
Waites, William and Misirli, Goksel and Cavaliere, Matteo and Danos, Vin-
cent and Wipat, Anil (2018)A Genetic Circuit Compiler: Generating Combi-
natorial Genetic Circuits with Web Semantics and Inference. ACS Synthetic
Biology, 7 (12). ISSN 2161-5063

Downloaded from: http://e-space.mmu.ac.uk/621827/

Version: Accepted Version

Publisher: American Chemical Society

DOI: https://doi.org/10.1021/acssynbio.8b00201

Please cite the published version

https://e-space.mmu.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by E-space: Manchester Metropolitan University's Research Repository

https://core.ac.uk/display/161894586?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://e-space.mmu.ac.uk/view/creators/Waites=3AWilliam=3A=3A.html
http://e-space.mmu.ac.uk/view/creators/Misirli=3AGoksel=3A=3A.html
http://e-space.mmu.ac.uk/view/creators/Cavaliere=3AMatteo=3A=3A.html
http://e-space.mmu.ac.uk/view/creators/Danos=3AVincent=3A=3A.html
http://e-space.mmu.ac.uk/view/creators/Danos=3AVincent=3A=3A.html
http://e-space.mmu.ac.uk/view/creators/Wipat=3AAnil=3A=3A.html
http://e-space.mmu.ac.uk/621827/
https://doi.org/10.1021/acssynbio.8b00201
https://e-space.mmu.ac.uk

A Genetic Circuit Compiler:
Generating Combinatorial Genetic Circuits with Web Semantics and Inference

William Waites,∗,† Göksel Mısırlı,‡ Matteo Cavaliere,¶ Vincent Danos,§,† and

Anil Wipat‖

†School of Informatics, University of Edinburgh

‡School of Computing and Mathematics, Keele University

¶School of Computing & Mathematics, Manchester Metropolitan University

§École Normale Supérieure, Paris, CNRS

‖School of Computing Science, Newcastle University

Abstract

A central strategy of synthetic biology is to understand the basic processes of living

creatures through engineering organisms using the same building blocks. Biological

machines described in terms of parts can be studied by computer simulation in any of

several languages or robotically assembled in vitro. In this paper we present a language,

the Genetic Circuit Description Language (GCDL) and a compiler, the Genetic Circuit

Compiler (GCC). This language describes genetic circuits at a level of granularity

appropriate both for automated assembly in the laboratory and deriving simulation

code. The GCDL follows Semantic Web practice and the compiler makes novel use

of the logical inference facilities that are therefore available. We present the GCDL

and compiler structure as a study of a tool for generating κ-language simulations from

semantic descriptions of genetic circuits.

1

Page 1 of 34

ACS Paragon Plus Environment

ACS Synthetic Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Keywords

Semantic Web, Inference, Program Generation, Synthetic Biology, Genetic Circuits

Synthetic biology extends classical genetic engineering with concepts of modularity, stan-

dardisation, and abstraction drawn largely from computer engineering. The goal is ambi-

tious: to design complex biological systems, perhaps entire genomes, from first principles1.

This enterprise has met with some success such as the microbial production of drug synthe-

sis2,3, new biofuels production4 and alternative approaches to disease treatment5. However,

most applications are still small and mostly designed manually.

The are several obstacles to designing more complex circuits. The design space of poten-

tial circuits is very large. Even when a design is chosen, there is large a priori uncertainty

about what its behaviour will be. In many cases the available information about molecular

interactions in a cell is incomplete. A secondary obstacle is that designs can be brittle and

very sensitive to the host environment in which they execute. In this context computational

techniques become important for identifying biologically feasible solutions to problems of

biological system synthesis. Beyond the challenges of the huge design space and associated

uncertainties, writing these programs by hand is time-consuming and error prone, and there

are very few tools available for verification and debugging them. Descriptions of models in

terms of simulation code are tightly coupled to the language of the simulation program, and

it may be difficult or impossible to use a different interpreter without completely rewriting

the code.

We solve these problems by providing a high-level, modular, implementation-independent

language for describing gene circuits called the Genetic Circuit Description Language (GCDL)

and a compiler called Genetic Circuit Compiler (GCC). We use a strategy of contex-

tual reasoning to obtain flexible output from this succinct input, and templates to sup-

port any number of output languages and modelling granularities. An overview of in-

2

Page 2 of 34

ACS Paragon Plus Environment

ACS Synthetic Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

formation flow through the compiler is shown in Figure 1. We demonstrate the utility

of this approach by describing, compiling and simulating a complete genetic circuit, the

well-known Elowitz repressilator6. The compiler and example code are available at https:

//github.com/rulebased/composition.

Model
Description

 Annotated κ

Program

Circuit
Compiler

BNGL
Program

Robotic
Assembly

Instructions

Genetic Circuit
Description Language

Target
Languages for

Simulation
& Experiment

Templates

Figure 1: High-level data flow through the compiler. The compiler for synthetic gene circuits
takes a model description written in GCDL and, using language-appropriate appropriate
templates, creates code for simulation and laboratory assembly. We have implemented tem-
plates for annotated-κ for the KaSim software, and envision similar for the BNGL as well as
SBOL.

Code generation from this high-level description to a low-level language for simula-

tion greatly reduces the scope for error in coding simulations. Because the language is

implementation-independent it is not tightly coupled to any particular interpreter or hard-

ware. In this way GCDL facilitates evergreen models, models that are specified sufficiently

well to be unambiguous but not so specifically that they can only be executed or constructed

in one software package or environment.

Domain specific languages and examples of compilers processing these languages have

previously been shown7–10. These languages are designed to allow for simulations using a

particular methodology such as solving systems of ordinary differential equations or using

Monte-Carlo simulation. Unlike previous approaches, we emphasise the use of abstraction to

facilitate retargeting or production of output suitable for different simulation environments

and techniques as well as automated circuit assembly in the laboratory from a single descrip-

tion. Compiler targets are implemented using conditional inference, defining the semantics

of the terms used in the description of the circuit in a way that is determined by the desired

3

Page 3 of 34

ACS Paragon Plus Environment

ACS Synthetic Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

output type. The design of the compiler is general, and not limited to the present context

of genetic circuits. The design shown schematically in Figure 2.

Model
Description

Genetic Circuit
Description
Language

RDFS + GCDL
Rules Merge

Forward
Inference

Dictionary
Transform

Templates

Substitution

Derivation of
Declarations

Host &
Observables

Merge

Simulation
Executable

RDF Graph
& Rules

Internal Representation

KaSim/Kappa
or BNGL

User Input

Background
Facts

Output

Computation

Reference

Figure 2: Detailed data flow through the compiler. This illustrates the use of inference to
expand the GCDL model to derive consequent information appropriate to producing the
next stage of output in the specific target language.

The GCDL is an RDF11 vocabulary and attendant inference rules which facilitates gath-

ering and collation of information about the constituent parts of a genetic circuit12. The

output programs can be specialised to various languages, such as the KaSim flavour of κ13,14,

BioNetGen’s BNGL15,16, other representations such as SBOL17 or indeed whichever form is

required by robotic laboratory equipment that assembles circuits in vitro. This output flex-

ibility is accomplished using templates that use facts derived by inference rules18 from the

input model.

