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Abstract

Molecular clock models relate observed genetic diversity to calendar time, enabling estimation of times of common ances-
try. Many large datasets of fast-evolving viruses are not well fitted by molecular clock models that assume a constant sub-
stitution rate through time, and more flexible relaxed clock models are required for robust inference of rates and dates.
Estimation of relaxed molecular clocks using Bayesian Markov chain Monte Carlo is computationally expensive and may
not scale well to large datasets. We build on recent advances in maximum likelihood and least-squares phylogenetic and
molecular clock dating methods to develop a fast relaxed-clock method based on a Gamma-Poisson mixture model of sub-
stitution rates. This method estimates a distinct substitution rate for every lineage in the phylogeny while being scalable to
large phylogenies. Unknown lineage sample dates can be estimated as well as unknown root position. We estimate confi-
dence intervals for rates, dates, and tip dates using parametric and non-parametric bootstrap approaches. This method is
implemented as an open-source R package, treedater.
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1. Introduction

Pathogen sequence data can provide important information about
the timing and spread of infectious diseases, particularly for rap-
idly evolving pathogens such as RNA viruses. Such pathogens
have been dubbed ‘measurably evolving’ (Drummond et al. 2003),
as sequences typically accumulate mutations over epidemiologi-
cal timescales of years or even months. By using sampling dates
in conjunction with sequence data, it is possible to estimate the
rate of evolution, and hence generate phylogenetic trees cali-
brated in calendar time. These ‘time-trees’ are more straightfor-
ward to interpret in terms of the time to the most recent common
ancestor and changes in effective population size, which can then
be linked to external epidemiological information, as in the case
of the spread of hepatitis C virus in Egypt during antischistoso-
miasis injection campaigns (Pybus et al. 2003) and the spatial
spread of rabies virus in raccoons in the USA (Biek et al. 2007).

While there may be a fairly constant average rate of evolu-
tion over epidemiological timescales, there may be variation in

evolutionary rates across lineages in the phylogenetic tree; fail-
ure to account for this variation may lead to incorrect inferences
of evolutionary rates and dates. This has led to the development
of computationally-intensive Bayesian approaches, which as-
sume an underlying model for how evolutionary rates vary
across the phylogeny (Drummond et al. 2006).

With the growth in the size of pathogen sequence datasets, it
is becoming increasingly difficult to apply Bayesian relaxed-clock
methods. There have been several recent developments in fast,
approximate methods for generating time-trees from sequence
data (To et al. 2015; Jones and Poon 2016); however, these
approaches do not flexibly model rate variation, which can affect
estimates of the evolutionary rate (Duchêne et al. 2016).

We present an approach to fit a relaxed clock to a non-
clocklike phylogenetic tree with associated data on sampling
times. Using simulated data, we demonstrate that explicit in-
corporation of a relaxed clock leads to more accurate inference
of the mean rate of evolution in addition to providing informa-
tion on the variation in evolutionary rates. Our implementation
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generates confidence intervals for the evolutionary rate and the
time to the most recent common ancestor using parametric
bootstrapping (PB), which lends itself well to parallelization. Our
approach allows testing of a relaxed (vs. a strict) molecular
clock, as advised by Duchene et al. (2015); it can detect outlier
lineages associated with unusually high or low rates of evolu-
tion, and it can infer missing sampling times. We demonstrate
these features using a large (n¼ 1,610) genome-scale dataset of
Ebola virus sequences from the West African Ebola epidemic
(Dudas et al. 2015) and compare the performance of the new
method with other state-of-the-art methods.

2. Methods

Given a lineage i in a binary phylogeny T , we define xi to be the
rate of evolution in units of substitutions per site per unit time
along lineage i. The data takes the form of a branch lengths bi in
T with units of substitutions per site, which can be estimated
from a sequence alignment using maximum likelihood (ML), a
Bayesian approach, or a distance-based approach such as
neighbour joining.

We assume that the length of the sequence alignment,
denoted S, is known. If S is large and xi is sufficiently small, the
probability of reversions on lineage i will be small and the num-
ber of substitutions on lineage i is well approximated by a
Poisson distribution; this approximation is also known as the
Langley–Fitch model (Langley and Fitch 1974). We denote the
actual number of substitutions on branch i as si ¼ Sbi, the tem-
poral length of lineage i as si ¼ ti � taðiÞ, where ti is the time of
the i0th node descended from lineage i, a(i) is the node from
which lineage i is descended, and taðiÞ is the time of the ancestor
of node i. We model substitutions as arising from a Poisson pro-
cess with branch-specific rate ki ¼ sixi, such that si � PoisðkiÞ.

