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Abstract. The classical macroscopic Maxwell equations are appraeicha
They are a corollary of the multipole expansion of the lo¢at&ostatic poten-
tial up to dipolar terms. But quadrupolarization of the mexdishould not be
neglected if the molecules which build up the medium posisege quadrupole
moment or do not have any dipole moment. If we include the qumadar terms
in Maxwell equations we obtain the quadrupolar analoguesf$dn’s equation:
Vigp— L2QV4¢ = —p/e. This equation is of the fourth order and it requires not
only the two classical boundary conditions but also two @oicial ones: contin-
uous electric field and the relation of the jump of the normeddyupolarizability
at the surface to the intrinsic normal surface dipole momégné account of the
quadrupole moment of the molecules leads to significanémdifices compared
to the classical electrostatic theory.

PACS codes: 41.20.Cv, 77.22.-d, 33.15.Kr

1 Introduction

arXiv:1610.08650v1 [cond-mat.soft] 27 Oct 2016

The macroscopic Coulomb and Ampere’s law die [
V-D=p (1)

E=-V¢. )

Here, p is the free charge density, is the electrostatic potential afdd is the
electric displacement field which is linearly dependenttom ¢lectric field in-
tensityE [12]:

D=cgE+P =¢gE+ apE =¢cE 3)

wheree = g9 + ap = e, is the absolute dielectric permittivity, is the
vacuum permittivity,e, is the relative permittivity of the mediumyp is the


https://core.ac.uk/display/161895249?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1610.08650v1

Slavchov, Dimitrova, and Ivanov

macroscopic polarizability of the medium. For a homogeseoadium Ve =
0) the Poisson equation fgrfollows from Eqs[(11){(B):

— V2 = p. (4)

The derivation of Eq{4) involves a multipole expansionha tocal potential up

to dipole terms, i.e., it neglects the quadrupole momensite[i3,4]. Several
studies of optical phenomeri,[B,[7,/8] have demonstrated that the quadrupolar
terms in the macroscopic Coulomb law Eg. (1) become quitgfaignt in cases
where high gradients df are present. In such cases, quadrupolar term in the
displacement field need to be introduce@]:

1
D=<BE+P-2V-Q (5)

HereQ is the macroscopic density of the quadrupole moment tematr ¢ero
trace P]). Note that the numerical coefficient in front & - Q depends on
the choice of definition of the microscopic quadrupole motegnwe used the
following one 9J:

a- | [rr—éuﬂ] Procat(r)V (6)

particle

wherepoca1 IS the local (microscopic) charge density in the particld Binis the
unit tensor. Other definitions af are often employed, differing from Eq[(6)
with a factor of 3[] or 3/2 [4].

In order to close the problem, in addition to Edqg. (1) and¢Bg needs a consti-
tutive relation between quadrupole moment density andréedield gradient.
The equation of state of the quadrupolarizatioi®js [

Q=00 (VE—%UV~E). @)

Since it is of key importance for the theory of quadrupolalelitrics, we will
present shortly its derivation in S€g. 2. Here, the coefiicig, is the quadrupo-
larizability of the medium and it can be related to the qupdie moment of the
solvent molecule#[9]. Various other constitutive relations have been proposed
in the literature[8,/4]. Substituting Egs.[{5)[{7) into EqJ(1) and using the Am-
pere’s law E = —V¢, Eq. [2)) and the equation of state of the polarization
P = apE, one obtains the explicit form of the electrostatic CouleArhpere’s

law in quadrupolarizable media:

V26— LRV = —p/e (8)

which determines the electrostatic potentiaHere, the quadrupolar length,
is defined as: g

Ly = —=. 9

Q=3 9)
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In Ref. [9], we used data for the partial molar volumes and entropieggnous
ions to estimate this quantity for watetiy = 2.5 £ 1.5 A. Equations[(B) and
(@) are of the same form as those of Chitan@js the only difference being the
obtained different numerical coefficient in E@l (9). By = 0, the quadrupolar
Coulomb-Ampere’s law Eq[18) simplifies to the standard &misequation (Eq.
(@)). Equation[(B) opens a vast field for analysis of the ¢ftéthe quadrupole
moments of the molecules composing a medium on many eléatiophenom-
ena. The correction fo€ will be important if the solvent molecules possess
large quadrupole moment - such is the case of wd@jrgnd many others, in-
cluding "non-polar" media of low dipole moment but high quazble moment
such as liquid C@, fluorocarbons, etc4j[11].