We now proceed as follows. We begin with an overview of those aspects of synthetic

4

Page 4 of 34

ACS Paragon Plus Environment

ACS Synthetic Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

biology and genetic engineering that are necessary to contextualise our work. Next, we

explain the representation of this kind of genetic circuit model in GCDL, this is the main

input to the compiler. In order to understand the desired output of the compiler, we

then illustrate how these constructs are represented as rule-based code for the κ language

simulator, KaSim. There follows a discussion of how the compiler infers the executable

model from the input description. Finally, we discuss some possible uses and limitations of

our technique.

Background

Rule-based Modelling of Genetic Processes

A weakness of reaction-based methods for modelling the processes of transcription, trans-

lation and the production of chains of proteins is that they require chemical species for

each bound state of the reagents. This in turn requires specification of reactions for each

combination of these reagents. To solve this problem of needing combinatorially many re-

actions to describe substantially the same process, a generalisation of reactions called rules

are used19–21.

In the rule-based representation, agents correspond to reagents and they can have slots

or sites that can be bound, or not. They can also have internal state. Unlike reactions which

have no preconditions apart from the presence of the reagents, with rules, a configuration

of the sites — bound in a particular way, bound in some way, unbound, or unspecified —

is a precondition for the application of the rule. A rule may re-arrange the bonds, creating

or destroying them, without the need to invent new agents in order to represent different

configurations of a given set of molecules.

The reader should note that the word rule is used in two distinct senses in this article.

The first is as we have just described. The second is in the sense of inference rule as used in

logic and in particular the way in which we deduce executable rule-based models from their

5

Page 5 of 34

ACS Paragon Plus Environment

ACS Synthetic Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

declarative representations in RDF.

The κ Language

To briefly illustrate the essentials of rule-based modelling we will use the language of the

Kappa simulation software, KaSim14. An agent declaration and rule expressing the formation

of a polymer can be written as,

%agent: A(d,u)

’binding ’ A(u[.]), A(d[.]) -> A(u[1]), A(d[1]) @k

We can gloss this as an agent with two sites, u and d for upstream and downstream, and

a rule. The rule concerns two agent patterns one of which has an unbound upstream site,

and the other an unbound downstream site, and the action of the rule is to bind them, the

notation [1] denoting the bond. This process happens at some rate k.

The state of the other site of each agent is left unspecified, so implicit in this rule is the

possibility that either or both the agents may already be bound to others and so part of

arbitrarily long chains. In other words this expression covers not only two monomers joining

together but an n-mer and an m-mer for arbitrary n and m. This is the essence of the

expressive advantage that rule-based modelling provides. To express a similar concept using

a reaction network would in fact require infinitely many reagents for every possible n (and

m) and infinitely many reactions for every possible combination.

Biological Parts and Annotation

For efficiency, and economy of representation, we claim that the description of a compu-

tational model should include minimum information necessary for simulation. However, in

order to use these models in an automated design process, additional metadata, or annota-

tions, about the meaning of different modelling entities is needed12. Annotation facilitates

6

Page 6 of 34

ACS Paragon Plus Environment

ACS Synthetic Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

the drawing specific parts from a database such as the Virtual Parts Repository22. Models in

that database are annotated with machine-readable metadata intended for combination into

larger models. Myers and his colleagues have used annotations to derive simulatable mod-

els from descriptions of genetic circuits23 and vice versa24, though these use reaction-based

techniques and so inherit the poor scaling properties of that method.

To facilitate the in silico evaluation of potential synthetic gene circuits, a library of

descriptions of genetic parts, together with their modular models is suggested in22,25. These

parts are intended to be large enough to have a particular meaning or function (i.e. larger

than individual base pairs) but not so large that they lack the flexibility to be recombined

(i.e. entire genes). Thus we are concerned with coding sequences for particular proteins,

promoters that, when activated, start the transcription process, operators that activate or

suppress promoters according to whether they are bound or not by a given protein, and a

small number of other objects. A sequence of these objects is a genetic circuit, and our goal

is to have a good language for describing such sequences.

Annotation in this setting means machine-readable descriptions of entities of biologi-

cal interest. This is done with statements, triples of the form (subject, predicate, object)

according Semantic Web standards11,26. Entities are identified with Universal Resource Iden-

tifiers (URIs)27. This provides the dual benefit of globally unique identifiers for entities and

a built-in mechanism for retrieving more information about them providing that some care

is taken to publish data according to best practises28,29. Large bodies of such information

about biologically relevant information are published on the Web30,31 and the use of Seman-

tic Web standards for annotating our models allows us to express how an entity in a model

description corresponds to a real world protein, or gene sequence or other entity.

The Semantic Web also affords us a technical advantage: inference rules. These can be

either explicit as in Notation332,33 or implicit as in OWL Description Logics34,35. In either

case this facility makes it possible, given a set of statements, to derive new statements ac-

cording to inference rules. We use this to improve the ergonomics of our high-level language:

7

Page 7 of 34

ACS Paragon Plus Environment

ACS Synthetic Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

while the compiler itself will make use, internally, of a large amount of information, we do not

expect the user to supply it in painstaking detail. Rather, we allow the user to specify the

minimum possible and provide rules to derive the necessary detail. Inference rules provide

for both economy of representation for the high-level model description and flexibility for

the different implementations.

A Language for Synthetic Gene Circuits

This section describes the GCDL, the high-level language for describing genetic circuits made

from standard biological parts25 22. We begin by stating the properties that we want in such

a language and showing how we achieve them. There follows a synopsis of the vocabulary

terms essential to the language. Finally, we illustrate salient language features applied to

example circuits.

Desired Language Features

Our desired language features for high-level representation of a genetic circuit are as follows,

1. sufficiency, there should be enough information to derive executable code for the circuit,

2. identifiability, it should be possible to determine to which biological entities (DNA

sequences, proteins) the representation refers,

3. extensibility, it should be straightforward to add information or constructs that are

not presently foreseen,

4. generality, there should be no requirement that information about biological parts

comes from any particular set or source, and

5. concision, there should be a minimum of extraneous detail or syntax.

8

Page 8 of 34

ACS Paragon Plus Environment

ACS Synthetic Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

The third and fourth requirements are readily met by using RDF as the underlying data

model. The open world presumption36 means that adding information as necessary is

straightforward. The use of URIs27 which can be dereferenced to obtain the required in-

formation means that information from different web-accessible databases can be obtained,

mixed and matched as desired. The use of URIs goes some way towards meeting the second

requirement, albeit with some well-known caveats37.

The first and last of the desired features are the primary areas of innovation of the

present work. We suggest (but do not require) the use of Turtle38 or indeed Notation318 as

the concrete surface syntax for writing models. This goes some way towards a representation

that is intelligible by humans. Even then, we aim to minimise what needs to be written and

we do this using inference rules — if a needed fact can be derived from the model under

the provided rule-set, it is unnecessary to write it explicitly in the model. Indeed it may

even be undesirable to do so since it is a possible source of errors, for example some kinds of

assertions may be correct in the context of some output types and incorrect in others. We

aim for a minimal, yet complete under the inference rules, description of the model.