To account for rate variation, ki is modeled using a Gamma
distribution, where the variance of the rates depends upon the
branch lengths: ki � Cðr;usiÞ, where r and u are shape and scale
parameters to be estimated. With the Gamma-Poisson mixture
so defined, the distribution of sijr;u is negative binomial
(Greenwood and Yule 1920):

sijr;u � NB r;
usi

1þ usi

� �
: (1)

Given proposed values of r;u, and si, it is possible to compute
the most probable value of ki and by extension the branch rate
xi.

lðkijsi; r;uÞ ¼ logðpðsijkiÞpðkijr;uÞÞ

¼ cþ si logðkiÞ � ki þ ðr� 1Þ logðsiÞ �
si

usi
;

(2)

where c is a constant independent of k. This likelihood is a
convex function of ki and has a unique optimum at

k�i ¼
usi

usi þ 1
si þ r� 1Þ:ð (3)

The conditional ML estimate of xi is then given by
x�i ¼ k�i =ðsiSÞ.

It remains to develop a strategy for jointly optimising the
likelihood of all node dates ti, Gamma parameters r and u, and
the position of the root of the phylogeny. For now, let us assume
that the data take the form of a bifurcating rooted phylogeny
with branch lengths in units of substitutions per site and that

all tip dates are known. We will subsequently relax the assump-
tion that the input tree is rooted and that all tip dates are
known. Following the convention in (To et al. 2015), we index
nodes such that i ¼ 1; 2; � � � ;n� 1 correspond to internal nodes
and indices i ¼ n; � � � ; 2n� 1 correspond to tip dates. Given a pro-
posal of internal node times ðtiÞi¼1:n�1 a conditional ML estimate
of ðr;uÞ is found by optimising the log likelihood

lðr;ujðtiÞi¼1:n�1Þ ¼
X

i¼1:n�2

log fnb sijr;
usi

1þ usi

� �� �� �
; (4)

where fnbð�Þ is the negative binomial density. Optimising this
likelihood is straightforward using gradient-descent or simplex
strategies; the computational cost of a likelihood computation
is linear in sample size.

It is also straightforward to obtain a very good approxima-
tion to the ML ðtiÞi¼1:n�1 conditional on ðr;uÞ and ðxiÞi¼1:n�1 using
the least-squares approach described in (To et al. 2015). Briefly,
we minimize the weighted residual sum of squares

RSSððtiÞi¼1:n�1jðxiÞi¼1:n�1Þ ¼
X2n�1

i¼2

1
r2

i

ðbi � xisiÞ2 (5)

The parameter ri is an approximation to the variance of bi.
Following the approach in (To et al. 2015), we use ri ¼ ðbisþ cÞ=s,
where c is a tuneable parameter and s is the sequence length.

Minimizing RSS is linear in sample size. It is also possible to
solve a constrained least-squares problem if we wish to enforce
the constraint that ti > taðiÞ. This is implemented using the
quadratic-programming algorithms implemented in the mgcv
and quadprog R packages (Wood 2006; Turlach and Weingessel
2013). The main difference between this optimization and the
one described in (To et al. 2015) is that branch-specific xi take
the place of a constant substitution rate x.

Whereas individually optimising xi or ðr;uÞ or ðtiÞi¼1:n�1 is
straightforward conditional on other parameters, rapid optimi-
zation of all parameters r;u, and ðtiÞi¼1:n�1 is challenging. We
therefore adopt a fast heuristic iterative approach described in
algorithm 1.

Algorithm 1: The treedater algorithm given a rooted tree and tip dates.
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This algorithm can be repeated for multiple starting condi-
tions of the initial substitution rate to improve the quality of the
estimate.

2.1 Estimating root position

Given a rooted tree T with branches in units of substitutions, xi

will denote the root-to-tip (RTT) distance for sampled lineage i;
this is the sum of all branch lengths between the root node and
tip i. A common approach to rate estimation is to regress xi on
the known date of sampling ti. The slope of the regression line
is an estimate of the mean rate of substitution per unit time
where the correlation due to shared ancestry has been ne-
glected. This approach is implemented in the software TempEst
(Rambaut et al. 2016) and in the ape R package (Paradis, Claude,
and Strimmer, 2004).

RTT regression also provides a fast means of optimising root
position given an unrooted tree T 0. We adapt the approach im-
plemented by the rtt function which is part of the ape R package
(McCloskey 2015). In brief, given a proposed root edge u, the re-
sidual sum of squares of the RTT regression using the tree
rooted on u can be computed. This can be repeated for every
branch in the tree. The treedater algorithm uses this heuristic
approach to identify a set of nr good candidates for the root posi-
tion. Algorithm 1 can be repeated for every good candidate root
position and the dated tree with the highest likelihood is re-
turned. The complete algorithm is described in algorithm box 2.

