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ABSTRACT: Selective modulators of the γ-amino butyric acid (GABAA)
family of receptors have the potential to treat a range of disease states related
to cognition, pain, and anxiety. While the development of various α subunit-
selective modulators is currently underway for the treatment of anxiety
disorders, a mechanistic understanding of the correlation between their
bioactivity and efficacy, based on ligand−target interactions, is currently still
lacking. In order to alleviate this situation, in the current study we have
analyzed, using ligand- and structure-based methods, a data set of 5440
GABAA modulators. The Spearman correlation (ρ) between binding activity
and efficacy of compounds was calculated to be 0.008 and 0.31 against the α1
and α2 subunits of GABA receptor, respectively; in other words, the
compounds had little diversity in structure and bioactivity, but they differed
significantly in efficacy. Two compounds were selected as a case study for
detailed interaction analysis due to the small difference in their structures and
affinities (ΔpKi(comp1_α1 − comp2_α1) = 0.45 log units, ΔpKi(comp1_α2 − comp2_α2) = 0 log units) as compared to larger relative efficacies
(ΔRE(comp1_α1 − comp2_α1) = 1.03, ΔRE(comp1_α2 − comp2_α2) = 0.21). Docking analysis suggested that His-101 is involved in a
characteristic interaction of the α1 receptor with both compounds 1 and 2. Residues such as Phe-77, Thr-142, Asn-60, and Arg-
144 of the γ chain of the α1γ2 complex also showed interactions with heterocyclic rings of both compounds 1 and 2, but these
interactions were disturbed in the case of α2γ2 complex docking results. Binding pocket stability analysis based on molecular
dynamics identified three substitutions in the loop C region of the α2 subunit, namely, G200E, I201T, and V202I, causing a
reduction in the flexibility of α2 compared to α1. These amino acids in α2, as compared to α1, were also observed to decrease
the vibrational and dihedral entropy and to increase the hydrogen bond content in α2 in the apo state. However, freezing of
both α1 and α2 was observed in the ligand-bound state, with an increased number of internal hydrogen bonds and increased
entropy. Therefore, we hypothesize that the amino acid differences in the loop C region of α2 are responsible for con-
formational changes in the protein structure compared to α1, as well as for the binding modes of compounds and hence their
functional signaling.
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■ INTRODUCTION

The neurotransmitter γ-amino butyric acid (GABA) and GABAA

receptor play a key role in a wide range of important processes
within the central nervous system (CNS). For example, GABA-
mediated signaling is involved in cognition, learning, and pain
processes, as well as disorders such as schizophrenia, anxiety, and
epilepsy.1−3 The GABAA receptor belongs to the Cys-loop family
of ligand-gated ion channels (LGIC) and modulates the flow
of chloride anions across the cell membrane at the synaptic
junction (as well as exterior to a synapse)4 in response to the
binding of GABA. Structurally, the GABA receptors exist as

heteropentameric units, consisting mainly of two α, two β, and
one γ subunits,5 although other subunits also exist.6,7 Multiple
distinct binding sites on the receptor have been characterized,
including the site for the endogenous agonist GABA, as well as
naturally occurring and synthetic modulators such as neuro-
steroids,8 barbiturates, and benzodiazepines.
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This latter class of drugs, which was developed prior to our
current understanding of GABAA pharmacology, exhibits
beneficial clinical effects, but it is also associated with undesirable
side effects including sedation, tolerance, dependence, and
cognitive impairment. Benzodiazepines bind at the α/γ interface
of the GABA receptor, act as nonselective positive allosteric
modulators (PAMs) of GABAA, and exert an effect at receptors
containing the α1, α2, α3, and α5 subunits.9 Subsequent genetic
studies have broadly characterized the α1 subunit as “sedation-
related”, the α2 and α3 subunits as “anxiolytic-related”, and the
α5 subunit as “cognition-related” moieties.10−12

Building upon the positive clinical effects of benzodiazepines
and this genetic evidence, researchers have explored methods to
generate compounds that function as selective GABA receptor
PAMs for the treatment of a wide range of CNS disorders.13−18

For example, Merck explored the development of α1-sparing
α2/3 PAMs for the treatment of anxiety.12 During the course of
these studies, it proved difficult to identify compounds that
exhibited binding selectivity for the α2/3 receptors due to the
high sequence similarity at the benzodiazepine binding site
across the various α subunits. Instead, the researchers success-
fully identified compounds that were functionally selective for
the desired population of GABA receptors. Unfortunately, our
understanding of why certain ligands are functionally selective
while other closely related ligands are not still remains unclear.
In order to understand the differential functional activity

profile of GABA receptor modulators, we describe herein a
combined ligand- and structure-based analysis of affinity and
efficacy of a large number of known GABAA modulators. On the
basis of compiled bioactivity data from both public and internal
data sources, we employed descriptor- and receptor-based
modeling approaches, including binding-mode analysis and
molecular dynamics (MD) simulations (Figure 1), in order to

develop a hypothesis for compounds binding to the α subunits’
interface of GABA receptors. We ultimately hope this work
will provide a better understanding of the ligand−receptor
interactions that influence functional selectivity, with the aim
of improving our ability to develop drugs against this receptor in
the future.

