-

View metadata, citation and similar papers at core.ac.uk brought to you byf: CORE

provided by E-space: Manchester Metropolitan University's Research Repository

Manchester
Metropolitan
University

Zhao, Wei and Tao, Tao and Zio, Enrico and Wenbin, Wang (2016)A Novel
Hybrid Method of Parameters Tuning in Support Vector Regression for Re-
liability Prediction: Particle Swarm Optimization Combined With Analytical
Selection. |[EEE Transactions on Reliability, 65 (3). pp. 1393-1405. ISSN
0018-9529

Downloaded from: http://e-space.mmu.ac.uk/621538/
Publisher: IEEE
DOI: https://doi.org/10.1109/TR.2016.2515581

Please cite the published version

http://e-space.mmu.ac.uk


https://core.ac.uk/display/161894352?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://e-space.mmu.ac.uk/view/creators/Zhao=3AWei=3A=3A.html
http://e-space.mmu.ac.uk/view/creators/Tao=3ATao=3A=3A.html
http://e-space.mmu.ac.uk/view/creators/Zio=3AEnrico=3A=3A.html
http://e-space.mmu.ac.uk/view/creators/Wenbin=3AWang=3A=3A.html
http://e-space.mmu.ac.uk/621538/
https://doi.org/10.1109/TR.2016.2515581
http://e-space.mmu.ac.uk

A Novel Hybrid Method of Parameters Tuning
in Support Vector Regression for Reliability
Prediction: Particle Swarm Optimization
Combined With Analytical Selection

Wei Zhao, Tao Tao, Enrico Zio, and Wenbin Wang

Abstract—Support vector regression (SVR) is a widely used
technique for reliability prediction. The key issue for high pre-
diction accuracy is the selection of SVR parameters, which is
essentially an optimization problem. As one of the most effective
evolutionary optimization methods, particle swarm optimization
(PSO) has been successfully applied to tune SVR parameters and
is shown to perform well. However, the inherent drawbacks of
PSO, including slow convergence and local optima, have hindered
its further application in practical reliability prediction problems.
To overcome these drawbacks, many improvement strategies are
being developed on the mechanisms of PSO, whereas there is little
research exploring a priori information about historical data to
improve the PSO performance in the SVR parameter selection
task. In this paper, a novel method controlling the inertial weight
of PSO is proposed to accelerate its convergence and guide the
evolution out of local optima, by utilizing the analytical selection
(AS) method based on a priori knowledge about SVR parameters.
Experimental results show that the proposed ASPSO method
is almost as accurate as the traditional PSO and outperforms
it in convergence speed and ability in tuning SVR parameters.
Therefore, the proposed ASPSO-SVR shows promising results for
practical reliability prediction tasks.

Index Terms—Analytical selection, parameter tuning, particle
swarm optimization, reliability prediction, support vector regres-
sion.

ACRONYMS AND ABBREVIATIONS

ARIMA Autoregressive integrated moving average.
SVM Support vector machine.

SRM Structural risk minimization.

ERM Empirical risk minimization.

SVR Support vector regression.
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Analytical selection.
Simulated annealing.
Genetic algorithm.

Particle swarm optimization.

NOTATION

i-dimension input vector.
Real-valued output.

Number of data patterns.

Weight vector of regression model.
Intercept of the regression model.

Nonlinear mapping that translates the complex
nonlinear regression problem to a simple linear
regression problem.

Slack variables representing the deviation
outside the g-insensitive zone.

Width of insensitive zone.

Penalty coefficient.

Kernel width, a crucial parameter in Kernel
function.
Mean of output values.

Standard deviation of output values.
Noise level of the training dataset.
Parameters vector C' g7 .

Index to evaluate the quality of a given
chromosome or particle.

Probability of crossover and mutation in the GA
methodology.

Size of the particle swarm.

Best position based on the individual experience
and the group experience.
Current iteration number.

Velocity vector in the PSO methodology.
Inertial weight in the PSO methodology.
Learning coefficients in the PSO methodology.
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M Transit matrix of system status.

= == Eigenvalues of M.

n Recognition degree measuring the probability
that the current best position could be the global
optimum.

\% Convergence speed.

T Monotonically mapping describing the
relationship between recognition degree and
convergence speed.

& Linear coefficient.

T = Global optimal position.

Tp= Optimal position estimated by the AS method.

- Mabhalanobis distance.