2 Equation of state for the quadrupole moment density

The problem for the constitutive relation betwe@mand the field gradieriVE
has been addressed several tinf&\[5,18,[12,[13,[14,[15]. Using as a starting
point the approach of Jeon and Ki],[ we obtained in Refl9] a new simple
equation of state which relat&3 to the field gradienVE and the molecular
properties of the solvent (Eq](7)). Here we will mark theib@mints of that
derivation.

Consider an ideal gas consisting of molecules possessimjjcacgiadrupole
moment tensoryg (for the sake of simplicity, the molecule is assumed non-
polarizable and with no dipole moment). Singgis symmetrical and traceless,
by a suitable choice of the coordinate system it can be dalgmd 5] and in

the general case, its diagonal form is:

ez 0 0
.T‘T—’_ + zzZ
Qo= 0gq, 0 |- ety Tl: qu ey, (10)
0 0
qZZ

Here we remove the trace of the quadrupole moment becawmesiés a constant
potential (Bethe potentigdB]) which has no contribution to the electric fielg] [
The molecule is freely rotating. In a rotated frame the qupdle moment tensor
changes frongg to g:

qij (8071/179) = Eik(%w,@)Eﬂ (5071/179)(]0“ (11)

whereyp, 1 andf are the Eulerian angles andd v, 9) is the Euler matrix. In
the absence of a gradient of the electric field the average\aflq is qo. In an
external electric field gradienfE, the electric energy of the molecule is given
by the expressiorHg 4.170f Jackson[1]):

1
Uel = — 54 VE. (12)
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The symbol “:” denotes double scalar produkt; B = A;; B;;. The probability
for a given orientation of the molecule follows the Boltzmatistribution which
can be linearized in the casewf/kpT < 1:

o B Uel ~ _ Uel
p(p,,0) = cnexp ( kBT) Cn <1 kBT) . (13)

Here, kg is the Boltzmann constant]" is the absolute temperature and
cn IS a normalizing coefficient which can be obtained from thedition

[ p(e,4,0)dQ2 = 1. The average quadrupole momenof a molecule can
be calculated directly using Eq§.{10)4(13):

27 27w
1
q= ///qp(go, ¥, 0) sin 0dodedy = aq (VE - gUV . E) (14)
0 0 O
Here, we have introduced the molecular quadrupolarizghili which is related
to the diagonal components qf as follows:
Qg =do : 9o/10kgT (15)

Equation[(Ib) was obtained e.g. in R&].[The derivation above is strictly valid
for a gas of solid quadrupoles. It can be readily generatiaéuclude molecular
quadrupolarizabilitiesy o [4] and then we obtain the expression:

Qg = @q0 + 9o : qo/10ksT (16)

In the presence of a field gradieRtE, the macroscopic densit@) of the
guadrupole momentin a gas is the gas concentratiomesq, Eq. [14). There-
fore, we finally obtain Eq.[{7) with macroscopic quadrupiaability defined as
ag = Cay. The relatiorg ~ C(ag0 + do : 9o/10kgT) can be compared to
the linear Langevin-Debye formutep ~ C(a0 +p - p/3ksT) [12] (apo and
p are the average polarizability and the dipole moment of tiheesit molecule).

3 Boundary conditions for the generalized Poisson equation

The quadrupolar equation far(Eqg. (8)) is of the fourth order and requires ad-
ditional boundary conditions compared to Poisson’s equatdne of these new
boundary conditions was deduced by Graham and Ra4@][and by Batygin
and Toptygin[L3], and it explicitly relateghe intrinsic surface normal dipole
momentP? to the bulk quadrupole densities. Following Graham and H@ab
we will derive the boundary conditions using the singulatritbution approach
developed by Albano, Bedeaux and Vlieg&8,[19]. We investigate a flat inter-
face atz = 2y between two quadrupolar dielectrics; this interface hafasa
charge density® and intrinsic surface dipole moment densRy. First, we
write the singular distributions of, P andQ:

p=n"p"+n"p" +8p°, (17)
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P=n"Pt 4+ P +6P° (18)
Q=7"Q"+1 Q. (19)
Here, X and X~ denote the corresponding physical quantities for the phase
situated at: > zp andz < zg, respectivelyy is the Heaviside step function,
nt =n(z — 20),n” = n(z0 — 2); § = 6(z — 20) is the Dirac delta function.
If we want to include the surface excess of the quadrupole embalensity, we

should take into account the bulk octupole moment denstig dlectric field is
intensive variable and so its singular distribution is:

E=n"ET +n E". (20)
The distributions ofP, Q andE (Egs. [I8){(2D)) are substituted in Ed] (5) to
obtain the singular distribution db:

D =yn"D" +4 D~ 4 6D° (21)
whereD* andD~ are the displacement fields for the upper and lower phase,
respectively:

D* = ¢oEF + P* — %v Q. (22)
and the surface excess of the electric displacement:
1
DS:PS—Q(ez-Q+—eZ-Q_). (23)

In the derivation of the last equations we used the reldion™Q*) = n*V -

Q= + de, - Q* and that the Dirac delta function is a derivative of the Hsialé
step functionVn* = e,dn*/dz = +e,d. The singular distributions Eq$.(21)
and [1T) ofD andp are then substituted into Coulomb’s law EQ] (1) to obtain
the singular expansion of the quadrupolar Maxwell equation

nt(V-D* —p") 49 (V-D~ —p ) +46(DF — D, +V-D° - p°)
+ 6D =0 (24)
whered; = dd/dz. The above equation further simplifies to:
N (V-DF —p*) 49 (V-D™ —p7) +8(DF = D +V°-D® — p°)|,—,
+6D5],—., =0 (25)

Here, we have used the properties of the singular functidyisz) = ¢ f(zo)
andé; f(z) = 81f(z0) — 6(df/dz)|.=., and V® denotes surface tangential
derivative (in flat symmetr/> = exd/0x + e,d/dy). Next, we use the lin-
ear independence oft andé to decompose EqL(R5) to obtain, first, the bulk
equations for the two phases (the coefficients®in Eq. [25)):

V.-Df =pt (26)

5
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Further, the coefficient of in Eq. (25) has to be 0, which gives a generalization
of the Gauss law for the quadrupolar media:

DFf —D; +V5.D5—-p5=0 (27)

The last term of Eq.[(25), proportional g, results in a new boundary con-
dition, which relates the intrinsic surface dipole momeg#tto the jump of the
guadrupole moment, cf. Eq._(23):

QY. - Q.. =2P} (28)

This equation was derived with the classical methods by @atsgnd Toptygin
[13]; compare also teeg. 650f Shen and Hul20]. We will refer to it as to
multipolar (dipolar) condition for the jump of the electrfield gradient We
will consider only flat symmetry in this study (the quadrugr@tation tensor has
diagonal elements only) and surfaces with no tangentialrpeation. Therefore,
Eq. (27) simplifies to:

Df -D; = /% (29)
which is formally equivalent to the classical Gauss law, t¢ must keep in
mind thatD involves higher derivatives of the fiel cf. Eqg. [$). Two additional
boundary conditions complete the set, namely, the potetthe electric field
must be continuous at= z,

¢+|z:20 = ¢_|z:20 = ¢S’ E+|z:20 = E_|2:ZO =E° (30)

Instead of continuoug&, Chitanvis imposed continuity of the second normal
derivative of the normal field but the field itself remainedatintinuous in his
work. Equations[({8) and (28)-(B0) define a unique solutiarttie electrostatic
potential¢. Some simple consequences of it were investigated in Re21[
22,123] and are summarized in the next few sections. Compared toethéts

of the classical dipolar electrostatics, two common fesgof the solutions of
the quadrupolar electrostatic law are the regularizatfah® potential and the
damping of the field gradient.

4 Effect of the quadrupolarizability of the media

In this Section we will apply the general equation Hd. (8)hef électrostatics of
guadrupolar media and its boundary conditions Egsl (Z8)43solve several
basic electrostatic problems for point sources in bothaisos and conductors.