■ MATERIALS AND METHODS

Data Set. The complete data set comprised 5440 compounds
from both the ChEMBL19 database19,20 and the in-house
database of Pfizer. Standard bioactivity values used in the model
were pKi values, extracted from ChEMBL as a pChEMBL value,
ranging between 4.18 and 10.52 pKi log units. While retrieving
ChEMBL data, a confidence score of 7 or greater was used. In
cases where there were more than one activity/efficacy value for a
compound, an average value was computed. Activity values from
the radio ligand binding assays directly measuring the binding
of a compound to the α1γ2 and α2γ2 benzodiazepine binding
pocket were extracted from the ChEMBL database.
The binding assays performed by Pfizer had a similar

experimental design as that retrieved from ChEMBL21 and
hence were compatible for mixing the binding data. The com-
plete experimental design of the assay is described in the
Supporting Information. The bioactivity values of 1221 com-
pounds against the GABAA α1 and α2 subtypes were extracted
from the ChEMBL19 database, out of which 758 compounds
were unique. Only 483 ChEMBL compounds had binding
activity against both subtypes. Pfizer provided 2100 unique
compounds (and a total of 4198 data points) against both sub-
types as well. Diazepamwas used as a positive control for docking
and simulation experiments. Figure 1 explains the workflow of
the different approaches used in this study.
Efficacy measurements of compounds against GABAA α1 and

α2 subtypes were retrieved from the ChEMBL19 database and
in-house Pfizer database as efficacy percentages calculated by the
patch-clamp method.22 This technique allows the study of single
or multiple ion channels in cells. To gain high throughput
from these technologies, Pfizer ran a QPatch automated
electrophysiology assay.23 The experimental design of the assays
and quality control criteria are explained in detail in the
Supporting Information. The efficacy percentage of compounds
retrieved from both the ChEMBL and Pfizer data sets was
converted to the relative efficacy (RE); that is, the efficacy of each
compound was calculated relative to the efficacy of the standard
modulator, diazepam (REdiazepam = 1.27 and 1.14 against the
α1 and α2 subunits, respectively).

Chemical Structure Preprocessing and Calculation of
Chemical and Biological Descriptors. All compounds were
standardized by applying the filters “keep large fragments”,
“neutralize”, “remove explicit hydrogens”, “clean 2D”, and “clean
3D” using JChem standardizer, version 14.11.10.0.24 After stan-
dardization, unhashed circular fingerprints (6519 bits) were
generated using RDKit, version 2014.03.1-np18py27_1,25 and
physiochemical properties were calculated using MOE, version
2013.08.26 A total of 188 2D descriptors were calculated after
calculating the partial charges using partial equalization of orbital
electronegativities (PEOE).27 Binding pocket sequences of both
aligned subtypes were used to calculate z-scales (first three
principal components) of amino acid residues,28 which were
used as target descriptors in PCMmodels. In addition to z-scales,
binary descriptors of proteins were also employed to generate a
PCM model. Binary descriptors were defined based on the
presence or absence (match or mismatch) of an amino acid in a
target. If the amino acid is the same in both targets, then it is given
a value of 1; otherwise, it is −1.

Data Preprocessing.Data points were centered to zeromean
and scaled to unit variance, followed by removal of columns for
which variance was near to zero with the function nearZeroVar
from the R package camb29 (frequency cutoff = 30/1).

Figure 1. Unified pipeline for the extraction and analysis of receptor
subtype-selective compounds used in the study. The workflow utilized
predictive modeling approaches, feature selection methods, assay-
related similarity assessments, molecular modeling, docking, and
molecular dynamics simulations.
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Visualization Methods. In order to explore the chemical
space of the complete data set, PCA30 of the physicochemical
properties of all molecules was performed using the princomp
method of the Stats package in R-studio, version 0.98.507.31 PCA
ellipses were calculated with a confidence level of 0.99 and plotted
using the ggbiplot R package.32 To further explore the similarity of
structures of compounds, multi dimensional scaling (MDS)33 was
performed on circular fingerprints in R using the cmdscale function.
The final matrix was then plotted to identify the similarity and
diversity of compounds of the data sets in terms of structure.
Similarity Methods. Structural similarity between com-

pounds was measured using the Tanimoto coefficient by

employing the circular fingerprints (256 bits, radius 2) of the
compounds. Moreover, the affinity and efficacy similarity was
calculated using the assay-related target similarity (ARTS)
method. This method employs dose−response measurements
of compounds against multiple protein targets to identify the
similarity between those targets.34 ARTS is a quantitative affinity-
based similarity index that is based on the hypothesis that two
assays applied on two targets are similar if the compounds bind
with similar affinity, hence making it an approach for measuring
intertarget similarity. The affinity (pKi) and efficacy (RE) values
of compounds against both α subtypes were used to calculate
assay-related similarity scores of compounds.