[. INTRODUCTION

UE to the increasing complexity in modern processes,

systems, and plants, together with the usual necessities of
business profitability, safety of humans' life, and protection of
the environment, safe and reliable operation of engineering sys-
tems is becoming more and more important and has received
increasing attention in research and practice. Reliability anal-
ysis and risk assessment offer sound technical frameworks for
the study of component and system failures, with quantification
of their probabilities and consequences [1].Within these frame-
works of analysis, one important task is the reliability predic-
tion. In those cases when the historical trend of reliability state
is given as a time series of reliability, reliability prediction can
be regarded as a time series prediction problem whose solution
entails predicting the future values of reliability based on past
data observations.

A widely used time series prediction model is the autore-
gressive integrated moving average model (ARIMA), with solid
foundations in classical probability theory. However, the offline
modeling efforts required for model identification and construc-
tion limit its usefulness in practical applications [2]. In recent
years, neural networks have emerged as a universal approxi-
mator for any nonlinear continuous function varying over a time
or space domain, and have been applied successfully to various
reliability problems such as software reliability prediction [3]
and complex system maintenance [4]. However, practical dif-
ficulties are encountered due to the need of large datasets for
training, no guarantee of convergence to optimality, and the
danger of over-fitting [5], [6].

Another powerful machine learning paradigm is the support
vector machine (SVM) developed by Vapnik and others in
1995 [7], based on statistics learning theory and VC dimension
theory (the Vapnik-Chervonenkis dimension theory, which
describes the complexity of the concerned learning function).
SVM embodies the idea of minimizing the structural risk min-
imization (SRM) rather than the empirical risk minimization
(ERM) adopted in the neural network training. There are two
main categories for SVM: support vector classification (SVC)
for partitioning discrete label values and support vector regres-
sion (SVR) for fitting ordered real-valued samples [8]. Since

the ERM principle is most suited for large training datasets,
SVR has been proven to provide superior performances than
neural networks on small datasets. For this reason, SVR has
been applied to many machine learning tasks including time
series prediction and reliability forecasting. For example,
Hong [9] applied the SVR method to predict engine reliability
and compared the predicting performance with the Duane
model, ARIMA model, and general regression neural networks.
Experimental results show that the SVR model has better
performance over the other models.

Parameters selection is very important in SVR, for obtaining
accurate regression/prediction. Existing methods of parameter
selection for SVR can be divided into two classes. The first
class of methods is based on prior knowledge of the analyst on
the problem at hand. For example, Cherkassky [10] proposed
an analytical selection (AS) method to choose SVR parame-
ters directly from the training data, based on some existing con-
sensus that the SVR parameters are suitably relative to statistical
properties of the training data. This expert experience-type of
methodology is simple and effective for determining the param-
eters, provided that the prior knowledge is sufficiently informa-
tive. Obviously, in complex problem settings (high dimensional
spaces, very nonlinear functions, little representative data, etc.),
these methods are not suitable.

The second class of methods searches for the values of the
parameters within an optimization scheme defined on specific
performance objectives of the algorithm. In general, there are
three types of searching methods that can be used for SVR pa-
rameter selection:

1) First are the exhaustive methods for searching the best
values of the parameters in the entire parameter space. Be-
cause the SVR has real-valued parameters, a discretiza-
tion operation of the search space is first required before
the searching. Therefore, some information may be lost
and the method may be very time consuming if a refined
grid is adopted. A typical exhaustive method is the Grid-
Searching method [11], [12], which discretizes the param-
eter space uniformly and calculates the SVR generalization
performance with the parameters set at the values of each
grid point.

2) The second class of searching methods comprises the
traditional optimization methods including the gradient
descent method [13], ellipsoid method [14], and simulta-
neous perturbation stochastic approximation method [15].
The methods are not easily generalized and perform well
only in specific situations.

3) The third class comprises intelligent optimization methods
which are powerful searching methods that have emerged
rapidly in recent years and have attracted significant
attention because of their good performances in various
problem settings, even highly complicated. For example,
simulated annealing (SA) [16], genetic algorithm (GA)
[5], [17], and particle swarm optimization (PSO) [18], [19]
have been proposed to search for optimal values of the pa-
rameters of SVR applied to system reliability prediction.
These methods have become popular in application and
GA is perhaps the most frequently used, because of its
demonstrated global search efficacy.