4.1 Point sources in an insulator

First, we consider a point charge witlir) = ¢d(r). In this case, Eq[{8) reads
as:
1d ,d Ljd ,d1ld,d g

T_QJT dr 72 drr dr r? drr dr’

(31)
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The general solution of this equation is:

A e—T/LQ eT‘/LQ
0 =Ao+ =+ 4y + As

(32)

In order to determine the four integration constants we t@edpose conditions
on ¢. First, we require the potential to be non-divergent as oo (this gives

As = 0, Ag has no physical meaning and we set it to be 0). The secondtzamdi

is that the asymptotic behavior ¢fasr — oo is unaffected by the presence of
quadrupoles, that is, the potential of a point charge at oo tends tog/4mer.
This condition yieldsd; = ¢/4we (note that the same result can be obtained by
the Gauss law as well). We need one final condition in ordeeterthineAs.

We impose the requirement that the electric figltends to something finite as

r — 0, i.e., there is no singularity & atr — 0, which gives4d; = —A;. Thus,

we obtain solution for the potential which is also finite:

q 1—e"/ta

p=—a-—" (33)

4me r
The value of the potential at = 0 is ¢g = ¢g/4wcLg. The point charge has,
therefore, a finite self-energy:

2

P (34)
2 87T€LQ

This result is in marked contrast to the case of a point chiargacuum where
the potential is diverging as 1/r and the electrostaticeeérgy of a point charge
is infinite (Fig.[da). For a point charge in waterBt= 298K, if Lo = 2 A,
we obtaing, = 92mV andu. = 3.6kgT. Equation 2.8 of Chitanvis3] has
the same form as Eq[(B3) (but his relation betwégnanday is different).
Equation [(3B) can be compared also to Eq. 2.48 of Jeon and K&finwho
obtained a divergent potential since they used anothetitating relation forQ
and implied different conditions on their solutions to detme the integration
constants.

The potential ot point dipole in quadrupolar mediugan be obtained from the
point charge formula Eq[{83) using the general relatign= —p - Vo /q (p is
the dipole moment). The resultis:

_br _ A W) P
b =13 [1 (1 + LQ) e ] . (35)

This potential is finite, but not continuous. It is illuskedtin Fig.[1b. Finally,
a point quadrupole with quadrupole momenin a quadrupole medium has a
potential given by:

. . 2
bo = 3r-q-r |}_l <1+3L+T_> e—T/LQ‘|. (36)
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Figure 1. Electrostatic potential @) a point charge, Eq.[33), arg) a point dipole
(Jp| = 2.8D = 9.34 x 1073° C m), Eq. [3b), in a quadrupolar medium vs. the distance
r from the point charge/dipole in watet & 78 x €0, Lo = 2 A). In a quadrupolar
medium, the point charge has finite potentiat-at 0; the potential of the point dipole
is also finite but discontinuous at= 0. Blue solid line: Lo = 2 A; red dashed line:
Lg = 0 (the classical solution).

Here, we have employed the well-known formyla= q : VV¢/q.

Let us summarize the results that we obtained for a pointedara quadrupolar
medium. The potential of a point charge in a dipolar mediusiiia singularity
atr = 0, while it is finite and continuous in quadrupolar medium, [38). The
point dipole classically has & 1/r? singularity in dipolar medium, while in
a quadrupolar one it has finite (but discontinuous) potériiq. (33). Finally,
the potential of a point quadrupole hag A& singularity in a dipolar and /r
singularity in a quadrupolar medium, EG.[36). Itis easynedict that in an oc-
tupolarizable medium, not only the potential, but also te&lfof a point dipole
will be finite and continuous, and thus the self-enengy E(0) of a dipole in
an octupolar medium must be finite. A point quadrupole in potar medium
will have a finite continuous potential, but singulE and infinite self-energy;

higher-order macroscopic multipolarizability will lead &dditional regulariza-
tion.