Figure 2. Exploration of chemical space using principal component analysis (PCA) and multidimensional scaling (MDS). (A) PCA of the
physicochemical property space of the data sets used in the study including 99% confidence ellipses. The greatest diversity in compounds can be seen in
the case of the ChEMBL data set, where larger compounds with large surface areas can be observed on the right-hand side of the figure, whereas smaller
compounds can be observed in top left corner. A surprisingly small subset of compounds overlap between the ChEMBL and Pfizer data sets used here,
and these compounds belong to the classical benzodiazepines. (B)MDS analysis of structural fingerprints of the data sets. The classical benzodiazepines
(overlapping red and blue clusters) and their derivatives overlap the compounds in the center of the plot, whereas imidazopyridine-based molecules are
located around it.
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Proteochemometric Modeling (PCM). PCM is an
extension of the traditional quantitative structure−activity
relationship (QSAR) approach, where, in addition to ligand-
based (chemical) features, target similarity in biological space is
considered simultaneously.35,36 In the current work, 6519
Morgan fingerprints of compounds were concatenated with
621 (3 × 207) z-scale and/or 207 binary descriptors of proteins
for the complete data set of 5440 ligand−target bioactivity data
points. Recursive feature elimination was applied using the
10-fold cross-validation parameter in the rfeControl function
of the Caret package in R. The rfe function was then applied on
the selected 364 features to keep the most informative features
for activity modeling. The features were ranked based on the
improvement caused in the fit of the model and the error
associated with it. The more improvement observed (and less
error), the higher the importance of the feature. Finally, 253
features were selected for model training and testing. Out of 253,
250 were ligand fingerprints and 3 were z-scale protein features.
Model Training. The complete data set was split into 70%

training set and 30% test set using the createDataPartition
function (R caret package).37 Next, 5-fold internal cross-
validation was performed on the training data set and predictions
were made on the test set. Two machine learning methods,
random forest (RF) and decision tree (DT),38,39 were employed
for model training and bioactivity prediction. Random forest was
tuned using mtry values of 1−8 (R caret package), in addition to
decision trees (R rpart package) using the complexity parameter
(cp) set equal to zero. The top 253 selected features via RF were
used to train a predictive model on the external test set with DT
and visualized using the party R package.40−43

Homology Modeling. The first structure of the GABAA
receptor α1 subtype was modeled in 2012 and was used to
hypothesize the common binding modes of traditional
benzodiazepines.44 This structure was used as a template in the
current study for modeling the GABAA receptor α2 subtype.
Sequence alignment of the α1 and α2 subtypes, performed by
ClustalW,45 gave about 80% pairwise sequence similarity; hence,
this modeled structure of the α1 subtype of the GABA receptor
was employed as a template for α2 model prediction using
Modeler 9 V3.46,47 The structures of both α subtypes were
aligned by performing structure superimposition using Chimera
1.648 and ClustalW, and the root-mean-square deviation
(RMSD) was calculated. The homology-modeled structure was
evaluated by performing rotamer analysis, assessing DOPE
profiles and computing Ramachandran plots as well as G-factor
statistics using PROCHECK.49,50 To calculate the stability of the
binding pockets due to the variations in the sequence, the change
in energy (ΔG) was calculated between wild type and variants
using the FoldX plugin in Yasara.51

Docking. Protein structures were prepared using MOE by
identifying dominant alternate conformations, adding appropriate
disulfide bonds, and adding missing loop regions. Protonate3D was
used to assign protonation states considering titration, rotamers, and
side chain flips.52 After the preparation of proteins, each ligand was
prepared for docking by adding charges and polar hydrogen atoms
in MOE, version 2013.08. The maximum number of docking
conformations of each ligand was set to 30 after applying the
induced-fit docking protocol of MOE, and the highest ranked
(lowest binding energies) conformations were selected.
Molecular Dynamic Simulations. On the basis of the

modeled structures of the α1 and α2 subunits and the lowest
energy docked poses with ligands, MD simulations were
performed to investigate the intrinsic dynamics of the GABA

receptor and its change upon ligand binding. Eight independent
MD simulations characterizing both receptors in their apo state
and as well as in complex with all three ligands using pmemd from
Amber1253 were performed. Starting structures were prepared
using protonate3D from MOE.52 Ligands were parametrized
using the generalized Amber force field (GAFF)54 and

Table 1. Substructural Features of Compounds Obtained
from the Random Forest Feature Selection Approach Related
to Affinity against GABA α1 or α2 Subtypea

aThe improvement in the bioactivity prediction caused by a feature is
given along with the resulting RMSE of the model.
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AM1-BCC charges;55 amino acids were described via the Amber
force field 99SB-ILDN.56 All systems were soaked in a truncated
octahedral TIP3P solvent box with a minimal wall distance of
10 Å.57 After employing an elaborate equilibration protocol,58 all
eight systems were sampled for 100 ns each at 300 K and 1 bar,
and 10 000 snapshots were saved for later analysis using cpptraj.59