In this paper, the performance of AS, GA, and PSO methods
in tuning SVR parameters is investigated and compared. Be-
sides, to take simultaneously full advantage of prior knowledge
on SVR parameter selection and of the search power of intel-
ligent optimization methods, we propose a novel ASPSO-SVR
method for reliability prediction which combines the AS and
PSO methods. In the newly proposed method, the parameter
values obtained by AS are used to guide the search process of
PSO to avoid the local optima and accelerate its convergence.
The results obtained in a number of experiments illustrate that
the PSO method has a better performance both in searching op-
timal parameters and robustness than the AS method and GA
method, and our ASPSO method is superior to PSO in conver-
gence speed and robustness.

The remainder of the paper is organized as follows.
Section II introduces the background knowledge about SVR
and the parameter tuning methods, including AS, GA, and PSO,
necessary to render the paper self-contained. Section III gives
a detailed description about our ASPSO-SVR method. The
experiments are presented in Section IV and the results are
analyzed therein. Section V provides the conclusions that can
be drawn from the findings of our research.

II. THEORETICAL BACKGROUND

A. Support Vector Regression (SVR)

In brief, for a dataset D 8-s, B, wheres, € R* denotes
the #-dimension input vector, _ denotes the real-valued output,
and 11 is the number of data pat=t_erns, the regression task amounts
to finding a function between s, and _, which in the linear case
can be described as follows [20]:  ~
'wTsE + =

. fs (M

where w and = are respectively the weight vector and intercept
of the regression model, whose values need to be determined so
that the linear function built indeed fits at best the linear relation
between the input and the output, as represented by the available
dataset.
In the nonlinear case, a nonlinear mapping ®: R' — ', where
" is the feature space of @, is introduced to translate the com-
plex nonlinear regression problem in R* to a simple linear re-
gression problem in <. The regression function after this trans-
formation reads
wi @5+

2

R

To evaluate the goodness of the regression function, the g -in-
sensitive loss function is used [21]:

i |=! - f:s!:ll { |_=I! _ f:s!:l —&, (3)

By ignoring the error if the difference between the estimated
value obtained by (2) and the real value is smaller than g, the
g-insensitive loss function measures the empirical risk. The pa-
rameter § is to be tuned. A procedure is set up for minimizing
the empirical risk by introducing the slack variables= =' that

<s

| ,— fos.:

otherwise.

represent the deviation of the training data outside theg -insen-
sitive zone.

Besides minimizing the empirical error by the g -insensitive
loss function, we must also minimize the Euclidean norm of the
linear weightw, i.e., w , which is related to the generalization
ability of the SVM model trained. As a result, a compromised
quadratic optimization problem to identify the regression model
arises as follows:

1 -
min Jow == - w '+CZ::+E"
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where C-denotes the penalty coefficient that determines the
trade-off between empirical and generalization errors, whose
value needs to be properly set. Through a Lagrangian dual
method, we can obtain the solution of this quadratic optimiza-
tion problem and estimate the output value as

fs.:
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where K“s_, 5.~ is a kernel function satisfying the Mercer con-
dition [22]. If not mentioned specifically, the kernel function
used in this paper is the radial basis function with width ~:

(6)
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B. AS Method: Prior Knowledge About the SVR Parameters

In many works on SVR, it is mentioned that the selection of
the optimal parameters of the SVR is closely related to the sta-
tistical characteristics of the training data. For example, Mat-
tera [23] suggested that a “good” value for parameter C' can be
chosen equal to the maximum in the range of output values in
the training data set and Cherkassky [10] translated this in the
following implementation:

(N

where ~and 11 are the mean and the standard deviation of the
output values in the training data set.

It is also broadly accepted that the value ofe should be pro-
portional to the input noise level [20], [24]. The choice of &
should also be related to the size of the training dataset: in-
tuitively, for data sets of large size small g-values should be
taken, which led Cherkassky to propose the selection of & as
follows [10]:

C n=r|"+=n [ [T=2n [

€ - el ®)
I
where 11 is the noise level in the training dataset estimated by
the =-nearest neighbors method.
For the value of the width parameter v of the kernel func-
tion, it is well accepted that it should be selected to reflect the
variability range of the input in the training dataset. Considering



univariate inputs, for simplicity of illustration, « could be, for
example, set to

oo == —nng=TsT )
where -1111g="s> | niE 1787 — nimiZsz|.

Equations (7)—-(9) compose a method of analytic se-
lection (AS) of the values of the SVR parameter triplet,
Ta= Cg,7 ., based on the characteristics of the training
data and the estimated noise level.