2.2 Estimating tip dates

In many real applications, dates of lineage sampling may not be
known with certainty. Sometimes, the exact sampling time is not
known; it may be missing from the annotations, or recorded to a
particular precision (e.g. the calendar year rather than the date).
Given an initial guess of tip dates ðtð0Þi Þi¼n:2n�1 and lower bounds
ðlð0Þi Þi¼n:2n�1 and upper bounds ðuð0Þi Þi¼n:2n�1 we can modify algo-
rithm 1 to optimize tip dates in each iteration. At step k of algo-
rithm 1, we model the number of substitutions on tip i as Poisson
with rate kiðtiÞ ¼ ðti � taðiÞÞxiS. We then optimize the log likelihood

lðtðkþ1Þ
i jtðkþ1Þ

aðiÞ ;xiÞ ¼ logðfPoissonðsijkiðtiÞÞÞ: (6)

This univariate optimization is then repeated for each un-
certain tip date ti at each iteration k. Note that this is a heuristic
optimization and in general will not return the unique optimal
combination of tip and internal node dates. Better optima can
be found by repeating the treedater algorithm with different
guesses of the initial tip dates. The performance of this tip-
dating variant of the treedater algorithm is explored in simula-
tion results below.

2.3 Parametric bootstrap

Because the likelihood under the treedater model is optimized
heuristically, it is challenging to apply standard likelihood
based approaches such as profiling to estimate confidence in-
tervals. A standard approach for assessing uncertainty in phylo-
genetic analyses is to perform non-PB, in which columns in the
multiple sequence alignment are resampled with replacement
in order to generate new datasets. Fast approximations to non-
PB for phylogenetic reconstruction have also been proposed
(Nguyen et al. 2015), and the latest version of the least squares
dating (LSD) software also includes PB routines (To et al. 2015)
(accessed 6 April 2017). In addition to running treedater on multi-
ple bootstrapped phylogenies, Monte Carlo simulation and PB
approaches offer a highly flexible and parallelizable approach
for estimating uncertainty in substitution rates and node dates
(Efron and Tibshirani 1994). The PB approach implemented in
treedater assumes 1, the data were generated under the strict or
relaxed clock model as implemented in treedater, so that substi-
tutions on each branch will follow a NB distribution as in equa-
tion 1. 2, The sampling distribution of estimated rates and time
of the most recent common ancestors (TMRCAs) is asymptoti-
cally normal and the SD of the sampling distribution is well ap-
proximated by the PB distribution of estimated rates and
TMRCAs.

The treedater PB algorithm works by simulating npb synthetic
datasets ~T j¼1:npb

. These are generated by simulating a tree
(rooted or unrooted) with identical topology as the original data
but with branch lengths distributed:

~bi � NB br; b/bsi

1þ b/bsi

 !
=S (7)

where parameters �̂ correspond to the pseudo-ML estimate pro-
vided by algorithms 1 or 2.

The treedater algorithm (1 or 2) is applied to each ~T j providing
a Monte Carlo sample of substitution rates ~xj¼1:npb

and other pa-
rameter ~uj¼1:npb

and ~rj¼1:npb
and node dates ~tij. The estimate of the

sampling SD of model parameters is the SD of the PB sample.

2.4 Detecting outliers

The treedater algorithm provides several statistics associated
with each sampled lineage that can be useful for identifying
outlier lineages; these may represent sequencing error or sam-
ples that are poorly described by the fitted substitution model.
In such cases, outliers can be identified and removed in order to
produce a data set that the given molecular clock model can
better fit. Existing software, such as TempEst (Rambaut et al.
2016), uses RTT regression in order to perform these
comparisons.

For each sampled lineage treedater provides 1, the estimated log
likelihood of the branch length under the substitution model; 2,
the estimated substitution rate for that branch; 3, a P-value for the
branch length under the fitted substitution model; and 4, a q-value

Algorithm 2: The treedater algorithm given a rooted tree and tip dates.
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(Benjamini and Hochberg 1995; Benjamini and Yekutieli 2001),
which provides a quantitative measure of the extent to which the
lineage is an outlier under the fitted model and adjusts for multi-
ple testing bias. treedater uses q-values computed using the p.adjust
method in R (R Core Team 2016). Lineages may be identified and
excluded as outliers if their q-value is less than a user-defined
threshold q�; the proportion of outliers detected that are expected
to be false-discoveries (not true outliers) is q�.

