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Abstract 21 

While much has been published on recent rates of forest loss in the Sundaic lowlands, deforestation 22 

rates and patterns on Java’s endemic-rich mountains have been rather neglected. We used nearly 23 

1,000 Landsat images to examine spatio-altitudinal and temporal patterns of forest loss in montane 24 

West Java over the last 28 years, and the effectiveness of protected areas in halting deforestation 25 

over that period. Around 40% of forest has been lost since 1988, the bulk occurring pre-2000 (2.5% 26 

per annum), falling to 1% per annum post-2007. Most deforestation has occurred at lower altitudes 27 

(< 1,000 m), both as attrition of the edges of forested mountain blocks as well as the near-total 28 

clearance of lower-altitude forested areas. Deforestation within protected areas was rife pre-2000, 29 

but greatly decreased thereafter, almost ceasing post-2007 in protected areas of high International 30 

Union for Conservation of Nature (IUCN) status. While apparent recent protection against land 31 

clearance is welcome, it must be stressed that the area of remaining forest is only 5,234 km2, that 32 

most accessible lower-altitude forest has already disappeared, and that the extant montane forest is 33 

largely fragmented and isolated. The biological value of these forests is huge and without strong 34 
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intervention we anticipate imminent loss of populations of taxa such as the Javan Slow Loris 35 

Nycticebus javanicus and Javan Green Magpie Cissa thalassina. 36 

Keywords:  Java, deforestation; protected areas; Landsat, land use/land-cover change 37 
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 43 

Highlights: 44 

 West Javan mountain forests have endemic biodiversity but a long history of deforestation 45 

 Since 1990, roughly 40% of forest has been lost, although a decrease in the rate of 46 

deforestation has occurred 47 

 Loss was most prevalent at low altitudes, which were almost completely cleared 48 

 Forests at higher altitudes and within protected areas fared better 49 

 Remaining forest is limited to higher altitudes and is vulnerable to fragmentation and 50 

clearance51 
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1. Introduction 52 

Deforestation is one of the main drivers of global biodiversity decline, and a major source of carbon 53 

emissions (Houghton et al., 2012; Lawrence and Vandecar, 2015). Information on the extent, 54 

severity, and causes of forest loss is therefore critical for a range of disciplines. In recent years, 55 

Earth-observation has provided a more accurate and better picture of the global rate and 56 

geographical distribution of deforestation (Skole and Tucker 1993; DeFries et al. 2002; Miettinen et 57 

al. 2011), highlighting Southeast Asia, and in particular Indonesia, as of major concern (Hansen et al. 58 

2013). Within Indonesia, the loss of moist tropical forests on the islands of Borneo and Sumatra, 59 

primarily due to the expansion of industrial palm oil plantations, has been well documented (Broich 60 

et al., 2011, 2013; Margono et al., 2012; Shevade et al., 2017), but far less attention has been 61 

directed towards Java. Indeed, the forests of Java have not received bespoke study and are 62 

frequently omitted from published statistics, in part due to the relative sparsity of forest cover 63 

remaining since Dutch colonial rule in the eighteenth and nineteenth centuries (Smiet et al. 1990). 64 

Such neglect is unfortunate, as these forests possess high levels of biological endemism, with the 65 

montane formations on the volcanoes of West Java being particularly rich in unique species 66 

(Stattersfield et al., 1998). The West Javan mountains hold all or most of the remaining range of four 67 

‘Critically Endangered’ endemic vertebrates: Javan Slow Loris Nycticebus javanicus, Rufous-fronted 68 

Laughingthrush Garrulax rufifrons, Javan Green Magpie Cissa thalassina and Fire Toad Leptophryne 69 

cruentata (IUCN, 2017), and either whole or significant portions of the ranges of many other species 70 

of conservation concern (e.g. the ‘Endangered’ Javan Gibbon Hylobates moloch and the ‘Vulnerable’ 71 

Javan Trogon Apalharpactes reinwardtii and Javan Cochoa Cochoa azurea). These and other 72 

endemics are known to be dependent on forest habitats (BirdLife International, 2018). 73 