C. Overview of Genetic Algorithm

GAs are a family of evolutionary computational models in-
spired by the theory of evolution. These algorithms encode each
potential solution of the optimization problem in a simple chro-
mosome-like data structure, and then sift the critical information
via some recombination operators that imitate biological evolu-
tion processes such as survival of the fittest, crossover, and mu-
tation [25]. The basic procedure of GA method adopted in our
work is described as follows [5]:

1) Representation: Chromosome z is directly represented as

an SVR parameter vectorz ~ C g7 .
2) Fitness: The fitness value evaluating the quality of chro-
mosome z is defined as follows:

RMSE 4 y % (10)

fE!II::: RMSE' 2
where RMSE is the root mean squared error also used to
describe the prediction accuracy in later sections,== is the
= th reliability value, == is its estimate, and 11 is the size of
the sample.

3) Initialization and selection: In this study, the initial popula-
tion is composed of 40 chromosomes randomly generated
within the given range of variability of the three parame-
ters to be tuned, and the standard roulette wheel method is
employed to select survival chromosomes from the current
population, in proportion to their fitness values.

4) Crossover and mutation: As the core operations of GA,
crossover and mutation play a fundamental role in the
progress of searching the best chromosome. In our study,
the simulated binary crossover and polynomial mutation
methods are chosen to realize such operations. The prob-
abilities of crossoverp, and of mutation p,,, are set to 0.8
and 0.05, respectively.

5) Elitiststrategy: The chromosome with the best fitness skips
the crossover and mutation procedure and directly survives
to the next iteration.

6) Stopping criteria: steps 3—5 are repeated for a predefined
number of iterations (in our application, it is set to 100).

D. Overview of Standard Particle Swarm Optimization

PSO is a population-based meta-heuristics that simulates
social behavior such as birds flocking to a promising position
[18]. PSO performs searches through a population (called
swarm) of individual solutions (called particles) that update
iteratively. A particle is regarded as a point in an L -dimension
space (in this text, L = is the size of the hyper-parameter

vector), and it can be described by its position and velocity
in this space. The L -dimensional position for particle - at
iteration ® can be represented as z*  § 1"y, "-,... ", and
likewise, the L -dimensional velocity vector for this particle can
be represented asv® M1y 1f2 ... 1If=B . Then, we can define
the status of the swarm at iteration = by X" B To, .. TN
and V' Bug vi,...v% 8, where N is the size of the swarm.
For searching the optimal position, each particle changes its po-
sition according to its current velocity, and changes its velocity
according to its individual best previous position (p_ ) and the
best previous position of the swarm (p, ). The position and
velocity of particle — in iteration®= are updated as the following
equation shows:

v e+ w T A oalp, -z Tl elp, -z

zm+ 0 oz 4o m N '
- b=z ...,N (1D

where w is the inertial weight, -y,—= are random numbers

between 0 and 1, and =y and —- are positive constants called
learning coefficients. In the standard PSO paradigm, i/ linearly
varies with the iteration numbers. The following weighting
function is usually used:

where 0.9 is the initial weighting and 0.6 is the final weighting,
I==—,,,, is the maximum iteration number, and Iter is the current
iteration number.

The performance of each particle is also described by the fit-
ness value, as previously defined. If the best local solution has
a higher fitness than the current global solution, then the best
local solution replaces the best global solution.

The iteration stops when the maximum iteration time is
reached or stopping criterion is met. The stopping criterion
used in this paper is stated as follows:

(12)

|fa"11=350 g — fa"11=55u]
fai=z
where ) is a given positive number, here set to 0.05.

In the above three sections, we have briefly overviewed the
methods of AS, GA, and PSO. In terms of their performance in
tuning SVR parameters, PSO-SVR gives superior performances
in prediction accuracy, whereas AS-SVR is easy to implement,
but gives comparatively low accuracy and GA-SVR is some-
what unstable as experiments will show in later sections. How-
ever, PSO is still not an ideal approach in practical applica-
tion for some inherent drawbacks, including premature and slow
convergence, especially when handling problems with high di-
mension or multiple local optima.

<A (13)

III. NOVEL ASPSO-SVR METHOD

In this section, to overcome the drawbacks of PSO, we origi-
nally propose a hybrid method called ASPSO to find the optimal
SVR parameters. Differently from all other researches on im-
proving the PSO from its algorithm's mechanisms, the ASPSO
method combines the PSO optimization progress with the prior
knowledge of the handled data. In the following sections, anal-
ysis of the convergence behavior of PSO and the relationship



between data prior knowledge and the inertial weight coeffi-
cients of PSO are given, which build the core idea of our ASPSO
method.