Vocabulary Terms

New terms introduced in this paper have the prefix gcc which can be read as the “Ge-

netic Circuit Compiler” vocabulary. The list of terms is reproduced in Table 3 and their

complete definitions are given together with the accompanying rules in the supplementary

materials. The GCDL is the union of terms from the gcc namespace with those from the

Rule-Based Model Ontology (RBMO) that we previously defined39 together with terms from

the Simple Knowledge Organization System (SKOS)40 vocabulary, RDF Schema (RDFS)35

and Resource Description Framework (RDF)11.

9

Page 9 of 34

ACS Paragon Plus Environment

ACS Synthetic Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Table 3: Selected terms from the GCC vocabulary

Classes
gcc:Part Generic biological part
gcc:Operator Operator
gcc:Promoter Promoter
gcc:RibosomeBindingSite Ribosome Binding Site
gcc:CodingSequence Coding Sequence
gcc:Terminator Terminator
gcc:Token Token or symbol in a template

Predicates
gcc:include Include a low-level model fragment
gcc:prefix The prefix to use for generated annotations
gcc:init Specifies initial copy numbers
gcc:part Links a part to its token or symbol
gcc:overlaps Indicates that two parts overlap (symmetric)
gcc:linear Linear circuit type
gcc:circular Circular circuit type
gcc:transcriptionFactor Relates an operator to its transcription factor
gcc:transcriptionFactorBindingRate Various rates
gcc:transcriptionFactorUnbindingRate

gcc:rnapBindingRate

gcc:rnapUnbindingRate

gcc:rnapRNAUnbindingRate

gcc:ribosomeBindingRate

gcc:ribosomeRNAUnbindingRate

gcc:ribosomeProteinUnbindingRate

gcc:transcriptionInitiationRate

gcc:transcriptionElongationRate

gcc:translationElongationRate

gcc:rnaDegradationRate

gcc:proteinDegradationRate

10

Page 10 of 34

ACS Paragon Plus Environment

ACS Synthetic Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

(a) An example genetic circuit: the Elowitz repressilator. It is a negative feedback oscillator. The
circuit is arranged linearly. Protein production and inhibitory protein-operator relationships are
shown using the SBOL visual standard.

(b) Sample simulation data from a program produced by the compiler showing the expected oscil-
lations. Note in particular the relatively small copy numbers of the proteins for which stochastic
simulation in the κ language is well suited.

Model Description

To illustrate the syntax of the high-level language, we use the well known Elowitz repres-

silator shown diagrammatically in Figure 3a. The complete model can be found in the

supplementary materials as well as distributed in the examples/ subdirectory of the com-

piler distribution. Also included with the compiler is a hand-assembled implementation of

this circuit for comparison. A sample trace produced by generated program is shown in

Figure 3b. Figure 4 shows a description of this the core of the model, in the GCDL. Some

bibliographic metadata is included, using the standard Dublin Core41 vocabulary, as well as

a generic pointer (rdfs:seeAlso) to a publication about this model.

The term gcc:prefix is necessary in every model, it instructs the compiler that any

11

Page 11 of 34

ACS Paragon Plus Environment

ACS Synthetic Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Model declaration

:m a rbmo:Model;

bibliographic metadata

dct:title "The Elowitz repressilator constructed from BioBrick parts";

dct:description "Representation of the Elowitz repressilator given in the Kappa BioBricks Framework

book chapter";

rdfs:seeAlso <http: //link.springer.com/protocol /10.1007/978 -1-4939-1878-2_6>;

gcc:prefix <http: //id.inf.ed.ac.uk/rbm/examples/repressilator#>;

include the host environment

gcc:include <.../ host.ka>;

initialisations

gcc:init

[rbmo:agent :RNAp; gcc:value 700],

[rbmo:agent :Ribosome; gcc:value 1000];

The circuit itself , a list of parts

gcc:linear (

:R0040o :R0040p :B0034a :C0051 :B0011a

:R0051o :R0051p :B0034b :C0012 :B0011b

:R0010o :R0010p :B0034c :C0040 :B0011c

).

Figure 4: Example model for a synthetic gene circuit, Elowitz’ repressilator.

entities that it creates should be created under the given prefix. Ultimately annotated rules

will be generated for the low-level representation and the annotated entities require names.

To give them names, a namespace is required and this is how it is provided.

Next there is a gcc:include statement. This is a facility for including extra information

in the low-level language. Extra information typically means rules for protein-protein inter-

actions which are beyond the scope of the current work and as such it is simply supplied as a

program fragment in the output language. This corresponds roughly to calling an assembly

or machine language routine to perform a specialised task when programming a computer

in a high-level language like C.

There follows initialisation for specific variables. In this case these are the copy numbers

for RNA polymerase molecules and ribosomes. These are denoted using rbmo:agent because

of our choice to support rule-based modelling for greater generality than reaction-based

methods. Finally, the circuit itself is specified. The argument, or object is an rdf:List

which simply contains identifiers for the parts, in order.

The circuit itself is now defined. However at this juncture, we simply have a list of parts

without having specified what they are or what their intended behaviour is. To obtain a

working model, we need more.

12

Page 12 of 34

ACS Paragon Plus Environment

ACS Synthetic Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

:C0012 a gcc:CodingSequence;

gcc:label "Coding sequence for LacI";

gcc:part "C0012";

gcc:protein :P0010;

gcc:proteinDegradationRate 0.0001.

:P0010 a gcc:Protein;

bqbiol:is uniprot:P03023;

skos:prefLabel "P0010";

rdfs:label "LacI".

Figure 5: A coding sequence part description from the repressilator model. Notice how the
coding sequence is linked to the protein that it codes for.

A Part Description

A simple example of a part description is shown in Figure 5. This is a coding sequence, as is

clear from the type annotation on the part. It codes for a particular protein, specified with

gcc:protein. This term is specific to proteins because under normal circumstances other

kinds of part do not code for proteins. It is given a part symbol using gcc:part because

the output language will not typically permit the use of URIs as identifiers, so this symbol

via the implied skos:prefLabel40 is what will appear instead. The protein produced by

this coding sequence is also specified and linked using gcc:protein. It too is given a label

using skos:prefLabel for the same reason, and its degradation rate is also specified with

gcc:proteinDegradationRate. It is equally possible to specify the rates for transcription

and translation in a similar manner though not shown here. In practice, rates are known

primarily from experiment and this is an important reason to have accessible databases or

repositories of part specifications.

Importantly, following the practice in our previous paper on rule annotation39, a weak

identity assertion is made with identifiers in external databases for the parts. This uses

bqbiol:is instead of owl:sameAs because the strong replacement semantics (Leibniz’ Law42)

of the latter can yield unwanted inferences when terms are not used perfectly rigorously37.

This weaker identify assertion permits the identification of the :P0010 in the example with

the identifier for the protein in the well-known UniProt31 database.

13

Page 13 of 34

ACS Paragon Plus Environment

ACS Synthetic Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A More Complex Part Description

Amore involved example demonstrating how an operator-promoter combination is encoded is

shown in Figure 6. Here we have an operator with the rates for binding and unbinding of the

transcription factor specified explicitly. If the operator is bound by the transcription factor,

the neighbouring promoter is repressed — an RNA polymerase will not be able to bind. By

contrast if the operator is unbound, the promoter will accept binding of RNA polymerase

easily and frequently. The language supports an arbitrary amount of operator context for

operators and promoters enabling the specification of complex regulatory structures such as

combinatorial logic gates43–45 and some forms of cooperative binding.