4.2 Point charges in conducting media

In the case of conducting media, one has to consider the efkngsity of the
mobile charge®monie- We need to know the dependencemfopie on the
electrostatic potential. In this work, we assume that théitea@harges are dis-
tributed according to the Boltzmann distribution:

pmobite = Y _ 3:C; exp — (¢i¢/kpT) (37)

3
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whereg; andC; are the charge and the concentration of#tietype of mobile
carrier, respectively. Following Debye and Hulickel, we #riee the exponentin
Eq. (37) and use the electroneutrality conditjo ¢;C; = 0 to obtain:

Pmobile = _E¢/L2D (38)
where the Dybye length is defined as
2 €]€BT
= 39

Substituting Eq. [(38) into the Poisson Efl (4), one obtaihatvis known as
the Debye-Huckel equatioi24] (or the linearized Poisson-Boltzmann equa-
tion). The generalization of the Debye-Huickel equationdgroint charge in
guadrupolarizable media reads as

1d ,d, Lyd,d1ld,d, _ ar) ¢

- - 2. (4o
2dr dr 2 dr drr2dr dr € + L3 (40)

We impose two boundary conditions to this equation. The dingt is the stan-
dard electroneutrality conditighpdV = 0. The second one is less orthodox
- we require that the potential does not diverge at the origifi) < co. The
validity of the second condition is discussed in the presi8ec[411.The non-
divergent at- — oo solution of this equation is given by

g 13+ 13 e/ _ /i
e ld - lé r

(41)

where we have introduced (as common for biharmonic equstibie two char-
acteristic length$p andlg wich are related td.p, andL as:

5 —1/2 5 —1/2
1 1 Lg 1 1 Lg
Ip=1L —— /1 —-4= lo=1L —+ =4 /1—-4—=
PTrelz 2 L3, T el gty L3
(42)
The inverse relations which defidg, and L throughlp andig are simpler
LY =1} +13, Ly =157 +15% (43)
The potential in Eq.[{41) is finite and its valuerat 0 is
—1/2
i Lg
= 14+2—= . 44
%o 4dmeLq ( * LD> (44)
As was the case of a point charge in an insulator, the enerthegioint charge
is finite "
qido (J-Q Lq B
ol = = L 142—= . 45
Ul = 7y 87TELQ<+LD (45)
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In the limit Lp — oo Eq. (41) simplifies to the potential of a point charge in an
insulator (Eq. [(3B)). In the case of negligible quadrupaksility (Lo — 0),

Eq. (41) reduces to the classical Debye-Hiickel potentialmdint charge:
g et
dwe 1

¢ =

The dependence EJ._{42) of the characteristic lengitendig on Lp /L is
analyzed in Fig[2. In dilute solutions, whekg, >> 2Lq, both lengthdp and

lg are real, andp is almost equal td.p while g is almost equal td.q; (Fig.[2,

to the right of the bifurcation), which is the reason for tieice of indices. At

a certain critical value of the Debye length{ = 2L), the lengthsp andlg
become equal to each other. The critical concentrati@h.is= ckpT/8¢*L3,.

At the critical value ofL, the potential in Eq.[{41) degenerates to the following
result:

(46)

¢ = 4 \/_ fr/LD
471'5 LD

This change in the functional dependence fremp(—r)/r to exp(—r) corre-
sponds to a kind of "resonance" between the diffuse atmosplie¢he mobile
charges and the quadrupole moment cloud around a chargen ¥¥he: 2L,
the two characteristic lengths in EQ.142) become complekcamplex conju-
gate to each other (Fif] 2, to the left of the bifurcatior8,,ithe potential (Eq.
(41)) while diminishing with distance exhibits an oscitlat behavior. In this
case one can rearrange Hq.l(41) in the form:

o= Kl L}‘e — l%m ex 7ZR r | sin 711111 r (48)
T dme Ipelr T\ B 412, EREEN
wherelg. = Rdp andl;,, = Imip. One can easily derive the following expres-
sions forlg. andly,

(47)

Lp Lo
IRe /T = +1+2=%
Re/I + In

It is well-known that oscillations of the electrostatic eotial and the charge
density existl5,26,27,28]; oscillation of wavelengtii2 +12,) /I related to
guadrupolarizability is, however, a fundamentally newrpimaenon.

Let us now discuss the structure of the diffuse layer aroupdiat charge in

guadrupolarizable medium in relation with the classicabigeHuckel model.