A. Analysis of the Convergence Behavior in PSO

To begin the analysis, we first shrink the PSO algorithm to a
simplest form where only one particle's behavior is investigated
and the rest of the particles are assumed static [26]. So, we can
drop the subscript identifying the particle and the formula of
particle evolution can be rewritten as follows:

v+ I
z=+ 10

-z It p -2

n-v= +opn-p —T 7
o +vE+ 0.
(14)
From (14), we can see that the PSO algorithm adjusts the
velocity v by two terms: a cognition term and a social term [27].
Both of these two terms are of the same form asp~p—z~ , where
p is the best position ever found by the particle's experience in
the first term or that found by the population consensus in the
second term. So, we can redefinep and simplify the formula to

a shortened form as follows:

ve+ D wwE +pp—z
Pn-p. + - p, (15)
7 7=
where ¢ g+ ¢z, ¢ou  Zp-w,and oz —-——: . This equation

is algebraically identical to the standard two-term form.

When PSO is used in application, the position ofp is con-
stantly updated as p_and p, evolve towards an optimum. In
order to further simplify the system, we setp to a constant in
the following analysis. We set also ¢ to a constant to make the
system more understandable, whereas normally it is a random
number. Thus, the sufficiently reduced system can be described
as

v+ - p— T8

vE+ I
{ z Yot (o

=+ I
By substituting p — ™~ withy =~ and rewriting the iteration

index as subscript for convenience, the basic simplified dynamic
model is defined by

{ CLES |
Yuin
Now the problem that the particle converges to the current

best position, namelyzs — p, is equivalent to the problem that
Y« — _. Stated in matrix form, the system model is

e + QYa

— e+ 0 — ¢ - Y. an

MPa (18)

Paiy

where Pa is the system state vector and M is the transition ma-
trix. Pa and M are defined as follows:

Tve T 0
—uw B=—gp (19)

Thus, we have

P M'P-. (20)

That is to say, the convergence behavior of the system is de-
fined completely by M , or more accurately, the eigenvalues of
M, which can be represented as follows:

n——-+1 \/_Z —
=y,=: ST A>- @1
' wo=tl VoA A<
where
A - =0+ m+ - —Zp+ 1L (22)

Here,  is set to 2.99236 as recommended by Clerc [28] and
i is between 0.9 and 0.6. Thus, A is a negative number, so that
=g, =z are complex numbers.

Then, we can define a matrix A subjected to

AMA™ B (23)

We have

P. M'P- AT'B*AP- A" " L AP (29)
where P- is the state of initial population.

From (24), it is obviously demonstrated that the convergence
of the system is simply related to the modulus of=y and=- . We

can reasonably define the convergence speed V' as

Vo onz Bz |=|e I (25)

From (25), we can draw the conclusion that the convergence
speed of PSO is related to the inertial weight 11. In order to ac-
celerate the convergence speed of PSO, the next section presents
a strategy to choose 11 according to the AS method.

B. Prior Information and Inertial Weight

In this section, we first define an index 1, named recognition
degree, to measure the probability that the current best position
p could be the global optimum. The range ofy is [0,1] and the
global optimum has the highest value of 1. It is reasonably as-
sumed that the particle will more easily converge to the current
best when the current best position has higher recognition de-
gree, which is mathematically represented as
vV T (26)
where T'is a monotonically increasing mapping function. In the

simplest situation, we can set T as a linear function:
Vo Tms 27)

where = is the linear coefficient.

In general PSO algorithms, it is not easy to estimate the recog-
nition degree for lack of prior knowledge about the global op-
timum. However, when PSO is applied to tune SVR parameters,
the prior estimation of the optimum deduced from the training
data (in this paper, we get it by the AS method) gives an intu-
itive measurement of the recognition degree.

Considering the simplest and the most pervasive case, we as-
sume that the current best position could be characterized by a
Gaussian distribution with mean z,,—= and covarianceX. .z, = i8S
the global optimum. The recognition degree of a position could
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Fig. 1. Flowchart of ASPSO-SVR.

be measured by this probability distribution, which is expressed
as follows:

TIZP: é f:p: n=1p {—!:P - 37|-:!:T2_I:P - xll:!:} (28)

where 11 is a constant number to make sure ) is between 0 and 1.
In order to calculate 7, ,_s could be estimated by the AS
method. That is to say, s is set to z 4= obtained by (7)—(9).
However, there is no theoretical approach to obtain the covari-
ance X. Empirically, we set ¥ as a unit matrix for normalized p
and x, .
Considering (26)—(28), thus, we have

- - |
Vil =npl S'=p {—::P —za= 2 - -'L'AE:}
n (29)
where & &11. Then, we can deduce the expression selecting

the inertial weight according to the difference between p and
T A=

N U B R 7Cb Yy B YO By oF B

(30)

where = is a constant number defined by the user, and -, is the
Mahalanobis distance between p and x 4=

C. Implementation of ASPSO-SVR

On the basis of (14) and (30), the basic flowchart of
ASPSO-SVR is depicted in Fig. 1 and its main steps are as
follows:

1) AS estimation. By applying (7)—(9) to the training data,
the AS method gives a prior estimate of the optimal SVR
parameters, T 4=.