2.5 Statistical test for detecting a relaxed molecular
clock

A strict clock is unlikely to hold in principle; in practice, how-
ever, there may be insufficient information in order to fit a re-
laxed clock. Fitting a relaxed clock in this case may risk
overfitting the data (Duchêne et al. 2016). We propose a simple
frequentist test to reject the null hypothesis of a strict clock by
computing the null distribution of the coefficient of variation
(CV) of rates across the tree.

The test utilizes the PB described in Section 2.3 to produce a
distribution of CV under the null (Stute, Manteiga, and
Quindimil 1993). First, the treedater algorithm is fit to the data
under a strict clock (Poisson substitution model). Then, the PB
from Section 2.3 is applied using a relaxed molecular clock. This
provides a bootstrap distribution of estimated CV of rates under
the null hypothesis that the clock is strict. Finally, the relaxed
clock model is fitted to the original data set and the CV is esti-
mated. If the CV under the relaxed clock falls outside a pre-
specified quantile of the bootstrap distribution, the null is
rejected.

2.6 Simulations

To compare the performance of treedater with other dating
methods, we use simulations from two recent publications
(To et al. 2015; Jones and Poon 2016). The reader is referred to
the original publications for a detailed description of simulation
design; brief descriptions of the simulated datasets are as fol-
lows. In To et al. (2015), simulations are developed using both
strict and relaxed clock models corresponding to HIV transmis-
sion chains, which presents a challenging scenario for molecu-
lar clock dating. Simulated data including BEAST configuration
files are available at https://github.com/emvolz-phylodynam
ics/treedater-simulation-experiments. Four scenarios are devel-
oped corresponding to different distributions of sample dates
through time and different levels of within-host genetic diver-
sity. We use unrooted phylogenies estimated by ML using
PhyML, which were previously computed by To et al. (2015).

Jones and Poon (2016)conducted a birth-death simulation to
generate a genealogy and assume a strict molecular clock.

To evaluate the performance of the different methods, we
use several statistics. To measure precision, we define the rela-
tive root mean square error of substitution rates to be (RRMSEx)
to be

RRMSEx ¼
1
x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx� x̂ki

p
where index k denotes the simulation replicate and brackets de-
note arithmetic mean. To measure bias of estimated rates we
define the relative mean error

RMEx ¼
1
x
hx� x̂ki:

Similarly, for estimated TMRCAs we define

RMSEt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
htmrca � t̂mrcak i

q
and

MEt ¼ htmrca � t̂mrcak i:

For simulations in (To et al. 2015), treedater is compared to
the following other methods:

• The QPD least-squares dating algorithm (To et al. 2015) with tem-

poral constraints (ti > taðiÞ).
• Bayesian relaxed molecular clock with estimated topology using

BEAST (Drummond et al. 2006).
• RTT regression (Drummond et al. 2003; Rambaut et al. 2016).

All methods except for BEAST use an unrooted ML input tree
estimated using PhyML (Guindon et al. 2010). Note that BEAST is
a complex Bayesian method with many tuneable parameters.
Bayesian prior distributions used to generate BEAST estimates
closely mirror how the data was simulated (To et al. 2015); how-
ever, in To et al. (2015), performance of BEAST was not opti-
mized with respect to all available parameters. A Uniform(0,1)
prior was used for the molecular clock rate which is not stan-
dard in BEAST. Furthermore, the coalescent tree prior was fixed
at a constant size. To improve on performance of BEAST re-
ported in To et al. (2015), we re-ran BEAST using a flexible sky-
ride coalescent prior (Minin, Bloomquist, and Suchard 2008) and
with longer MCMC chain length (50 million iterations). We en-
sured that effective sample size of all parameters exceeded one
thousand. For comparisons with RTT and QPD, we re-use data
from a previous publication (To et al. 2015).