The free availability of large archives of satellite (and notably, since 2008, Landsat) imagery 74 

(Wulder et al., 2012; Kennedy et al., 2014) has greatly facilitated the monitoring of land-cover 75 

change. These datasets have enabled a shift away from single-image analysis in favour of large-area, 76 

automated data-processing chains (Roy et al., 2014), with multiple images amalgamated into target 77 

date composites or statistical metric layers (Griffiths et al., 2013). The transition towards multi-78 

image analysis is particularly beneficial in tropical regions where cloud cover is both extensive and 79 

frequent, limiting the likelihood of obtaining a cloud-free image (Asner 2001; Hansen et al., 2013). 80 

The use of Landsat imagery is preferable for many localities. For example, the use of coarse 81 

resolution data from the Moderate-resolution Imaging Spectroradiometer (MODIS) or the Advanced 82 

Very High Resolution Radiometer (AVHRR) (e.g. Defries et al., 2002; Hansen et al., 2009) may 83 

obscure small-scale patterns which collectively accrue to a large area.  84 
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In this study, motivated by concern for West Java’s endemic biodiversity, we use the Landsat 85 

archive to map the deforestation dynamics of the area’s remnant upland forests. Our objectives 86 

were to: (a) characterise remaining forests; (b) uncover the spatial and temporal occurrence of 87 

forest loss events, especially in relation to changes in political order (specifically the termination of 88 

the Suharto ‘New Order’ regime in 1998); and (c) assess the effect of protected areas on the rate of 89 

deforestation over recent decades.  90 

2. Study area 91 

Our study area is ~17,000 km2 covering the western uplands of the Indonesian island of Java (Fig 1). 92 

We defined uplands as all areas upwards of 400 m above sea level. Analysis was limited to such 93 

areas, as these are the location of a majority of remaining upland forest on the island. We focused 94 

on 19 West Javan mountains that are of known high biodiversity value (Fig 1b). These mountains 95 

include both unprotected areas and protected sites of various International Union for Conservation 96 

of Nature (IUCN) designation classes. The climate is broadly tropical, with Köppen climate 97 

classifications of Equatorial or Monsoon. Annual temperatures range from 18 to 30˚C, with a regular 98 

daily average of 28˚C. Rainfall is concentrated in the monsoon period November–March, with 99 

monthly precipitation around 270 mm. West Javan forests are not dominated by any particular tree 100 

species, but common taxa include: Moraceae (Artocarpus elasticus), Meliaceae (Dysoxylum 101 

caulostachyum and Lansium domesticum), and Lecythidaceae (Planchonia valida) (MacKinnon et al., 102 

1993). Java contains twenty volcanoes that have been active in the historical record; accordingly, the 103 

regional geology is dominated by relatively recent volcanic rocks, interspersed with marine 104 

limestones (Whitten et al., 1996). Java’s human population doubled since the 1970s to 145 million 105 

today, equating to 1,121 people per km-2, the highest density in the world (World Bank, 2017). Our 106 

study area contains the major cities of Bogor and Bandung, with the Indonesian capital Jakarta just 107 

outside the perimeter. A variety of crops are grown within the study area, mainly as smallholdings, 108 

with the dominant being rice and coffee (Whitten et al., 1996).    109 

3. Methods 110 

3.1 Landsat data 111 

The Landsat series is the world’s longest continuously operating moderate-resolution Earth 112 

observation (EO) program. Collecting imagery at 30 m across six spectral bands (plus a thermal 113 

band), Landsat is particularly suited for monitoring land-cover change. To map such changes, we 114 

produced a series of spectral variability metrics for four epochs corresponding to relevant time 115 
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periods: 1988–1992, 1998–2000, 2006–2008, and 2014–2016. Spectral metrics are pixel-level 116 

statistical summaries calculated from all co-located observations. Metric composites allow the 117 

extraction of intra-epochal information on the reflectance of a pixel, and have proved effective for 118 

mapping subtle land cover types and improving the accuracy of classifications (Müller et al., 2015). 119 