The transcription factor is specified by using gcc:transcriptionFactor to refer to the

protein that will turn the operator on or off. Like gcc:protein for coding sequences, the

term is unique to operators.

:R0040o a gcc:Operator;

rdfs:label "TetR activated operator";

gcc:part "R0040o";

gcc:transcriptionFactor :P0040;

gcc:transcriptionFactorBindingRate 0.01;

gcc:transcriptionFactorUnbindingRate 0.01.

:R0040p a gcc:Promoter;

rdfs:label "TetR repressible promoter";

gcc:part "R0040p";

gcc:rnapBindingRate

[

gcc:upstream ([a rbmo:BoundState;

rbmo:stateOf :R0040o]);

gcc:value 7e-7

], [

gcc:upstream ([a rbmo:UnboundState;

rbmo:stateOf :R0040o]);

gcc:value 0.0007

].

Figure 6: An operator and promoter from the repressilator model. The binding rates for the
promoter depend on the state of the adjacent operator.

The promoter comes next and it is the most complex part to specify. Because the rate

for binding of RNA polymerase depends on the state of the operator, two rates must be

specified. States of the nearby parts are specified using the rbmo vocabulary which makes

available the full range of expressiveness for rule-based output languages. For generality, a

14

Page 14 of 34

ACS Paragon Plus Environment

ACS Synthetic Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

list of parts, upstream or downstream on the DNA strand may be specified along with their

states. This enables a promoter to be controlled by two or more operators. The rate itself

in this case is given with gcc:value for each case.

Host and Protein-Protein Interactions

The language can also support protein–protein interactions in a basic way. To see why these

are useful, consider an example from the engineering of a bacterial communication system

where the subtilin molecule is used to control population level dynamics. Cells have the

receiver device 22,46 to sense the existence of subtilin, and the reporter device to initiate

downstream cellular processes (Figures 7a and 7b). In the subtilin receiver, the interactions

among the proteins produced by translation and the operator-promoters are mediated by

a cascade reaction initiated by the subtilin molecule. Subtilin combines to phosphorylate

the SpaK protein, which in turn phosphorylates the SpaR protein that finally binds to the

promoter that controls the emission of a fluorescent green protein.

While the genetic circuit can straightforwardly be described similarly to the previous

repressilator example, the protein–protein interactions cannot. We do not attempt here to

model these interactions in the GCDL though a future extension could do so. Instead we

simply allow for inclusion of the relevant program, as a file in the output language (in this

case κ-language). It is possible to supply arbitrary code in the low-level language using the

gcc:include term. This facility makes it feasible to represent such genetic circuits which

depend strongly on the host environment in order to operate.

Protein Fusion

It is also worth noting that this example illustrates that in the high-level language it is

immediately possible to represent devices that produce chains of proteins. This is known as

protein fusion and is interesting for some applications47. A chain of proteins is produced by

adding adjacent (and appropriate) coding sequences. It is enough to simply list the coding

15

Page 15 of 34

ACS Paragon Plus Environment

ACS Synthetic Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

(a) Diagram of the subtilin genetic circuit. The figure shows the multirelay phosphorylation, and
hence the activation, of SpaR TFs to induce the downstream gene expression. As a result, GFP
reporter proteins are produced in the presence of Subtilin molecules.

:m a rbmo:Model;

dct:title "Subtilin Receiver Two-Component System";

gcc:include <.../ subtilin-host.ka>;

gcc:linear (

:pSpaRK :RBSa :spaK :RBSb :spaR :Ta

:pSpaS :RBSc :gfp :Tb

).

(b) Corresponding semantic model.

Figure 7: Representations of the Subtilin Receiver model.

sequences in the circuit; nothing else need be done.

Other Parts

The descriptions for the other kinds of biological parts, terminators, coding sequences, follow

a similar pattern. There are terms for specifying the rates for the rules in which they

participate, and a few specialised terms according to the function of the specific part. It

is possible to find the available terms out by inspecting the gcc vocabulary included in the

supplementary materials.

16

Page 16 of 34

ACS Paragon Plus Environment

ACS Synthetic Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Output Representation

We now briefly consider the form of the output representation. By using different tem-

plates, the compiler can produce output in different languages. We focus on rule-based

representations here and use the language of the KaSim simulator14 for concrete illustra-

tion as it is widely adopted for stochastic simulation of rule-based models48. The rule-based

modelling approach is merely outlined here and follows that used in Kappa BioBricks Frame-

work (KBBF)48 closely. We stress that though output as executable program in the KaSim

language is demonstrated here, alternative rule-based representations like BioNetGen are

equally possible as are descriptions in a language like SBOL as input to an experimental

process in the laboratory. A more detailed account of the modelling methodology and cor-

responding output can be found in the supplementary materials.

The real work of modelling the transcription and translation machinery is done with

sliding rules. Figure 8 shows how this works for the creation of a protein from a coding

sequence. This is our first example of a rule where though the adjacent part figures explicitly

in the rule, its type does not. It is sufficient to know that it is a piece of RNA. In this case,

RNA X

Rib

DS

US

Ribosome
RNA

Prot

RNA

Rib

DS

USUS DS

RNA

Rib

RNA X

Rib

DS

US

Ribosome
RNA

Prot

RNA

Rib

DS

USUS DS

Rib

RNA

Protein X
BS

US

DS

Pro

BS

’coding-sequence-translation ’

RNA(type{X}, us[2], bs[.]),

RNA(ds[2], bs[1]),

Ribosome(rna[1], protein [.]),

.

->

RNA(type{X}, us[2], bs[1]),

RNA(ds[2], bs[.]),

Ribosome(rna[1], protein [3]),

P(type{X}, bs[3])

@k

Figure 8: Translation of the RNA segment corresponding to a coding sequence to produce a
protein.

two pieces of RNA are involved, the part that is central to this rule corresponds to the coding

sequence for X. It is adjacent to another piece of RNA, and the ribosome slides from one to

the other (to the left, where sliding on DNA happens, as we will see next, to the right) and

in the process, emits a protein of type X.

17

Page 17 of 34

ACS Paragon Plus Environment

ACS Synthetic Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Genetic Circuit Compiler

Having described the GCDL in some detail, we now briefly sketch our implementation of

the compiler. Many compiler implementations are possible; ours innovatively combines the

logical inference that is native to the semantic web with the use of templates to generate

the target program. The templates define standard models for each type of part in a given

output language. Different output languages or model granularities are achieved by choosing

a different set of templates. The overall information flow through the compiler is illustrated

in Figure 1.

Our strategy is to first gather all the input statements and background facts that are

asserted by the various vocabularies in use. In the first inference step, standard RDF rules

are used to make available consequent facts that will be needed to produce the ultimate

result. The result is a program in a language such as κ and not RDF, and which uses

local variable names and not URIs, so the materialised facts are transformed into a suitable

internal representation. Substitution into templates is done next, and finally the result is

post-processed to derive any remaining program directives that are only knowable once the

complete circuit is assembled.

It is interesting to consider that the entire compiler can be thought of as implementing

a kind of inference quite different from what is commonly used with the Semantic Web.