2.7 West African Ebola epidemic

As an additional test of our approach, we fitted our model to se-
quence data from the West African Ebola epidemic (2013–2016).
Near-full length genomes (n¼ 1,610) of Zaire Ebola virus from
Africa, sampled between 17 March 2014 and 24 October 2015
have been collated, processed, and analysed using BEAST by
Dudas et al. (2017) and have been shared by the authors under a
Creative Commons 4.0 license at http://github.com/ebov/space-
time. The sequence alignment was extracted from the BEAST
XML file using BEASTgen v1.0.2, and we estimated a ML tree us-
ing IQTREE v.1.5.3 (Nguyen et al. 2015) using an HKYþ FþG4
model applied to each of four partitions (first, second, and third
codon positions, plus the non-coding region), the same underly-
ing model used in the BEAST analysis of Dudas et al., chosen so
as to maximize the comparability between the different
approaches. An initial tree was generated using default options,
then refined using a more thorough nearest-neighbor inter-
change search. Sample collection dates (or imputed dates) were
also provided by Dudas et al. We ran treedater using the top 10
root positions identified using RTT regression, with two starting
values for the evolutionary rate. Results from treedater were
compared to those from the QPD least-squares dating algorithm
(To et al. 2015), and from the maximum clade credibility tree
and a sample of 1,000 trees from the posterior distribution from
the analysis of Dudas et al., obtained using a relaxed molecular
clock. Inference of the cumulative number of infected individ-
uals from time-calibrated trees was performed using skyspline
(Volz, Romero-Severson, and Leitner 2017), assuming a 15-day
infectious period, and compared to the cumulative number of
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reported cases from Guinea, Sierra Leone and Liberia, as col-
lated by the WHO and processed by the CDC (https://www.cdc.
gov/vhf/ebola/csv/graph1-cumulative-reported-cases-all.xlsx).

3. Results

The treedater algorithm provides robust estimates of substitu-
tion rates and node dates across a range of simulation scenarios
presented by To et al. (2015) and Jones and Poon (2016), which
includes a range of sample designs and strict or relaxed molecu-
lar clocks. Figure 1 illustrates estimates from treedater in a re-
laxed clock simulation scenario from (To et al. 2015) where
treedater performed the best in comparison to three other meth-
ods (BRMC, Drummond et al. 2006; lsd-QPD, To et al. 2015; and
RTT, Rambaut et al. (2016). In this scenario (D750_11_10), tree-
dater provides accurate and precise estimates of the mean sub-
stitution rate, as well as good coverage of estimated rates and
lineages through time. In comparison to other simulation sce-
narios, this scenario was characterized by relatively large sam-
ple size (n¼ 110), a balanced tree topology, and samples
distributed throughout the history of the tree (some samples
near root of tree). Note that all methods performed well or
poorly in at least one scenario and estimated substitution rates
for all scenarios are illustrated in supporting Supplementary
Figure S2.

The bias and error of estimated substitution rates and
TMRCA using treedater in comparison to these other methods is
tabulated for four relaxed clock simulation scenarios in Table 1
and in supporting Supplementary Figures S1, S2, and S2. Among
the four performance metrics and four scenarios, treedater pro-
vides the best performance in 9 out of 16 comparisons with
BEAST, QPD, and RTT. For metrics and scenarios where treedater
was not the best performing method, it was usually the second
best performing method by a small margin (results not shown).

In most scenarios, confidence intervals estimated using the
PB provided good coverage of the true values, however in sce-
nario D995_11_10, coverage of the estimated TMRCA fell to 66
per cent. In comparison to other simulation scenarios, this sce-
nario was characterized by an imbalanced ladder-like topology
with many samples near the root of the tree. Nevertheless, the
mean error of the estimated TRMCA in this scenario was quite
small and the best performing of the four methods compared.

For 50 strict clock birth-death simulations in Jones and Poon
(2016), we find a weighted RMSE of 21.22 for the estimated
TMRCA. This can be compared to values in the study by Jones
and Poon (2016) of 22.1 for the node.dating method with 104 steps
and 20.1 for BEAST with correctly specified priors and a strict
clock (SMC). Note that in Jones and Poon (2016), the node.dating
algorithm is run with a fixed root position determined by RTT,
whereas with treedater, the root position was optimized among
10 candidate branches, which may partially explain the differ-
ence in performance. Among these methods (treedater, node.dat-
ing, BEAST SMC), treedater is by far the fastest method with a
mean runtime of 1.16 seconds, which can be compared to
5,950 seconds for node.dating with 104 steps or 6,840 seconds for
BEAST SMC with 106 steps (Jones and Poon 2016).

3.1 Testing a relaxed clock versus a strict clock

We applied our relaxed clock test to the simulated data from To
et al. (2015) including trees generated under strict and relaxed
clocks. Across 400 simulations and four scenarios we find that
the test has a 100 per cent true positive rate for detecting
the relaxed clock. On the other hand, across 400 strict clock

simulations, we find a false-positive rate of 34.8 per cent
(erroneous detection of a relaxed clock). The majority of the
false positives (89 of 139) were concentrated on a single scenario
(D750_3_25). This scenario was characterized by relatively small
sample size (n¼ 75) and a distant TMRCA well before the earliest
sample.

