hasε-canonical singularities. Every foliation parametrized by non-empty Zariski open
U = U0 ∩ U1 ∩ U2 is of adjoint general type.

Propositions 8.2 and 8.3 imply that the Zariski closure inT of Σg ∩ U corresponds to
foliations with rational first integrals. The Theorem follows by Noetherian induction. �
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