The consequent, the executable model, is in a different language from the antecedent, the

declarative description. Through the use of embedding annotations, however, the original

model is nevertheless carried through to the output, and is unambiguously recoverable. There

is thus an arrow from the space of declarative models in RDF to the space of annotated

executable models. There is an arrow in the other direction that forgets the executable part

and retains the declarative part. In an important sense, the two representations contain the

same information, only that the executable model has more materialised detail in order that

it may be run.

18

Page 18 of 34

ACS Paragon Plus Environment

ACS Synthetic Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Semantic Inference

The input from the user is the model description in the high-level language as described

above. This description uses terms from, and makes reference to the gcc and rbmo vocab-

ularies. The meaning of these terms, in the context of deriving an equivalent version of

the program in the low-level language, is given by the companion inference rules. This is a

somewhat subtle concept so let us illustrate what it means. Consider the statement,

:R0040a a gcc:Operator.

This statement gives the type of :R0040a as gcc:Operator.

The implications of this statement allows to identify the correct template to use for this

part, found from information provided by the gcc vocabulary. Indeed, as a background fact,

we have,

gcc:Operator gcc:kappaTemplate rbmt:operator.ka.

or in other words that an gcc:Operator corresponds to the template rbmt:operator.ka. We

also have an inference rule, provided with the gcc vocabulary that says,

{ ?part a [gcc:kappaTemplate ?template] } => { ?part gcc:kappaTemplate ?template }.

In the Notation 332,33 language this means that, “for all ?parts that has a type that corre-

sponds to a kappa ?template, that ?part itself corresponds to that ?template”. Alternatively,

type(p, x) ∧ kappa(x, t) → kappa(p, t)

It would have been perfectly possible to explicitly write what template should be used

for each part in the high-level model description. That is not desirable because it would leak

implementation details of the compiler into what ought to be an implementation-independent

19

Page 19 of 34

ACS Paragon Plus Environment

ACS Synthetic Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

declarative description.

The above rule, and others like it serve to elaborate the high-level description into a more

detailed version suitable for the next stage of the compiler and relieve the user of the need

to supply the extra details. All implications that can be drawn under the rdfs inference

rules and the gcc specific rules are drawn and become part of the in the in-memory RDF

storage as the transitive closure of the rules (given the background facts and the provided

model facts).

Internal Representation

The output of the first stage of the compiler contains all the information necessary to com-

pletely describe the output, but it is not in a convenient form for providing to the template

rendering engine. Our implementation choice for the compiler is the Jinja249 rendering en-

gine. This means that the appropriate data-structure is a dictionary or associative list that

can be processed natively by these tools without need of external library. The required

internal representation is built up by querying the in-memory RDF storage for the specific

information required by the templates.

Our implementation does not require modification when new terms are added to the

vocabulary and templates. To add support for a new kind of part it is necessary to write

a new template for it and possibly add some terms to the vocabulary but does not require

changing the compiler software itself. What makes this possible are the inference rules

described in the previous section. The queries on the RDF storage that produce the internal

representation are posed in terms of the consequents of the inference rules rather than the

specific form of input.

Template Substitution

The templates that produce the bulk of the low-level output are written in the well-known

Jinja2 language. This language is commonly used for the server-side generation of web pages.

20

Page 20 of 34

ACS Paragon Plus Environment

ACS Synthetic Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

KaSim or BNGL programs are not web pages but they are text documents and Jinja2 is

well suited to generating them. It has a notion of inclusion and inheritance that is useful for

handling the variations among the different kinds of parts, which typically differ in the rules

for one or two of the interactions in which they participate with the others being identical.

We provide a total of 15 templates for KaSim, of which there are top-level templates for

each of the five distinct types of biological part defined in the gcc vocabulary as well as a

generic part template, five templates implementing functionality shared among parts, and

five consisting of supporting boilerplate required by KaSim.

A full description of the facilities provided by Jinja2 is beyond the scope of this paper, but

a flavour is given in Figure 9 which shows an example of a template for a generic part (not

having specific functionality like a promoter or operator might) demonstrating substitution

of the name variable derived from annotation, and include statements referencing several other

templates, one of which is reproduced and shows the KaSim code that is produced.

We use specific terms for defining the rates for the rules in which biological parts are

involved, and a few other terms according to the function of the biological part of interest.

It is possible to find the available terms out by inspecting the gcc vocabulary provided in

the supplementary materials..

A fragment of the gcc vocabulary is reproduced in Figure 10. Though this exposes some

implementation detail, it is useful to understand the relationships between the various terms

used to describe models. This is also important when supplying customised templates.

There are gcc:Tokens, so named because they correspond to tokens in the low-level

language that are replaced. Each must have a preferred label that gives the literal token. In

cases where there exists a sensible default value, this is given with gcc:default. The purpose

of these statements is to act as a bridge between the fully materialised RDF representation

of the model and the templates that require substitution of locally meaningful names.

For each kind of part (such as the gcc:Operator in the example in Figure 10), there

are two main annotations that are necessary. For each machine-readable low-level language,

21

Page 21 of 34

ACS Paragon Plus Environment

ACS Synthetic Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Auto -generated generic part {{ name }}

{% include "header.ka" %}

{% import "context.ka" as context with context %}

{% import "meta.ka" as meta with context %}

{% include "transcription_elongation.ka" %}

{% include "transcription_termination.ka" %}

{% include "translation_chain.ka" %}

{% include "translation_elongation.ka" %}

{% include "translation_termination.ka" %}

{% include "host_maintenance.ka" %}

{% set rule = "%s-translation -chain" % name %}

//

//^ :{{ rule }} a rbmo:Rule;

//^ bqbiol:isVersionOf go:GO :0006415;

{{ meta.rule() }}{# #}

//^ rdfs:label "{{ name }} formation of \

//^ translational chains , due to \

//^ gene fusion or leakiness of \

//^ stop codons ".

// {{ name }} formation of translational chains ,

// due to gene fusion or leakiness of stop codons

//

’{{ rule }}’ \

RNA(ds[2], bs[1]), \

Ribosome(rna[1], protein [3]), \

RNA(type{{ curly(name) }}, us[2], bs[.]), \

Protein(ds[.], bs[3]), . \

-> \

RNA(ds[2], bs[.]), \

Ribosome(rna[1], protein [3]), \

RNA(type ~{{ name }}, us[2], bs[1]), \

P(ds[4], bs[.]), \

P(type{{ curly(name) }}, us[4], bs[3]) \

@{{ translationElongationRate }}

Figure 9: Template examples. On top is the template for a generic part, and it references
several other templates, one of which, translation_chain.ka, is reproduced on bottom.

a template is specified. The gcc:tokens annotations give the tokens that are pertinent to

this kind of part. These must be specified in the high-level model or allowed to take on

their default values. In addition to documenting the requirements of the templates for each

kind of part, these statements are, “operationalised” and used by the compiler. They can

equally well be used to check that a supplied high-level model is sufficiently complete and

well-formed to produce an output program.