We also applied the relaxed clock test to the strict clock
birth-death simulations in Jones and Poon (2016). In 49 of 50
simulations, the relaxed clock test correctly failed to reject the
strict clock null hypothesis (false-positive rate¼ 2%).

3.2 Inference with uncertain times of sampling

We evaluated treedater in the presence of uncertain times of
sampling (‘tip dates’) by modifying simulated trees from To
et al. (2015). We randomly selected 20 per cent of sampled line-
ages and treated their tip date as missing data. The starting con-
ditions for uncertain tip dates were drawn from a uniform
distribution spanning the range of all non-missing tip dates.
Note that this simulation scenario represents extreme uncer-
tainty in tip dates; in most real-world situations, some prior
information would be available that would allow stronger con-
straints to be placed on unknown tip dates (e.g. nearest week or
month of sampling for pathogen sequence data). Figure 2 shows
the residuals of estimated tip dates. In this scenario, the tree-
dater algorithm estimates tip dates along with other node dates
and parameters with little bias in tip dates (MRE¼ 12.4%).
Relative to the starting conditions, RMSE of estimated tip dates
was 59 per cent lower. Estimation of molecular clock parame-
ters is deteriorated by missing tip dates in this extreme
scenario; the RRMSE of the mean substitution rate across all
scenarios is 32.5% (compare to Table 1).

3.3 West African Ebola virus epidemic

In addition to simulated data, we also analysed a large sequence
dataset from the West African Ebola virus epidemic, collated,
processed and analysed previously by Dudas et al. (2017). The
dataset is composed of many (n¼ 1,610) near-full-length ge-
nome sequences, many—but not all—of which have sampling
dates, as opposed to sampling months or years; in the analysis
of Dudas et al., 29 collection dates were imputed. The dataset
was also cleaned by removing potential T-to-C hypermutations
that may have arisen through ADAR editing, and by the removal
of sequences sampled from re-emerged transmission chains
originating from individuals with persistent Ebola virus infec-
tion (Blackley et al. 2016). The latter are associated with low ge-
netic divergence, consistent with a reduced evolutionary rate in
persistently infected individuals (Holmes et al. 2016). As such,
this dataset has been curated but still presents a challenge for
phylogenetic dating due to the large sample size and relatively
short sampling time frame. There are also external epidemio-
logical data on the timing and the dynamics of the epidemic
that can be used to validate inferences from sequence data
alone.

The first documented cases of Ebola virus infection in hu-
mans occurred in Guinea in December 2013, hence the time of
the most recent common ancestor of the sequences is likely to
be no earlier than this (Table 2). Using a sample of 1,000 phylog-
enies from the BEAST fits obtained by Dudas et al., we com-
puted the posterior distribution of the time of the most recent
common ancestor. The mean and median TMRCAs were 7
December 2013 and 13 December 2013, respectively, with a 95
per cent credible interval of 13 September 2013 to 26 January
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2014, with the TMRCA of the maximum clade credibility tree of
5 December 2013. Using a ML tree, both RTT regression and
node.dating gave estimate of the TMRCA (1 November 2013 and
31 October 2013) that were much earlier than the first docu-
mented case in humans. In contrast, the point estimate of the

TMRCA using treedater was within a few days of that inferred
from the BEAST maximum clade credibility tree. We detected
substantial rate variation in this data set, which may explain
the discordant results between methods that explicitly account
for rate variation (BEAST and treedater) and other methods.

A

C

B

Figure 1. Evaluating performance of treedater using simulations from To et al. (2015) under a relaxed clock model. This simulation corresponds to scenario D750_11_10

in which treedater has similar performance as BEAST. A, Estimated (black) and actual (red) lineages through time for a single randomly chosen simulation replicate.

The shaded region shows estimated confidence intervals. Note that lineages increase during sampling events, producing the jagged pattern. B, Estimates of the mean

substitution rate obtained by three methods compared in To et al. (2015) in addition to treedater over 100 simulation replicates. The red line indicates the true value.

The red triangle indicates the mean estimate for each method across all simulation replicates. Note that estimates with RTT and QPD were recycled from an earlier

publication (To et al. 2015) and are shown with unfilled points. C, Estimated mean substitution rate for each simulation replicate using treedater and estimated confi-

dence intervals. The red line indicates the true value.

Table 1. Bias and precision of treedater algorithm over four scenarios and 100 relaxed clock simulations from To et al. (2015).