Physically, the quadrupolarizable medium does not suppigtt gradients of

the field, and therefore, non-zero quadrupolar lengthresults in a smoother
potential and slightly expanded diffuse atmosphere. As asone of this effect
one can use the average distance between the central paigeamnd the diffuse
charge of the double layer:

(49)

prdV o L2D + LDLQ

[pdV "\ /IZ T 2LpLg

(50)

Ldiffuse layer —

10
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1Ly,
IL,

34

~—

Im(/,/L,) =
Im(/,/L,)

L)L,

Figure 2. Dimensionless characteristic length$Lo andlq/Lg as functions of the
dimensionless Debye lengfhn /Lg, Eqg. [42). Red solid lineRe(In/Lg); red dashed
line: Re(lp/Lq); blue lines:Im(lq/Lg) andIm(ip/Lq).

where the expressions fgr and ¢ are taken from Egs. [(B7) anf {41), re-
spectively. In the case of a low concentration of charges, E&f{) can be
expanded into series with respect to lafgg with the resultLgiguse layer ~
2Lp+ Lé/LD +.... Thus, in the limit of the classical Debye-Hlckel model, the
charge of the diffuse cloud stands at an average distariterofrom the central
point charge. The quadrupolarizability of the medium letdan expansion of
the cloud t2Lp + L3/ Lp.

5 Electric field of a charged surface, a condenser and a dipola r
surface in quadrupolar medium

5.1 A charged surface and a condenser

Consider a surface of surface chagge(and zero dipole momeng® = 0) in a
homogeneous insulator of dielectric permittivityand quadrupolar lengthg,.

We solve the problem as if the surface is a field source imrdersa single
medium, but it can be viewed as an interface between twodi@s of equak

andLg as well 22].

The quadrupolar electrostatic equations [E¢. (8)Foiin the domair: > 0 (the
field there is denoted bi") andz < 0 (E;) read as:
dEZF o P°EF
dz 79 dz3
The solution to this equation has to fulfil the Gauss law Ef) éhd the Graham-
Raab boundary condition Eq._{28), not be diverging at infiaitd to be an odd

=0. (51)

11
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function,Ef (z) = —E (—z). The general solution that fulfils these conditions
is:
S
Ef =+ [1 - Ae—‘ZVLQ} p (52)

2¢e
The integration constat is determined employing the boundary condition for
continuous field Eq.[{30), namely, we requitg (0) = E (0), and we obtain
thatA = 1. Thus, the field of a charged surface turns out to be:

E, = Sg(z)g—i [1 - e_lzl/LQ} (53)

where s@z) is the signum function. The potential of a charged surfaca in
guadrupolar medium is obtained upon integratior-@f, with respect to:

S
6= —2= (el + Lo V/Ee). (54)

Itis easy to see that the derivative8f has finite value at = 0:dE, /dz|,—0 =
p3/2¢eLg. In Fig.[3 we compare these results with the correspondileg érom
the classical dipolar theo®, = sg(z)p°/2¢ andg = —p®|z|/2e¢.

Let us consider now two charged surfaces located-ath /2 with surface charge
densityp® and atz = —h/2 with charge density-p°, respectively. This is
the problem for a condenser of finite thicknésgmmersed in a quadrupolar
medium. The easiest way to obtain the respective field is ¢obs [G2) as a
Green’s function for the problem. The total field intensitythhe three domains
denoted by superscripts "+", "i" and "-" correspondingzte< —h/2, h/2 >

z > —h/2andz > h/2, respectively, is obtained by adding the fields of the two

charged surfaces with the result:
S
Ef—_ (ef\th/m/LQ _ 67\z+h/2|/LQ) P
8 2¢
S

S
Bl = (eflth/vaQ n 67\z+h/2|/LQ) PP (55)
2e €

S
E- = (eﬂth/zw@ _ ef\z+h/2|/LQ) v
z 2e

The limit ash — 0 of the piecewise function Eq[_(b5) corresponds to the case
of an infinitely thin condenser:

S h
gt P /g 56
2€LQe ( )

More importantly, this limit allows us to consider the preivl of a surface with
surface density of the dipolar momeRf = hp®.

12
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0 eEJp’

{ eglp’L,

Figure 3. Profile of) the potentiaky(z) andb) the field intensityE. (z) near a surface
of chargep® (suitably nondimensionalized). Comparison of the cladsiolution (red
dashed line) with Eqs[(54)-(b3), following from the Coulomquadrupolar law.