After performing standard stability checks for simulations,
hydrogen bonding and secondary structure elements involving
loop C were analyzed by applying default criteria of cpptraj as
implemented in AmberTools.59 Furthermore, the mobility of
loop C was characterized by calculating the vibrational entropy
from a PCA of its Cα atom positions.60 The internal dynamics of
loop C was also characterized by the calculation of dihedral
entropies from residue-wise φ, ψ, and ω backbone torsion
distributions.61 Residue-wise positional fluctuations were cap-
tured as global B-factors following alignment of Cα positions and
as local B-factors from a residue-wise alignment to the respective
backbone atoms.62

■ RESULTS AND DISCUSSION

Chemical Space Exploration. All compounds were
analyzed on the basis of their physiochemical properties to
identify basic properties of allosteric modulators in this space.
The PCA explained a total variance of 35% in two components,
as shown in Figure 2A, and it can be observed that the com-
pounds have rather distinct physicochemical properties. The
most diversity can be seen in the case of the ChEMBL com-
pounds, which have on average high molecular weight and a
higher PSA and which are located in the red eclipse. The
overlapping subset between the ChEMBL and Pfizer compounds
belongs to the classical benzodiazepines chemotype. It can also
be seen that the physiochemical properties of all allosteric
modulators agree with a recent study by van Westen et al. on the
property analysis of (target-independent) allosteric modulators
present in the ChEMBL database.63 In that study, it was found
that allosteric modulators to some extent possess different phys-
iochemical properties depending on the target class to which they
belong; however, they generally exhibit relatively low molecular
weight and high lipophilicity and rigidity.
Furthermore, the allosteric modulators from different

sources differ significantly from each other in structural space,
as shown in the MDS plot of the chemical fingerprints visualized

Figure 3. Chemical structures of seven compounds extracted from the
data set as subset 1. ChEMBL201472 is known as compound 1 and
ChEMBL437877 is known as compound 2 in this study.

Figure 4. Binding affinity and efficacy similarity of a selected set of GABA modulators. It can be seen that, overall, most of the compounds are similar in
bioactivity and efficacy space; however, a few exceptions can be seen in the cases of MRK-898 and compounds 1 and 2 (shown in the yellow box).
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in Figure 2B. The Pfizer compounds are shown to form four
separate chemotype clusters. The benzodiazepines can again be
seen as a large number of compounds that overlap between the
Pfizer and ChEMBL compounds in the center of the plot. A small
number of overlapping Pfizer compounds can be observed
scattered around the main cluster, containing imidazopyridine
scaffolds and electronegative atoms in their side chains. Overall, a
large diversity of chemical structures is also apparent from the
MDS analysis because of the inclusion of a range of chemotypes
from both public and internal data sets.
Bioactivity Modeling. The RF bioactivity prediction model

trained on 253 features gave a prediction performance of Q2
cv =

0.64 ± 0.11 and RMSEcv = 0.57 ± 0.07 on the internal CV and
R2

test = 0.74 and RMSEtest = 0.50 log units on the external test set.
The 10-fold CV performance is the mean R2 of the 10-fold
performance of the training data set. Some performed equally as
well as the external test set; however, others did not. Since the
overall performance was the mean of these, it was observed that it
is lower than the performance of the external set. None of the
ligand−protein pairs in the training set was present in the test set.
However, since the ligands belonging to the Pfizer data set are
structurally very similar to each other, this might be responsible
for the increased performance of the external test set.
The prediction performances of the benchmarked family and

individual QSAR models were measured to be R2
test_QSAR = 0.64

and RMSEQSAR = 0.58, R2
test_α1 = 0.74 and RMSEtest_α1 = 0.48,

and R2
test_α2 = 0.57 and RMSEtest_α2 = 0.60. The predictive

performance of the model generated with binary descriptors of
proteins was measured to be R2

binary_PCM = 0.69 and RMSE
binary_PCM = 0.58. The performance of the z-scale descriptor
model is slightly better than the binary descriptor model;
however, the binary model outperforms the benchmarked QSAR
model (R2

test_QSAR = 0.64).
The established PCM model (with z-scales) was also

compared to individual QSAR models of each target: the perfor-
mance of the α1 QSAR (R2

test_α1 = 0.74, RMSEtest_α1 = 0.48) was
comparable to that of our PCM model; however, the α2 QSAR
(R2

test_α2 = 0.57, RMSEtest_α2 = 0.60) was worse than the
benchmarked QSAR as well as the established PCM. Hence, our
established PCMmodel has an improved performance compared
to that of the benchmarked family QSAR and individual QSAR
(for both targets simultaneously).
The improved performance of PCM models due to the

addition of target descriptors was studied previously64 and hence
was a reason for using the z-scales PCM model. Although the
z-scales did not addmuch to the interpretation of themodel, they
still improved the performance of the PCM model over that of
the benchmarked QSAR model (R2

test_QSAR = 0.64) and binary
descriptors (R2

test_PCM = 0.74). This improved model generated
by employing z-scales was further used for interpretation and
selection of features, which resulted in the extraction of subsets of
compounds for downstream analysis (which is the main aim of
this study). The compounds identified via the feature selection
approach also had the desired pharmacological profiles, which
increased our confidence in performing model generation and
interpretation in a single step (via the PCM approach).
The predictive model was generated on all compounds active

against the α1 or α2 subtype; hence, the selected substructural
features help to rationalize (to some extent) the affinity against
both receptor subtypes, which will be interpreted below. The top
nine substructural features extracted via RF are shown in Table 1.
These features are sorted based on their improvement both in the
fit of the model and the RMSE.