Scenario RMEx RRMSEx MEtmrca RMSEtmrca Coveragex Coveragetmrca

D750_11_10 �0.021 (�0.005) 0.068 (0.064) �0.023 (�0.082) 0.097 (0.164) 0.86 0.85
D750_3_25 �0.022 (0.032) 0.133 (0.129) �0.043 (�0.1344) 0.184 (0.194) 0.84 0.90
D995_11_10 0.031 (�0.023) 0.097 (0.115) 0.012 (�0.012) 0.032 (0.028) 0.88 0.66
D995_3_25 �0.012 (0.026) 0.121 (0.140) �0.009 (�0.002) 0.067 (0.058) 0.87 0.84

x is the mean substitution rate and ‘Coverage’ refers to frequency with which 95 per cent confidence intervals covered the true value. In parentheses are shown the

best performance measures in a pooled comparison of RTT, least squares dating, least squares dating QPD, and BEAST relaxed molecular clock models. Metrics for

which treedater was the best performing algorithm are shown in bold face.
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The QPD algorithm (To et al. 2015) gave misleading results
when temporal constraints were not enforced; the estimated
TMRCA was later than the date of the first sequence (results not
shown). When constraints were enforced, QPD estimated a
TMRCA of 17 September 2012 rather than late 2013. We specu-
lated that QPD may be giving different results because it is sensi-
tive to outlier substitution rates in a small proportion of early
samples, so we applied QPD to twenty phylogenies obtained by
randomly downsampling to 250 tips and applying QPD to each
subtree. QPD returned a mean TMRCA of 8 November 2013 across
the twenty subtrees, similar to estimates with node.dating.

In order to compare the time-calibrated trees further, we ap-
plied skyspline (Volz, Romero-Severson, and Leitner 2017), a
semi-parametric coalescent model that fixes the recovery rate
and allows the number of new cases to vary over time, to the
lineages-through-time for time-calibrated trees obtained using
different methods. Figure 3 shows estimates of the cumulative
number of infected cases over time, and Table 2 provides numeri-
cal summaries based on the total number of infections, and the
timing of the peak of new cases per week, for which there are in-
dependent epidemiological estimates. Note that the epidemiolog-
ical record is subject to unknown levels of under-reporting, and
the true number of infections through time is not known.
Also note that estimated number of cases will be sensitive to
model structure, and the skyspline model assumes a simple
susceptible-infected-recovered model with time-varying trans-
mission rates. We find that skyspline applied to BRMC trees gives
lower estimates for the number of cases, but provides an esti-
mate of the peak that is consistent with epidemiological data.
Skyspline applied to QPD gives estimates of the total number of
cases that are very high, and peak too early. Skyspline applied to
treedater trees gives estimates of the timing of the peak very simi-
lar to that obtained by BRMC, but with an estimate of the total
number of cases that is closer to the number of reported cases.
We were curious as to the drivers of the differences in magnitude
of the number of infected cases obtained by BRMC and treedater; a
notable difference in the BEAST MCC tree and the ML tree was
the relatively high number of zero-length branches in the ML tree
compared to the BEAST MCC tree (see Supplementary Figure S4).
This difference arises due to the use of a prior on branch lengths
in the BEAST phylogenetic reconstruction which smoothes these
branches away from zero. To investigate the sensitivity of

treedater to this phenomenon, we added a small number, equiva-
lent to up to a single mutation, to either the tip lengths or the
edge lengths of the ML tree, and reran treedater. Adding muta-
tions to the tree resulted in much lower estimates of the number
of cases, although the TMRCA and the timing of the peak number
of cases changed relatively little. We also calculated the basic re-
productive number, R0 (operationally defined as the reproductive
number at the TMRCA) using skyspline; all estimates were lower
than those calculated from case onset data, although again, tree-
dater gave point estimates that were similar to those obtained us-
ing the BEAST MCC tree.

4. Discussion

The treedater algorithm provides a new tool in a growing reper-
toire of software for molecular clock phylogenetic analysis, and
fills a niche where existing tools may not provide acceptable
performance. treedater is a fast method, like LSD and node.dating,
and scales well to trees with thousands of lineages. While not
as fast as LSD, treedater provides a flexible relaxed clock model
of the substitution process that may be more realistic for many
real data sets. treedater is integrated into the R statistical com-
puting language and can be easily included in bioinformatic
pipelines. There is substantial flexibility in the way treedater can
be used; analyses may be run with or without rooted trees, with
or without temporal constraints on nodes, and with strict or re-
laxed molecular clock models, in order to test sensitivity of re-
sults such as the effective population size to assumptions. We
have added several capabilities to treedater that add to its utility
for analysing biological datasets; 1, A PB approach, similar to
the one implemented by To et al. (2015), provides confidence in-
tervals for estimated substitution rates on each branch, the
mean substitution rate, node dates, and lineages through time;
2, A statistical test based on the PB can be used to choose strict
or relaxed molecular clock models (Kumar and Blair Hedges
2016; Duchêne et al. 2016); 3, The ability to accommodate miss-
ing tip dates, with arbitrary constraints for the times of sam-
pling (compare to features in BEAST software, Drummond et al.
2006); and 4, The ability to identify outlier lineages, which may
represent sequencing error or a different substitution process
(compare to features in Tempest software, Rambaut et al. 2016).