22

Page 22 of 34

ACS Paragon Plus Environment

ACS Synthetic Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

gcc:transcriptionFactor a gcc:Token;

skos:prefLabel "transcriptionFactor".

gcc:transcriptionFactorBindingRate a gcc:Token;

skos:prefLabel "transcriptionFactorBindingRate";

gcc:default 1.0.

gcc:transcriptionFactorUnbindingRate a gcc:Token;

skos:prefLabel "transcriptionFactorUnbindingRate";

gcc:default 1.0.

gcc:Operator rdfs:subClassOf gcc:Part;

gcc:kappaTemplate rbmt:operator.ka;

gcc:bnglTemplate rbmt:operator.bngl;

gcc:tokens

gcc:transcriptionFactor ,

gcc:transcriptionFactorBindingRate ,

gcc:transcriptionFactorUnbindingRate.

Figure 10: The specification in the gcc vocabulary of an gcc:Operator and associated terms.

Derivation of Declarations

The KaSim language requires forward declaration of the type signatures of agents. This

is by design50 so that the simulator can check that agents are correctly used where they

appear in patterns in the rules. While this design choice can help a modeller that is writing

a simulation program in the low-level language by hand, to assist in finding mistakes and

typographical errors, it is not possible to know a priori what these declarations should be

in the present context. The correct declarations for DNA, RNA and Protein depend on the

complete set of parts that make up the model so their correct declarations cannot be in any

template for an individual part.

To solve this issue, the compiler implements a post-processing step. The rules that are

produced by instantiating the templates for each part are concatenated together with any

explicitly supplied rules and then the whole is parsed. The use of each agent in each rule in

this rule-set is assumed to be correct by construction. From there a declaration that covers

each use of each agent is built up.

Initialisation

At this final stage of the compiler, all rules are present, both supplied by the user for the

host environment and implied by the parts that form the genetic circuits and all declarations

23

Page 23 of 34

ACS Paragon Plus Environment

ACS Synthetic Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

are also present. What is missing is the statement that creates an initial copy of the DNA

sequence itself, which each upstream–downstream bond present. This information is, of

course, available in the definition of the circuit, and so an appropriate %init statement,

creating a single instance of the DNA sequence with correct linkages between the agent-

parts is produced and added to the output. The low-level program is finally complete and

ready to be executed.

Discussion

We have presented a language, the GCDL for describing genetic circuits and our compiler

for generating simulation executables from it. We have made the case that the succinctness

of the GCDL affords the user the benefit of describing the salient aspects of these circuits

free of extraneous detail, that this reduces the potential for user error inherent in detailed

coding of molecular interactions, and that this approach also affords flexibility in choosing

the simulation or experimental methodology for the model. We have further developed the

argument that modularity in modelling of genetic circuits has similar benefits of modularity

in high-level programming languages, namely encapsulation and clarity. We now consider

some of the limitations and benefits of our design choices and explore some areas ripe for

future research.

It is important to understand the correctness and verification properties of the compiler

and the GCDL. The GCDL is an RDF-based language and models are typically written in

Turtle. The syntax11 38 on a concrete level is well defined and models that are badly formed

will be rejected. The standard templates are documented in machine-readable form in the

GCDL vocabulary. Annotations that are required for a given part type also cause the model

to be rejected by the compiler if they are not present. But the compiler does not perform

verification in terms of how the parts are composed. Users are free to choose any DNA

parts and in any order. For example, a model that includes a coding sequence part without

24

Page 24 of 34

ACS Paragon Plus Environment

ACS Synthetic Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

preceding promoter and ribosome binding site parts is allowed, though and the resulting

model would emit no protein agents and perhaps not be very interesting. Verifying whether

a given circuit expressed in the GCDL is accepted by a parts grammar7,51 verification of part

sequences is out of scope for the compiler but could be the subject of future work.

The expressive power afforded by the design choice of modularity — fixing the level

of abstraction for a model — comes at a cost. Biological parts are considered as atomic

units. While it is straightforward to model complex mechanisms like combinatorial logic

operators and cooperative binding it is not straightforward to mix models in terms of the

part abstraction with models of the underlying substrate. Phenomena that inherently involve

the physical or chemical structure of the DNA molecule or the shape of a protein cannot be

modelled directly and we are restricted to simply asserting that they occur or not at some

rate. Similarly, while parts which share nucleotide sequences and may overlap can be marked

as such with the gcc:overlaps term, this has no effect on the modelling. If the fact of parts

overlapping is significant in the behaviour of the circuit, those parts are not modular and

that would break the abstraction barrier. Such an annotation can, however, be used when

selecting parts for assembly in vitro. Parts for which overlap is functionally significant can

also be treated as an atomic unit with a suitable template. The modelling abstraction, once

chosen, is fixed. This is by design, in order that models so expressed remain tractable.

Similar reasoning applies to optimisation of DNA sequences. This is not our focus in the

present work. Here, our main goal is to capture the dynamics of genetic circuit designs and

to automate the process of model generation. Hence, deriving final DNA sequences encoding

the behaviours captured in models is not our focus, and related research can indeed be

incorporated in the future52. Because the language is based on RDF, custom user based

data can be stored as annotations39 to facilitate later optimisation.

We do, however, envision optimisation of circuits at the level of abstraction that we have

chosen, and derivation of circuits to a given specification. A method for doing this, which

we only sketch here, is to define a suitable fitness or distance measure on the output of

25

Page 25 of 34

ACS Paragon Plus Environment

ACS Synthetic Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

simulations with respect to the desired specification. A starting candidate circuit is chosen,

constructed from a given library of parts, and measured. Parts of the circuit are swapped,

added or removed at random, subject to the constraint that the circuit remains well formed

according to an operon grammar7,51 and the new circuit is measured with respect to the

specification. If the result is better than the previous circuit, the change is accepted, and

the process is repeated until a locally optimal solution is found. This evolutionary algorithm

approach is in contrast to the approach of assembling all possible circuits in vitro seen

elsewhere53–56 and is likely to be less efficient in cases where the desired behaviour of the

circuit can be measured simply, such as by detecting the production of a fluorescent protein.

However for cases that may be more difficult to measure in vitro such as oscillations or more

complex outputs it can be more straightforward to measure the output and compare to the

specification when done in silico.

Currently, the templates that we have supplied only handle single stranded genetic con-

structs. Parts are composed using upstream and downstream bonds to create chains of DNA

sequences, and our framework currently does not consider whether the other strand is free

or not regarding the elongation RNAP or the binding of molecules and so on. One reason

why we have chosen to support the single-stranded case first is simplicity. Another is that

databases of models for double-stranded parts are not available. Adding support for this in

templates, and developing a library of suitable parts is another topic for future research.

Here, we presented the application of rule-based models and Semantic Web technologies

to automate the design of genetic circuits. Representations of cellular activities were captured

using modular rules to support scalability of designs. The automation process is facilitated

by the GCDL high level language, which is built upon the Semantic Web and is used to

describe genetic circuits. Furthermore, we presented a compiler that generates rule-based

executable models from the high-level description. The implementation of the compiler is

notable in its use of semantic inference and the language is sophisticated enough to support

several classes of complex regulatory mechanisms. Despite the expressive power afforded by

26

Page 26 of 34

ACS Paragon Plus Environment

ACS Synthetic Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

this approach, the language maintains a succinctness and simplicity that we hope will be a

boon to those modelling genetic circuits in silico. The implicit modularity in our rule-based

approach and the high-level language presented will be beneficial to synthetic biologists to

model complex regulatory relationships through the use of widely adopted standards.