The Spearman correlation (ρ) between the affinity and efficacy
of the compounds was found to be 0.008 and 0.31 against α1 and
α2, respectively. This suggests that there is only a very weak
correlation between the affinity and efficacy of GABAA
modulators against both subunits. In other words, the selected
features, which were found to be responsible for the affinity of
compounds, are unlikely to also explain their efficacy fully. The
highest ranking features (given in Table 1) identified four subsets
of compounds. Each subset was retrieved based on a combi-
nation of different features from Table 1. The first subset con-
sisted of seven compounds with a Spearman correlation between
affinity and efficacy of−0.33 (α1) and−0.94 (α2). The presence
of feature_57, feature_343, and feature_527 from Table 1 is
evident in the structures of compounds in subset 1 (Figure 3).
The second subset (159 Pfizer compounds) had a Spearman
correlation between affinity and efficacy of −0.144 against
both subtypes. The third (17 Pfizer compounds) and fourth
(8 ChEMBL compounds) subsets of compounds had no
reported functional value and hence were not used further.
Feature_1557, feature 3682, feature_56, and feature_847 from
Table 1 were observed in compounds from subsets 2 and 3;
however, the structures of these compounds were not added in
this article.
This relationship was further investigated using a case study of

seven compounds (ChEMBL201472, ChEMBL203455,
ChEMBL204696, ChEMBL203897, ChEMBL203785,
MRK898, and ChEMBL437877) from the above-mentioned
subsets based on the presence of the top selected features (the
structures of these compounds are shown in Figure 3) . Overall,
most of these compounds showed similarities in structure and
affinity but not in efficacy (Figure 4).
In the following, we will now consider a pair of compounds,

ChEMBL201472 (from here on called compound 1) and
ChEMBL437877 (compound 2) because of their high similarity
in structure and affinity, but not in efficacy, in order to develop a
model for the underlying drivers of affinity and efficacy of
GABAA modulators. The structure, affinity, and efficacy of
compounds 1 and 2 and diazepam are given in Supporting
Information Figure S1. Moreover, we will (a) investigate their
pharmacological profile as compared to that of other compounds
in the subset and (b) investigate their functional differences via
structure-based methods, namely, docking and MD simulations.
MRK-898 was found to be the closest relative of compounds 1

and 2 in terms of structure (Tanimoto coefficients of 0.997 and
0.994, respectively). Both compounds contain an identical main
scaffold (imidazopyrimidine), although their side chains differ.
When this small difference in molecular structure is mapped
in terms of their affinity and efficacy (Figure 4), compound 1
showed similarity to compound 2 (0.90) in bioactivity space
but not to MRK-898 (0.93) in terms of efficacy. The remaining
four compounds (ChEMBL203897, ChEMBL203785,
ChEMBL203455, and ChEMBL204696) have similar scaffolds
(imidazopyrazine) to compound 2 but differ only in their side
chains. The relationships among compounds 1, 2, and MRK-898
showed that the change in the scaffold does not satisfactorily
explain the observed affinity and efficacy trends and also
indicated that side chains need to be considered in more detail.
Hence, structural analysis was performed in the next step.

Homology Modeling of GABAA α2 Subtype Receptor.
We first established a model of the GABAA α2 subtype receptor
and examined its reliability as follows. The modeled α2γ2
structure was superimposed with α1γ2, and the resulting RMSD
of 0.51 Å suggested a very close resemblance between the
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structures of both proteins. Rotamer analysis showed unordered
side chains of the modeled structures, which were corrected
using the Dunbrack backbone-dependent rotamer library.65 The
DOPE profile (Supporting Information Figure S2) showed a
stable energy per residue of the modeled structures except for
residues 35−40 and 85−90, where the DOPE score was greater
than −0.03 and −0.02, respectively. PROCHECK statistics
showed that 86.8% of the residues were in the most favored
regions and that 1.1% were in the disallowed regions of the
Ramachandran plot (Supporting Information Figure S3). The
overall average G-factor of the modeled structure was calculated
to be −0.20, indicating that the model is reasonable.
On the basis of this model, we next investigated the

benzodiazepine binding pocket of both complexes in order to
visualize their structural differences. The benzodiazepine binding
pocket (Figure 5A) is composed of five loops,66 three which
(A, B, and C) are part of the α subunit, whereas loops D and E are
part of the γ subunit. The structural alignment of the α1 and α2
binding pockets with annotated loops is given in Figure 5B and
Supporting Information Figure S4. It can be seen that loop A is
identical in the α1 and α2 subtypes, whereas two substitutions
in loop B and eight substitutions in loop C were identified. No
significant changes in the structure of loop B were found because
of these variations; however, a significant shift in loop C was
observed. Hence, we hypothesized that this conformational
change in the protein structure might be responsible for the
differences in the binding modes of GABAA modulators and
hence their efficacy, particularly because mutational studies of
these residues (Ser-204, Val-202, and Tyr-209) of loop C sug-
gested that these variations are known to affect the activity of
benzodiazepines.66−69