5.2 A dipole moment-carrying surface (infinitely thin condenser)

Consider a surface of dipole momeRf and zero surface charge density in
a homogeneous insulator with quadrupolar length and dielectric constant
e [22]. This can serve as a model for a lipid bilayer and for certifective
structures in crystals. The solution of EG.](51) that dodsdn@rge at infinity
is:

Ef = A*eIFl/Lq, (57)

where A™ and A~ are integration constants. This solution fulfils Gaussi la
Eg. [29) for any value of the integration constarts and A~. The Graham-
Raab multipole condition Eql_(28) gives the relation:

PS

AT+ A = — .
+ ELQ

(58)

In order to determine the second constant, we invoke the strgraf the prob-
lem, namely, the potential of the system must be an odd fomethdE, must
be even function of, i.e., E} (z) = E, (—z). The constants are determined

z

asAt = A~ = —P5/2¢ L. Upon substituting in Eqs[(57) arld{58) the final
solution for the field is obtained in the form:
S
E. = _P—Ze*|2|/LQ. (59)
25LQ

As could be expected, this result coincides with the exjpoadsr the field of
an infinitely thin condenser (recall th&® = hpS. The integration of Eq.[{39)
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gives the potential:

PS
— Zz (1 _ o l2l/Le
¢ =sgz) o (1 e ) . (60)
The potential difference between— oo andz — —ocois:
PS
d(z = 00) — Pp(z > —0) = ?2 (61)

Recall that the same potential difference is obtained irdthelar electrostatics
as well (cf. e.g.Sec. 14of Ref. [29]). The solution in Egs.[(89) and (B0) is
presented in Figl]4 together with a comparison with the spwoading results
from the dipolar electrostaties = sg(z) PS /2 andE, = —6(2)P5 /e.

e¢/P? z_/LQ

eL,E/P’

Figure 4. Profile of) the electrostatic potential(z) andb) field intensityE. (z) created
by an infinitely thin capacitor of surface dipole mométtlocated inz = 0 (¢, E. andz
are suitably nondimensionalized). The figure comparesl#ssical solution of Poisson’s
equation (red dashed line) with Eqs.}(59)(60) that followni the quadrupolar equations
of Maxwell.

We will conclude this subsection with three final remarksrstiwithin the
quadrupolar electrostatic laws and EQ.](55), a capacieates field that pen-
etrates outside the plates of the condenser. This phenaonfer®ono analogue
in the frame of Poisson’s electrostatics. Second, the casgrabetween the
classical and the quadrupolar solution of the electraspatiblems illustrated in
Fig.[3 and Fig[¥4 demonstrates two features of quadrupatatrelstatics: first,
the regularization of the solution for the field (a chargedaste creates contin-
uousE, anddFE,/dz and only the second derivative is discontinuous - compare
to the classical discontinuity af,; a dipolar surface creates continuous field
and onlydE. /dz has a discontinuity - compare to the classical discontrfit
¢). This regularization was already observed with the pdiratrge problem in
Ref. [9] (Section4.1). The last remark is that the field is contirsionly if on
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both sides of the surface there exist quadrupolar media.hédbbundary be-
tween quadrupolar and non-quadrupolar medium, the boyrdadition forE
(Eg. (30)) does not hold. In this case, however, no fourthblamy condition is
required.

6 Conclusion

The present work summarizes the main results of our prewtudtes(9, 21,22,
23]. We investigate the effect of taking into account the pneseof quadrupoles
in the continuous medium. For this purpose we derive a newtéryuof state for
the quadrupolarizatio® (Eq. {4)) and generalize the classic Poisson’s equation
(Eqg. (8)) and the required boundary conditions (Egsl (2@))(for quadrupolar
medium. When we apply these equations to some basic el&dtogsroblems
we obtain results which have no analogue within the claksieatrostatics: i)
the potential of a point charge in quadrupolar medium andetéenergy are
finite even at the position of the charge; ii) the potentiabngboint charge in
conducting media has oscillatory behaviour above certdiical concentration
of the charges; iii) the electric field of a charged surfa@ésntinuous function
at the surface; iv) the electric field penetrates outsidepthtes of a condenser
placed in quadrupolar medium. Therefore, the followingdaosions for the
characteristic features of the quadrupolarizable medideadrawn: taking into
account the presence of quadrupoles in the media makes thetipgbsmoother
and damps the electric field gradients.
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