Acknowledgements Thanks to Michael Korbakov for porting the original Haskell im-

plementation of the agent declaration code to Python. We would also like to thank the

anonymous reviewers, whose feedback has resulted in a much improved manuscript.

Funding W.W., M.C., G.M., A.W., and V.D. acknowledge the support from the Engineer-

ing and Physical Sciences Research Council (EPSRC) grant EP/J02175X/1 and from UK

Research Councils’ Synthetic Biology for Growth programme. W.W. and V.D. acknowledge

the European Union’s Seventh Framework Programme for research, technological develop-

ment and demonstration grant number 320823 (to V.D. andW.W.). W.W. also acknowledges

support from the National Academies Keck Futures Initiative of the National Academy of

Sciences award number NAKFI CB12.

Conflicts of Interest The authors have no competing interests.

Resources

Rule-Based Modelling Ontology http://purl.org/rbm/rbmo

Genetic Circuit Description Language http://purl.org/rbm/comp

Rule-Based Modelling Examples https://github.com/rulebased/rbmo

Genetic Circuit Compiler Software https://github.com/rulebased/composition

Kappa BioBricks Framework Software https://github.com/sstucki/lms-kappa

27

Page 27 of 34

ACS Paragon Plus Environment

ACS Synthetic Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

References

1. Baldwin, G. Synthetic biology: A primer ; John Wiley & Sons, 2012.

2. Paddon, C. J. et al. (2013) High-level semi-synthetic production of the potent antimalar-

ial artemisinin. Nature (London, U. K.) 496, 528–532.

3. Galanie, S., Thodey, K., Trenchard, I. J., Filsinger Interrante, M., and Smolke, C. D.

(2015) Complete biosynthesis of opioids in yeast. Science (Washington, DC, U. S.) 349,

1095–1100.

4. Ferry, M. S., Hasty, J., and Cookson, N. A. (2012) Synthetic biology approaches to

biofuel production. Biofuels 3, 9–12.

5. Ruder, W. C., Lu, T., and Collins, J. J. (2011) Synthetic Biology Moving into the Clinic.

Science (Washington, DC, U. S.) 333, 1248–1252.

6. Elowitz, M. B., and Leibler, S. (2000) A synthetic oscillatory network of transcriptional

regulators. Nature (London, U. K.) 403, 335–338.

7. Pedersen, M., and Phillips, A. (2009) Towards programming languages for genetic engi-

neering of living cells. J. R. Soc., Interface 6, S437–S450.

8. Beal, J., Phillips, A., Densmore, D., and Cai, Y. In Design and Analysis of Biomolec-

ular Circuits: Engineering Approaches to Systems and Synthetic Biology ; Koeppl, H.,

Setti, G., di Bernardo, M., and Densmore, D., Eds.; Springer New York: New York, NY,

2011; pp 225–252.

9. Cai, Y., Beal, J., Phillips, A., and Densmore, D. Design and Analysis of Biomolecular

Circuits ; SpringerLink, 2011; pp 225–252.

10. Hallinan, J. S., Gilfellon, O., Misirli, G., and Wipat, A. Tuning receiver characteristics

in bacterial quorum communication: An evolutionary approach using standard virtual

28

Page 28 of 34

ACS Paragon Plus Environment

ACS Synthetic Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

biological parts. 2014 IEEE Conference on Computational Intelligence in Bioinformatics

and Computational Biology. 2014; pp 1–8.

11. Cyganiak, R., Carroll, J., and Lanthaler, M. RDF 1.1 Concepts and Abstract Syntax ;

W3C Recommendation, 2014.

12. Neal, M. L., Cooling, M. T., Smith, L. P., Thompson, C. T., Sauro, H. M., Carlson, B. E.,

Cook, D. L., and Gennari, J. H. (2014) A reappraisal of how to build modular, reusable

models of biological systems. PLoS Comput. Biol. 10, e1003849.

13. Danos, V., Feret, J., Fontana, W., Harmer, R., and Krivine, J. In CONCUR 2007 –

Concurrency Theory ; Caires, L., and Vasconcelos, V. T., Eds.; Lecture Notes in Com-

puter Science 4703; Springer Berlin Heidelberg, 2007; pp 17–41, DOI: 10.1007/978-3-

540-74407-8 3.

14. Krivine, J., and Feret, J. KaSim. 2017; http://dev.executableknowledge.org/.

15. Blinov, M. L., Faeder, J. R., Goldstein, B., and Hlavacek, W. S. (2004) BioNetGen:

software for rule-based modeling of signal transduction based on the interactions of

molecular domains. Bioinformatics 20, 3289–3291.

16. Harris, L. A., Hogg, J. S., Tapia, J.-J., Sekar, J. A. P., Gupta, S., Korsunsky, I., Arora, A.,

Barua, D., Sheehan, R. P., and Faeder, J. R. (2016) BioNetGen 2.2: advances in rule-

based modeling. Bioinformatics 32, 3366–3368.

17. Galdzicki, M., Clancy, K. P., Oberortner, E., Pocock, M., Quinn, J. Y., Rodriguez, C. A.,

Roehner, N., Wilson, M. L., Adam, L., and Anderson, J. C. (2014) The Synthetic Biology

Open Language (SBOL) provides a community standard for communicating designs in

synthetic biology. Nat. Biotechnol. 32, 545.

18. Berners-Lee, T. An RDF language for the Semantic Web; Design Issues, 2005.

29

Page 29 of 34

ACS Paragon Plus Environment

ACS Synthetic Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

19. Hlavacek, W. S., Faeder, J. R., Blinov, M. L., Perelson, A. S., and Goldstein, B. (2003)

The complexity of complexes in signal transduction. Biotechnol. Bioeng. 84, 783–794.

20. Danos, V., and Laneve, C. (2004) Formal molecular biology. Theor. Comput. Sci. 325,

69–110.

21. Danos, V., Feret, J., Fontana, W., Harmer, R., and Krivine, J. Formal methods in systems

biology ; Springer, 2008; pp 103–122.

22. Misirli, G., Hallinan, J., and Wipat, A. (2014) Composable Modular Models for Synthetic

Biology. J. Emerg. Technol. Comput. Syst. 11, 22:1–22:19.

23. Roehner, N., Zhang, Z., Nguyen, T., and Myers, C. J. (2015) Generating Systems Biology

Markup Language Models from the Synthetic Biology Open Language. ACS Synth. Biol.

873–879, PMID: 25822671.

24. Nguyen, T., Roehner, N., Zundel, Z., and Myers, C. J. (2016) A Converter from the

Systems Biology Markup Language to the Synthetic Biology Open Language. ACS Synth.

Biol. 5, 479–486, PMID: 26696234.

25. Cooling, M. T., Rouilly, V., Misirli, G., Lawson, J., Yu, T., Hallinan, J., and Wipat, A.

(2010) Standard virtual biological parts: a repository of modular modeling components

for synthetic biology. Bioinformatics 26, 925–931.

26. van Harmelen, F., and McGuinness, D. L. OWL Web Ontology Language; W3C Recom-

mendation, 2004.