Compound Docking Experiments. We next performed
docking experiments in order to identify and investigate the
binding modes of compounds 1 and 2 with both the α1 and α2
subtypes. The binding mode of the two compounds with the α1
subtype showed the following interactions: (a) His-101 of the
GABAA α1 subtype interacted with both compounds during
docking experiments (Figure 6A) and (b) PLIFs identified
many loop C residues as major participants of both series of
docking experiments, namely, Tyr-159, Tyr-209, and Ser-204,
in addition to Thr-142 and Phe-77 of the γ chain, as also

Figure 5. (A) Superimposed structures of the GABA α1γ2 and α2γ2 complexes with the classical benzodiazepine flunitrazepam docked into the
benzodiazepine binding pocket. Interacting residues from the α subunit (His-101, Tyr-159, Tyr-209, and Thr-206) and the γ subunit (Phe-77, Thr-142,
Leu-140, and Asp-56) are shown as sticks. (B) Superimposed benzodiazepine binding pocket of the GABA α1γ2 and α2γ2 complexes with annotated
loops (A, B, C, D, and E). The amino acids included in each loop are also indicated in the boxes. It can be seen that there are no structural differences in
loops A and B; however, a significant conformational change can be observed in loop C (see the main text for a more detailed description and
discussion).

Figure 6. Ligplots72 of docked complexes of compounds 1 and 2 with
the (A) α1 and (B) α2 subtypes. All residues encircled in red were found
to be common between the two complexes. Hydrogen bonds are shown
with a green dotted line. The characteristic His-101 interaction is
evident in the α1 dockings. The added hydrogen bonds between the side
chain oxygen and Asn-60 and Arg-144 were seen due to the displace-
ment in the binding mode because of the additional nitrogen in
compound 2. A flip of the pyridine ring is also observed in compound 2,
leading to an interaction of Ser-204 with α1. Hence, the binding modes
of the compounds against the α1 subtype agree with the literature, and
there are novel interactions identified in the case of α2.
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observed previously.66 These interactions agreed with the
common binding modes (CBM-I) of classical benzodiazepines
with the α1 binding pocket as studied previously.44 From these
observations, the finding that the interaction of His-101 with the
compounds is selective to α1 dockings/binding is consistent with
earlier findings.7,70,71 However, only in the case of diazepam was
His-101 found to be important in both the α1 and α2 docking
poses, which might be because diazepam is a full agonist for both
the α1 and α2 subtypes (REα1 = 1.27, REα2 = 1.14). Loop C
residues (Gly-200, Val-202, and Ser-204) were also observed in
interactions of both the α1 and α2 docked complexes, which is
consistent with earlier findings.66 The conformational changes in
this loop might lead to a change in the binding mode of the
compounds, which was explored further in the MD section.
Moreover, it was observed that Tyr-159 and Tyr-209 form
stacking interactions with the side chains, in addition to His-101
π−π interactions with the main scaffold, in the case of com-
pounds 1 and 2 binding to α1 (Figure 6A). In addition to this,
Thr-142, Asn-60, and Arg-144 of the γ chain of the α1 subtype
were observed to form strong hydrogen bonds with the
heterocyclic groups of compounds 1 and 2. In the binding of
compounds with the α2 subtype, the following observations
were made: (a) No interaction with His-101 was observed and
(b) interactions with loop C residues were disturbed and the
pocket groove was distorted. The interactions were shifted from
Asn-60 and Arg-144 toward Asn-102 and Lys-155 of the γ chain
(Figure 6B). Moreover, the classic stacking interaction of
compounds with two tyrosines was also disturbed in the α2
docking poses.
The additional nitrogen atom in the scaffold of compound 1

relative to that of compound 2 was expected to interact

differently, which is indeed what we observed, resulting in
additional hydrogen bonds between the side chain oxygen and
Asn-60 and Arg-144, along with a hydrogen bond with Ser-204
(Figure 6).

Influence of Amino Acid Variations (G200E and I201T)
on Binding Energy in the α2 Subtype. A difference of eight
amino acids was identified in loop C between the α1 and α2
subtypes during the structural alignment of both binding pockets.
These amino acid variations in the loop C region of the α2
subtype can affect the stability of the binding pocket and hence
the common binding modes of compounds. In order to calculate
the stability of the binding pocket due to these substitutions,
mutation stability analysis was performed to calculate the change
in the energy of stabilization (ΔG) between the wild-type (WT)
and variant (VT) subtypes. Out of eight variations, only two were
found to be destabilizing. These destabilizing variations in α2
were G200E and I201T (Supporting Information Figure S5),
with ΔG values of +0.83 and +1.19 kcal/mol, respectively.