A B

Figure 2. Inference of unknown time of sampling for 400 relaxed clock simulations described by To et al. (2015). A, Distribution of residuals of estimated and true tip

dates. Red shows the residuals of the starting conditions and blue shows residuals after running the treedater algorithm. B, Estimated versus true tip dates. Blue shows

a linear regression line and red shows the main diagonal.
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The iterative likelihood optimization procedure employed by
treedater resembles commonly-used ML (expectation-maximiza-
tion) and variational Bayes methods that are widely employed for
difficult latent variable statistical models. This approach can be
compared with the recently developed node.dating method. In the
node.dating approach, most computational effort is expended on
optimising the times of tree nodes given a mean substitution rate,
which is treated as a nuisance parameter and typically estimated
by fast RTT regression. In contrast, treedater treats the unobserved
node dates as nuisance parameters, which are quickly estimated
using a variation of the least squares algorithm presented by To
et al. (2015) while conditioning on branch-specific substitution
rates. Most computational effort in treedater is expended on
optimising branch-specific substitution rates conditional on node
dates. While the treedater algorithm relies on heuristic optimi-
zation, it is found to work surprisingly well in comparison to other
methods focused on explicit optimization of a pseudo-likelihood
(LSD) or sampling from a Bayesian posterior distribution (BEAST).

Application of treedater across a diverse range of simulations
shows performance that is close to or superior to existing
approaches across a wide range of scenarios with relatively low
computational burden. When applied to a large dataset of Ebola vi-
rus sequences from the West African Ebola epidemic, treedater
gives estimates of the time to the most recent common ancestor
that are compatible with both epidemiological data and with more
computationally intensive approaches such as those implemented
in BEAST. In combination with skyspline, a high-throughput ap-
proach for inferring changes in population size over time from
time-scaled phylogenies, treedater also gives estimates of the total
number of cases and the timing and magnitude of the peak in new
cases per week that are also compatible with epidemiological data.

There is substantial potential to further develop and extend
treedater. Code optimization may bring speed and scalability
close to LSD. Alternative models may allow substitution rates to
be correlated between neighbouring branches (Gillespie 1984;
Sanderson 2003) or to depend upon a population genetic model.

Table 2. Point estimates of the TMRCA, the total number of cases, and the magnitude and timing of the peak number of new cases (per week)
inferred from 1,610 Ebola virus sequences from the West African Ebola epidemic, collated by Dudas et al. (2017).

Method Clock TMRCA Total cases Peak of new cases (per week)

Observed December 2013 28,476 998 (28 November 2014) 1.71–2.02
BRMC Relaxed 5 December 2013 15,697 423 (15 December 2014) 1.56
treedater Relaxed 8 December 2013 48235 1284 (16 December 2014) 1.55
treedater þ tips Relaxed 3 December 2013 33,438 921 (14 December 2014-12-14) 1.59
treedater þ edges Relaxed 2 February 2014 24,871 627 (5 February 2015) 1.48
node dating Strict 31 October 2013 29,514 730 (29 November 2014) 1.43
QPD – 8 November 2013-11-08 201,660 5131 (18 December 2013) 1.37

Observed data refers to the number of reported cases in Guinea, Sierra Leone and Liberia from 1 March 2014 to 22 October 2015. The estimate of from the observed data

is based on the time series of the number of cases, as estimates in WHO Ebola Response Team (2014). The point estimate of the TMRCA for BRMC is presented for the

maximum clade credibility tree. The total number of infections, the magnitude and timing of the peak of new cases, and the basic reproductive number, are calculated

by applying skyspline to each time-calibrated tree, with two spline points. All methods assumed temporal constraints on the tree. Note that QPD estimates are based

on random subsampling of the ML tree (see text).
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Figure 3. The estimated cumulative number of new cases of Ebola obtained by applying skyspline to rooted, time-calibrated trees obtained using different methods.
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A statistical test could be developed to test for temporal signal
in genetic data (Duchêne et al. 2015), and it may be possible
to simultaneously estimate node dates and the parameters
of a population genetic model such as the coalescent
(Minin, Bloomquist, and Suchard 2008; Wakeley 2009) to
estimate effective population size through time.
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