27. Masinter, L., Berners-Lee, T., and Fielding, R. T. RFC3896 – Uniform Resource Iden-

tifier (URI): Generic Syntax ; Request for Comments, 2005.

28. Hyland, B., Atemezing, G., and Villazón-Terrazas, B. Best Practices for Publishing

Linked Data; W3C Working Group Note, 2014.

30

Page 30 of 34

ACS Paragon Plus Environment

ACS Synthetic Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

29. Sauermann, L., Cyganiak, R., and Völkel, M. Cool URIs for the semantic web; 2011.

30. Ashburner, M. et al. (2000) Gene Ontology: tool for the unification of biology. Nat.

Genet. 25, 25–29.

31. Consortium, U., and others, (2008) The universal protein resource (UniProt). Nucleic

Acids Res. 36, D190–D195.

32. Berners-Lee, T., Connolly, D., Kagal, L., Scharf, Y., and Hendler, J. (2008) N3logic: A

logical framework for the world wide web. Theor. Pract. Log. Prog. 8, 249–269.

33. Berners-Lee, T., and Connolly, D. Notation3 (N3): A readable RDF syntax ; W3C Team

Submission, 2011.

34. Horrocks, I. OWL: A Description Logic Based Ontology Language. Logic Programming.

2005; pp 1–4.

35. Brickley, D., and V., G. R. RDF Schema 1.1 ; W3C Recommendation, 2014.

36. Drummond, N., and Shearer, R. The open world assumption. eSI Workshop: The Closed

World of Databases meets the Open World of the Semantic Web. 2006.

37. Halpin, H., Hayes, P. J., McCusker, J. P., McGuinness, D. L., and Thompson, H. S. When

owl:sameAs Isn’t the Same: An Analysis of Identity in Linked Data. The Semantic Web

– ISWC 2010. 2010; pp 305–320, DOI: 10.1007/978-3-642-17746-0 20.

38. Prud’hommeaux, E., and Carothers, G. RDF 1.1 Turtle; W3C Recommendation, 2014.

39. Misirli, G., Cavaliere, M., Waites, W., Pocock, M., Madsen, C., Gilfellon, O., Honorato-

Zimmer, R., Zuliani, P., Danos, V., and Wipat, A. (2015) Annotation of rule-based

models with formal semantics to enable creation, analysis, reuse and visualization. Bioin-

formatics btv660.

31

Page 31 of 34

ACS Paragon Plus Environment

ACS Synthetic Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

40. Miles, A., Matthews, B., Wilson, M., and Brickley, D. (2005) SKOS Core: Simple knowl-

edge organisation for the Web. International Conference on Dublin Core and Metadata

Applications 0, 3–10.

41. Kunze, J. A., and Baker, T. RFC5013 – The Dublin Core Metadata Element Set ; Request

for Comments, 2007.

42. Forrest, P. In The Stanford Encyclopedia of Philosophy, winter 2016 ed.; Zalta, E. N.,

Ed.; Metaphysics Research Lab, Stanford University, 2016.

43. Cox, R. S., Surette, M. G., and Elowitz, M. B. (2007) Programming gene expression

with combinatorial promoters. Mol. Syst. Biol. 3, 145.

44. Wang, B., Kitney, R. I., Joly, N., and Buck, M. (2011) Engineering modular and or-

thogonal genetic logic gates for robust digital-like synthetic biology. Nat. Commun. 2,

508.

45. Sanchez, A., Garcia, H. G., Jones, D., Phillips, R., and Kondev, J. (2011) Effect of

promoter architecture on the cell-to-cell variability in gene expression. PLoS Comput.

Biol. 7, e1001100.

46. Bongers, R. S., Veening, J.-W., Wieringen, M. V., Kuipers, O. P., and Kleerebezem, M.

(2005) Development and Characterization of a Subtilin-Regulated Expression System

in Bacillus subtilis: Strict Control of Gene Expression by Addition of Subtilin. Appl.

Environ. Microbiol. 71, 8818–8824.

47. Yu, K., Liu, C., Kim, B.-G., and Lee, D.-Y. (2015) Synthetic fusion protein design and

applications. Biotechnol. Adv. 33, 155–164.

48. Wilson-Kanamori, J., Danos, V., Thomson, T., and Honorato-Zimmer, R. In Compu-

tational Methods in Synthetic Biology ; Marchisio, M. A., Ed.; Methods in Molecular

Biology 1244; Springer New York, 2015; pp 105–135, DOI: 10.1007/978-1-4939-1878-2 6.

32

Page 32 of 34

ACS Paragon Plus Environment

ACS Synthetic Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

49. Ronacher, A. Jinja2 (The Python Template Engine). 2008; http://jinja.pocoo.org.

50. Feret, J., and Krivine, J. Personal correspondence. 2015.

51. Cai, Y., Hartnett, B., Gustafsson, C., and Peccoud, J. (2007) A syntactic model to

design and verify synthetic genetic constructs derived from standard biological parts.

Bioinformatics 23, 2760–2767.

52. Misirli, G., Hallinan, J. S., Yu, T., Lawson, J. R., Wimalaratne, S. M., Cooling, M. T.,

and Wipat, A. (2011) Model annotation for synthetic biology: automating model to

nucleotide sequence conversion. Bioinformatics 27, 973–979.

53. Guet, C. C., Elowitz, M. B., Hsing, W., and Leibler, S. (2002) Combinatorial synthesis

of genetic networks. Science (Washington, DC, U. S.) 296, 1466–1470.

54. Menzella, H. G., Reid, R., Carney, J. R., Chandran, S. S., Reisinger, S. J., Patel, K. G.,

Hopwood, D. A., and Santi, D. V. (2005) Combinatorial polyketide biosynthesis by de

novo design and rearrangement of modular polyketide synthase genes. Nat. Biotechnol.

23, 1171.

55. Smanski, M. J., Bhatia, S., Zhao, D., Park, Y., Woodruff, L. B., Giannoukos, G.,

Ciulla, D., Busby, M., Calderon, J., and Nicol, R. (2014) Functional optimization of

gene clusters by combinatorial design and assembly. Nat. Biotechnol. 32, 1241.

56. Cress, B. F., Toparlak, O. D., Guleria, S., Lebovich, M., Stieglitz, J. T., Englaen-

der, J. A., Jones, J. A., Linhardt, R. J., and Koffas, M. A. (2015) CRISPathBrick:

modular combinatorial assembly of type II-A CRISPR arrays for dCas9-mediated mul-

tiplex transcriptional repression in E. coli. ACS Synth. Biol. 4, 987–1000.

33

Page 33 of 34

ACS Paragon Plus Environment

ACS Synthetic Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Table of Contents Use Only

With a box:

Model
Description

 Annotated κ

Program

Circuit
Compiler

BNGL
Program

Robotic
Assembly

Instructions

Genetic Circuit
Description Language

Target
Languages for

Simulation
& Experiment

Templates

Without a box:

Model
Description

 Annotated κ

Program

Circuit
Compiler

BNGL
Program

Robotic
Assembly

Instructions

Genetic Circuit
Description Language

Target
Languages for

Simulation
& Experiment

Templates

1

Page 34 of 34

ACS Paragon Plus Environment

ACS Synthetic Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