Flexibility Analysis of the Apo α2 Binding Pocket. To
understand the effect of these variations on both α subunits,
the conformational changes taking place in the loop C region of
the α2 subtype were identified from a 100 ns MD simulation
(Figure 7), leading to the following observations (Supporting
Information Figure S6): (a) The α1 subtype was found to be
more flexible than the α2 subtype both globally and locally at
loop C, (b) a higher B-factor was observed in the case of the α1
subtype in both local and global alignments, suggesting a higher
entropy and more flexibility in the α1 subtype than in the
α2 subtype of the GABA receptor, and (c) a higher number of
hydrogen bonds and increase in secondary structure content
were observed in the α2 subtype as compared to the α1 subtype.

Figure 7. Binding poses of diazepam and compounds 1 and 2 with the (A) α1 and (B) α2 subunits. Hydrogen bonds are colored in red. More hydrogen
bonds were observed in compound 1 and diazepam against both receptors as compared to compound 2. The stacking between ligands with His-101 and
the fluorobenzyl group with Tyr-159 and Tyr-209 is observed against α1, whereas these conformations are disturbed in the case of α2 complexes. These
results are explained in more detail in the simulation section. Hence, overall, a large number of hydrogen bonds were observed in the α2 subtype−ligand
complex as compared to α1 due to variations in loop C.
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All of these observations led to the conclusion that the α2
subtype became more rigid than the α1 subtype because of these
variations, namely, Gly-200 to Glu-200, Ile-201 to Thr-201, and
Val-202 to Ile-202, and had an increased number of side chain
internal contacts compared to the α1 subtype (see Supporting
Information Figure S5 for more details).
Ligand Bound and Unbound MD Simulations and

Vibrational Entropy Analysis. An extensive vibrational
entropy analysis was next performed for the ligand-bound pro-
tein complexes in order to relate the difference in functional
activity of compounds 1 and 2 (with compound 2 being signif-
icantly more efficacious against α2 than compound 1) with the

differences in their binding behavior to the α1 and α2 subtypes.
The vibrational entropy of Cα was hence calculated for protein
complexes with and without ligand bound, the result of which is
visualized in Figure 8A. It can be observed that the α1 subtype is
more flexible (higher entropy) than the α2 subtype without a
ligand bound; however, this flexibility decreased upon ligand
binding. Although the increased entropy of the α1 subtype as
compared to α2 was expected from results shown previously,
the decrease in entropy upon ligand binding suggests a higher
entropy loss upon ligand binding to the α1 subtype. Interestingly,
the observed conformational freezing was seen to be much larger
in the case of the α1 subtype than α2 for both compounds 1

Figure 8.Molecular dynamics and simulation results. (A) Vibrational entropy of α1 and α2 subtypes with compound 1 (labeled C1) and compound 2
(labeled C2), in addition to diazepam (positive control). (B) Residue-wise dihedral entropy of the loop C region of the GABA α1 and α2 subtypes with
and without ligand bound (compounds 1 and 2 and diazepam). (C) Overall dihedral entropy of both subtypes and their ligand-bound complexes.
The decreased entropy of the α2 subtype in its apo state as compared to the α1 subtype is because of the presence of stabilizing amino acid variations in
loop C. An entropy increase was observed in the ligand-bound state for both subtypes; however, the increase was more pronounced for α2 compared to
the α1 subtype. (D) Residue-wise hydrogen bond occupancy of the loop C region of the α1 and α2 subtypes with and without bound ligand
(compounds 1 and 2 and diazepam). (E) Total hydrogen bond counts of α1 and α2 subtypes with and without bound ligand. With the amino acid
variations in the loop C region, the α2 subtype gained a higher number of hydrogen bonds. However, when bound to a ligand, the α1 subtype showed
more interactions than the α2 subtype. Hence, the increases in entropy and number of hydrogen bonds in the α2−ligand bound state might be key
features related to the increased efficacy of compound 2.
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and 2, leading to a maximum flexibility in the case of compound 2
binding to the α2 subtype of the GABA receptor. Here, this
difference in intrinsic flexibility could be one of the reasons for
the increased functional signal in the case of α2 for compound 2;
in other words, the least entropy is lost upon forming this parti-
cular ligand−target interaction.
Dihedral Entropy Analysis of the Ligand-Bound State.

Given that protein backbone dihedral angles are significant deter-
minants of the conformational entropy of molecules, dihedral
entropies were next calculated for each residue of both proteins
(visualized in Figure 8B). It was found that overall higher
entropies were associated with disordered regions. Gly-200 in
loop C was responsible for the higher entropy of the α1 apo
structure than the α2 apo structure, which contains Glu-200
(Figure 8B). The entropies of both subtypes were seen to
decrease in their ligand-bound states (freezing of the loop);
however, a decrease in entropy was observed more in the ligand-
bound α1 subtype. Similar inferences were made after observing
the residue-wise contribution of total entropy (Figure 8C).
Hydrogen Bond Analysis of Complexed Structures.