This approach copes more robustly with the problem of persistent cloud cover and atmospheric 120 

effects by using all available observations, minimising the contributions of individual pixels which 121 

may be compromised, and is therefore well suited to the wet tropics. The composites were 122 

generated in Google Earth Engine (Gorelick et al., 2017) from all available Landsat 5 TM and 7 ETM+ 123 

images. To ensure sufficient observations were present for the calculations, a three-year 124 

compositing period was used for the later three epochs, but, owing to lower image availability the 125 

1990 composite required a five-year range.  126 

All images were processed to surface reflectance using the Landsat Ecosystem Disturbance Adaptive 127 

Processing System (LEDAPS), and clouds artefacts masked according to F-mask (Masek et al., 2006; 128 

Zhu et al., 2015). For the statistical layers we calculated the mean, standard deviation and a range of 129 

percentiles (0, 20, 40, 50, 60, 80, 100%). 130 

3.2 Forest change mapping  131 

The Landsat spectral variability metrics were classified to produce a land-cover change map. The 132 

following classes were mapped: (i) stable forest, (ii) stable non-forest, and loss in the periods (iii) 133 

1990–1999, (iv) 1999–2007 and (v) 2007–2015. Training data consisting of 211 polygons were 134 

derived from visual bi-temporal comparison of the Landsat composites, in conjunction with high-135 

resolution imagery; forest loss was identified by complete removal of tree cover in the target pixels, 136 

whilst stable classes were consistent across all epochs. The classification was undertaken using a 137 

Random Forest classifier. Random Forest is a decision-tree-based technique that uses bootstrapped 138 

subsets of the training data to generate an ensemble of tree models, which are then aggregated into 139 

a final model (Breiman 2001). The internal parameters of the model, the number of trees generated 140 

and the number of variable splits, were chosen based on a 10-fold cross validation over a tuning grid 141 

of potential values (Kuhn et al., 2017). The classification was developed with the R package 142 

randomForest package (version 4.6; Liaw and Wiener, 2002; R Core Team, 2017). 143 

To validate our classified map, we first selected a random sample of 75 points per class and 144 

calculated the Producer’s accuracy. This Producer’s accuracy and mapped area per class were used 145 

to determine an appropriate stratified sample for a target standard error of 0.5 (Cochran, 1977). The 146 

final stratified sample of 539 points was used to calculate Producer’s, User’s and Overall accuracy 147 
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scores based on best practice guidelines (Congalton and Green, 2008). Finally, the mapped class 148 

areas were adjusted to account for omission errors (Olofsson et al., 2013).  149 

3.3 Statistical analysis 150 

The roles of altitude, period, and protection status on observed deforestation rates were analysed 151 

using a Generalised Linear Mixed Model (GLMM). To generate data for the model, the classified 152 

change map was processed as follows. First, the study area was spatially segmented into zones, 153 

approximating to mountain catchments. These zones were delineated by assigning each pixel to the 154 

most accessible mountain peak, using a cost allocation method with the Shuttle Radar Topography 155 

Mission (STRM) Digital Elevation Model (DEM) as a cost surface layer (Longley et al., 2005). This 156 

resulted in 28 zones, with an average area of 600 km2 ranging from 254 to 1,217 km2. Second, each 157 

zone was further subdivided according to protection status (protected or unprotected) and altitude, 158 

using successive 300 m bands. Finally, the cumulative deforestation rate within each segment for 159 

each epoch was then calculated, relative to the starting forest cover in 1990. This resulted in 668 160 

unique sample units. 161 

A GLMM was built with cumulative deforestation rate as the dependent variable and time 162 

period, altitude, and protection status as fixed effects. To account for spatial dependence in the 163 

data, mountain zone (catchment area) was added as a random effect. Percentage of forest loss is a 164 

proportional response, so a binomial family with logit link function was considered appropriate with 165 

the initial number of forest pixels in each segment providing the prior weighting. The R package lme4 166 

was used for model fitting (Bates et al., 2015), with model R2 calculated based on the approach 167 

suggested by Nakagawa and Schielzeth (2013) and Johnson (2014). There were insufficient replicates 168 

to allow the type of protected area status, according to IUCN, to be included in the model. Therefore 169 

the deforestation rates between high protection status (IUCN Classes Ia-II: strict nature reserves and 170 

national parks) areas and other sites were compared by corresponding pixel counts.   171 

4. Results 172 

4.1 Land-cover change classification 173 

Our land-cover change classification produced a map (Fig 1 and Fig 2) with an overall accuracy of 174 

98% (Table 1). All of the mapped classes had consistently high accuracies, with the least accurate 175 

class (loss for 1999–2006) having Producer’s and User’s accuracies of 0.91 and 0.78 respectively. 176 

Adjusting the mapped area estimates using probability-based stratified sampling highlighted a 177 
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moderate omission of the loss in 1999–2007, with all other classes showing minor biases between 178 

the mapped and adjusted areas (Fig 3). 179 

4.2 Deforestation rates 180 

Over the 1990–2015 period, 3,415 ± 290 km2 of forest were lost, corresponding to roughly 40% of 181 

the initial coverage (Fig 3). By 2015, 5,234 ± 78 km2 of stable forest remained. Deforestation was 182 

greatest in the 1990–1999 period, with 1,923 ± 24 km2 lost, falling to 1,056 ± 207 km2 in the period 183 

1999–2007 and 436 ± 59 km2 for 2007–2015. Deforestation rates equate to 22% (2.5% per annum), 184 

16% (2%) and 7% (1%) for the respective periods (Fig 3). 185 

  Spatially, the greatest concentration of deforestation events was in lower-lying parts of the 186 

study area (Fig 1). In particular, forest cover in the relatively low southwestern section was almost 187 

completely lost between 1990 and 2007 (Fig 2i). Similar levels of almost total deforestation were 188 

identified for the central/southwestern areas (Fig 2ii), where loss continued into the 2007–2015 189 

period. The remaining areas of loss were generally located on the edges of contiguous montane 190 

forests, with encroachment-style deforestation most apparent (Fig 2iii). 191 

4.3  Correlates of deforestation rates 192 

The fitted GLMM had good explanatory power with conditional R2 of 0.45 (full model), with all terms 193 

significant at a p < 0.05 level (Table 2). The fitted model showed protection status to be a consistent 194 

buffer on deforestation, with designated sites exhibiting roughly half the cumulative deforestation of 195 

non-designated areas, an effect that was stable across all altitudes (Fig 4). Low-altitude protected 196 

sites were subject to non-trivial loss rates (estimated at 10–25% by 2015), yet this contrasts with 197 

much greater rates for non-designated areas (30–55%; Fig 4). The majority of forest loss had 198 

occurred by 1999 with abatement in deforestation post-2000 most apparent for the 2007–2015 199 

period, which exhibited only marginal increases in forest loss, with protected sites showing 200 

insignificant changes, particularly at higher altitudes. Sites given high protection status (IUCN Classes 201 

Ia-II: strict nature reserves and national parks) enjoyed additional reductions in forest loss, 202 

particularly for the 2007–2015 period (Fig 5).  203 

 204 

5. Discussion  205 

West Java lost around 40% of its 8,650 km2 montane forest in the 25 years since 1990, a figure 206 

broadly comparable to other locations in Southeast Asia, e.g. Peninsular Malaysia (Shevade et al., 207 
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2017), Kalimantan (Carlson et al., 2012), and Sumatra (Gaveau et al., 2009). What sets it apart from 208 

these areas are that (1) the annual rate of forest loss has slowed considerably over time, from a high 209 

of 2.2% pre-2000 to 0.5% post-2007, with an important brake being exerted by protected areas, 210 

especially strict nature reserves and national parks, and (2) only around 5,500 km2 remain of this 211 

endemic-rich habitat. Optimism over the decelerating trend in deforestation must be tempered by 212 