We next analyzed the enthalpic contributions to binding by
performing hydrogen bond analyses. The per-residue hydrogen
bond occupancy of both the α1 and α2 subtypes is visualized
in Figure 8D. The hydrogen bonds calculated after a 100 ns
simulation showed why the Gly-200 to Glu-200 substitution had
a large impact on the flexibility of α2, namely, by forming 0.8
hydrogen bonds on average in the former case and 2.2 in the
latter. Similar kinds of losses and gains of hydrogen bonds were
observed in the cases of the ligand-bound α1 and α2 structures.
The Gln-203 to Lys-203 substitution added more hydrogen
bonding interactions for α2−compound 2 as compared to
α2−compound 1. Moreover, hydrogen bond counts in both
complexes were analyzed, the result of which is visualized in
Figure 8E. In the apo state, α1 has a lower number of total
hydrogen bonds than α2. The increased number of hydrogen
bonds in the α2 subtype could be because of sequence variations.
In the case of the ligand-bound α1 and α2 subtypes, a gain in the
total number of hydrogen bonds in absolute terms was observed.
The increase in hydrogen bonding was observed more in the α2
subtype than α1 with both compounds. Here, to our surprise,
compound 2 gained fewer total hydrogen bonds than compound
1 against both subtypes, despite the presence of an additional
nitrogen. This suggests that compound 2 preferentially binds
to the solvent instead of the receptor (both subtypes). Despite
its binding to the solvent, compound 2 was observed to make
enough interactions with the α2 subtype (compared to α1) to
elicit a functional response, which could be a possible answer to
the increased efficacy of compound 2 against α2.

■ CONCLUSIONS
In this study, we devised and implemented an analysis of GABAA
(receptor) modulators to understand their affinity and efficacy
profiles against the α1 and α2 subtypes. We used our workflow
on the GABA receptor α1 and α2 subtypes by combining modu-
lators from public and proprietary data sets, and we performed
the proposed analysis to correlate their affinity and efficacy pro-
files. The analysis showed a very weak correlation between the
affinity and efficacy of the compounds (0.008 and 0.31 against
the α1 and α2 subtypes, respectively). Next, feature selection
approaches were employed to obtain substructural features
associated with affinity (and not with efficacy), which were
further used to select a subset of compounds with different
profiles in structural space, affinity space, and efficacy space.

Two of the compounds (compounds 1 and 2) were then used for
further analysis in order to identify the differences in their
binding modes associated with affinity and efficacy.
Compounds 1 and 2 were found to be structurally very similar

(except for the additional nitrogen in the case of compound 2), but
they showed different functional profiles, which we attempted
to further elucidate via structure-based modeling approaches.
When docked with both the α1 and α2 subtypes, it was found that
the ligand−protein interactions of compounds 1 and 2 differed
considerably. We found that the substitutions of Gly-200, Ile-201,
and Val-202 in the α1 subtype to Glu-200, Thr-201 and Ile-202 in
the α2 subtype were responsible for increased rigidity and internal
hydrogen bonding in the latter structure. These results were further
confirmed by vibrational and dihedral entropy and hydrogen bond
occupancy analyses, where it was found that the above-mentioned
substitutions resulted in a higher entropy (increased rigidity) in the
α2 subtype along with a loss of hydrogen bond interactions with its
ligands, leading to a higher efficacy of compound 2 against α2 as
compared to α1 subtype (for detailed conformational analysis, see
Supporting Information Figure S7).
Hence, by considering enthalpic and entropic contributions to

binding to the α1 and α2 subtypes of the GABA receptor, based
on ligand- and structure-based analyses, we were able to develop
hypotheses for functional selectivity of ligands for those
subtypes. We hope that this study will contribute to the design
of more efficacious and selective modulators of this receptor. The
analysis methods applied here are also generally applicable for
designing receptor subtype-selective compounds where affinity
and efficacy show little correlation.
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Bohoŕquez, S. M.; Eng, W.-S.; Gibson, R. E.; Burns, H. D.; Dawson, G.
R.; Carling, R. W.; Street, L. J.; Pike, A.; De Lepeleire, I.; Van Laere, K.;
Bormans, G.; de Hoon, J. N.; Van Hecken, A.; McKernan, R. M.;
Murphy, M. G.; Hargreaves, R. J. Preclinical and Clinical Pharmacology
of TPA023B, a GABAA Receptor α2/α3 Subtype-Selective Partial
Agonist. J. Psychopharmacol. 2011, 25, 329−344.
(11) Rudolph, U.; Crestani, F.; Benke, D.; Brünig, I.; Benson, J. A.;
Fritschy, J. M.; Martin, J. R.; Bluethmann, H.; Möhler, H.
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