the extensive loss of forest at altitudes of 300 to 1,800 m, which presumably hold (or held) the most 213 

accessible and biodiverse forests. Species that are restricted to or prefer such altitudes are likely to 214 

be put under increasing strain across their ranges, especially if deforestation, albeit at slower rates, 215 

continues. 216 

The post-1999 reduction in forest loss contrasts with reports from wider Indonesia and 217 

insular Southeast Asia (Hansen et al., 2013; Kim et al., 2015; Shevade et al., 2017), which show 218 

considerable increases in deforestation in the same period. This difference may be attributable to 219 

several factors. First, owing to climatic and topographic conditions Java is not well suited to the 220 

expansion of industrial tree plantations, particularly palm and rubber, which have driven most post-221 

millennium forest loss in Indonesia and the wider region (Kim et al., 2015). Second, the increased 222 

regional autonomy following the democratic transition may have led to a preferential shifting of 223 

logging and agriculture to other islands with more lenient planning regulations than Java (Gaveau et 224 

al., 2009).  Finally, Java was already largely deforested in earlier eras, and the remaining forest is 225 

predominantly located at high altitude or on steep slopes, and is therefore less accessible and the 226 

associated land less desirable for agriculture (Fig 1, Fig 5). The contrast between Java and wider 227 

Indonesia highlights the need for tailored studies addressing localised factors. 228 

High rates of deforestation across insular Southeast Asia during the 1990s are well 229 

documented (Hansen et al., 2009; Kim et al., 2015), and relate to both political-economic and 230 

environmental factors. The 1990s were an economic boom period for Southeast Asia, with 231 

increasing commodity prices and favourable exchange rates driving growth in both agricultural and 232 

hardwood exports (Mason, 2001). This economic situation combined with lax forest protection laws 233 

encouraged widespread logging and agricultural expansion (Hansen et al., 2009). Environmentally, 234 

the 1997 El Niño event was severe, leading to widespread forest fires across the region (Page et al., 235 

2002).  236 

The last two epochs of our study postdate the Asian financial crisis of July 1997 and the 237 

associated economic consequences; within six months inflation peaked at 80%, and gross domestic 238 

product dropped by 47% (World Bank 2017). The resignation of President Suharto in May 1998 239 

ended the 42-year New Order dictatorship and initiated a shift to representative democracy. This 240 
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period was also marked by a number of forestry legislation changes, such as a round wood export 241 

ban in 2001, aiming to curtail illegal logging (Resosudarmo and Yusuf, 2006). Interestingly, our 242 

results contradict those of Miettinen et al. (2011), who observed a 4.2% increase in forest cover on 243 

Java between 2000 and 2010. We attribute this to two factors: first, we did not attempt to map 244 

reforestation, so did not account for gains; and second, Miettinen et al. (2011) used 250 m MODIS 245 

data, compared to the 30 m Landsat imagery used here, so our analysis probably identified smaller 246 

clearances missed by the coarser MODIS data. 247 

 Assessing the efficacy of protected areas is critical for ensuring long-term conservation (e.g. 248 

Mallari et al. 2013, 2016). Java’s officially protected areas have fared reasonably well over the study 249 

period, especially since 2000 compared to those in Sumatra and Borneo, where encroachment 250 

through small-scale logging and agriculture is rife (Curran et al., 2004; Gaveau et al., 2009). 251 

Furthermore, the high altitude of most parks and reserves has minimised the displacement of 252 

logging to unprotected areas (Gaveau et al., 2009). Since 1999, forest loss in highly protected areas 253 

(IUCN Classes Ia and II) has been minimal, with a < 0.1% rate since 2007, but further study of the 254 

efficacy of different protection levels would be valuable, as our small sample size precluded robust 255 

modelling. Moreover, this welcome trend must be set against an extremely high baseline rate in the 256 

1990s when forests below 1,000 m suffered a decline rate of 55% overall and 20% inside protected 257 

areas. As a consequence, only 2,500 km2 of low-altitude forest remains (around 20% coverage). This 258 

will have detrimental effects for connectivity between the better-preserved highland forests, with 259 

increasing separation of major mountain chains and individual peaks (Fig 2ii-iii). Species movement 260 

modelling to identify connectivity corridors between the remaining forest and the bottlenecks to 261 

these connections would benefit conservation planning (e.g. Bleyhl et al., 2017). Crucially, forest 262 

loss, however slow, continues in montane West Java, not only compromising the future of the 263 

island’s most distinctive fauna and flora but also inevitably risking ecosystem services such as water 264 

retention and regulation. Efforts to enhance the protection status of those montane forests 265 

currently with no or low IUCN protected area designation, field surveys to assess the viability of 266 

populations of endemic and threatened taxa (many mountains have not been visited by ecologists 267 

for decades), and protection, by whatever means, of lower-altitude montane forests, are, therefore, 268 

matters of great urgency. 269 

 270 
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Figures 396 

 397 

Fig 1 (a) Location of the study area within Southeast Asia; (b) Digital Elevation Model (DEM) of the 398 
study location with stars indicating the mountain sites selected for further study; (c) land-cover 399 
change map with the 400 m contour highlighted in black (grey boxes refer to the subset images in 400 
Fig 2)  401 

 402 
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 403 

Fig 2 Results of the land-cover change classification (top row), 1990 Landsat 5 median composite 404 
(middle row), and 2016 Landsat 8 median composite (bottom row), for the three areas shown in Fig 405 
1. Band association in the Landsat RGB false colour composites: R = shortwave infrared; G = near 406 
infrared; B = red 407 

 408 

 409 
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 410 

Fig 3 Area-adjusted estimated, with 95% confidence intervals, for the land-cover change classes 411 
covering the whole study area 412 

 413 
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  414 

Fig 4 Role of altitude, protection, and period on cumulative deforestation rate. Curves are derived 415 

from a binomial Generalised Linear Mixed Model (GLMM). 416 
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 417 

Fig 5 Total mapped deforestation per International Union for Conservation of Nature (IUCN) 418 
protected area status 419 

 420 
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 421 

Fig 6 Forest persistence, as a percent of the 1990 baseline across the three epochs for each 422 
mountain site. Numbers next to names relate to the mountains in Figure 1 423 

 424 
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Tables 430 

Table 1 Error matrix and derived accuracy for the land-cover change map 432 
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 443 

  

REFERENCE 

  

  

Stable forest Stable  
non-forest 

Loss  
1990–1999 

Loss  
1999–2007 

Loss  
2007–2015 

Total 

M
A

P
P

ED
 

Stable forest 131 0 0 1 0 132 

Stable non-forest 0 183 0 4 0 187 

Loss 1990–1999 0 0 74 0 0 74 

Loss 1999–2007 0 0 1 69 6 76 

Loss 2007–2015 0 0 0 1 69 70  

Total 131 183 75 75 75 539  

User's 0.99 0.98 1 0.91 0.99 

 

 

Producer's 1 1 0.99 0.78 0.84 

 

 

Overall 0.98 
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Table 2 Odds ratio effects and 95% confidence intervals (CI) for the fixed and random components of 444 

the Generalised Linear Mixed Model (GLMM). The model resulted in a marginal R2 of 0.3 (only fixed 445 

effects) and conditional R2 of 0.45 (full model). 446 

  Response 

  Odds ratio CI p 

Intercept 0.17 0.13–0.24 <0.001 

Altitude 0.45 0.45–0.45 <0.001 

Period 1999–2007 2.07 2.06–2.08 <0.001 

Period 2007–2015 2.68 2.67–2.70 <0.001 

Status *Protected 0.39 0.38–0.40 <0.001 

Period 1999–2007: Status Protected 0.71 0.70–0.73 <0.001 

Period 2007–2015: Status Protected 0.62 0.61–0.64 <0.001 

τ00, Zone 0.624 

NZone 27 

ICCZone 0.159 

Observations 668 

 447 
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