2) PSO initialization. The initial PSO particles X -

Bxy T z="_",...z N __§ are randomly set within a preset
range <C € — I~ g€ " 0 ,y€ 0 ,where N
I__ is the population size.

3) Calculation of optimal parameters by PSO.

For= N = ...
a) Fitness calculation. For the population X ™=~ in the
th iteration, the fitness value of each particle is cal-
culated analogously to what is done for the standard
PSO-SVR. Then, we also have the current best posi-
tions P=  Bpg™ p-"" ... py =5 where each
best position is composed of an individual term p_
with the highest fitness value traversing one particle's
experience and a group term p, with the highest fit-
ness value considering all current particles.
Inertial weight selection. By substituting p_-=-
and z4= to (30), the inertial weight vector,
W™ Rug™ uc™™ ... ny =g, is selected.

¢) Update. Based on (14), the particles' state of current
iteration X ™= is updated to X =+ .

d) Interception. Steps a)—c) are repeated until ® reaches
the defined maximum number of iterations (in our ap-
plication this threshold is set to 100) or a defined stop-
ping criterion as (13) is met.

4) SVR prediction: With the optimal parameters obtained by
PSO, we can predict the future reliability values by the
SVR model.

b)

IV. EXPERIMENTAL STUDIES

In this section, some experiments are analyzed to verify the
performance of our proposed ASPSO-SVR method. Firstly, we
look at a problem of regression of an artificial function, which
holds similar characteristics to the problem of reliability predic-
tion while, on the other hand, is easily implemented and control-
lable for experimentation; then, we apply our method to fore-
cast real reliability data. A single-step-ahead prediction model
is considered in this case: that is, each sample == is regarded as a
function of the sample in the previous time step. Then, the rela-
tionship between the prediction at the current time and the input
at the previous time is described by the following equation.

-

f=Tz=—nl (1)

Though different form of data is concerned in the reliability
forecasting case, essentially, it is a generalized application of re-
gression problems. It is to say, the ability of SVR in addressing
reliability forecasting problems is essentially a generalization of
its basic ability in regression. That is the reason that the regres-
sion performance of the various methods is investigated first in
the experimental section.

Through these experiments, we can systematically compare
the prediction performance of the proposed ASPSO method with
benchmark methods like AS, GA, and PSO; the comparison in-
cludes aspects of accuracy, stability, and convergence speed.

A. Study of Artificial Function Data

The first group of experiments is based on artificial uni-di-
mensional datasets. Each dataset used in the experiments de-
scribed in this section is built by taking output values of a chosen
function in correspondence of inputs with additive noise. The
experiments are here presented progressively.

Case 1: In the first case, we consider a sinc function as

o l:EiIIEI (32)
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Fig. 2. Regression results of different SVR parameters selection method.

TABLE 1
RMSE rFOR DIFFERENT FUNCTION TYPES WITH DIFFERENT NOISE LEVELS
I;:':;l' Methods RMSE Mean i:;'f;::
Target function : y=s
AS 0.2209 1.2387 0.6475 1.3284 0.13303 0.4534 0.1034 0.7326 0.5691 0.2631 (.5690 0.4337
o=l GA 0.2163 09306 0.7536 0.9631 0.1657 0.3780 0.2173 0.2887 0.5903 0.9614 (.5465 0.3325
PSO 0.1602 0.8115 0.4454 0.7543 0.2547 0.3529 0.2810 0.2143 0.6128 0.1906 0.4077 0.2391
ASPSO 0.1608 0.7931 0.4603 0.7544 0.2554 0.3817 0.2724 0.2097 0.5977 0.2136 0.4099 0.2327
AS 0.83162 19473 2.6628 1.9854 2.5502 2.2687 0.0935 1.5936 2.0364 15419 1.751142 0.7869
PN GA 43132 1.8693 2.5218 0.2298 6.2979 7.1492 29968 3.7956 4.0238 1.9943 3.51917 2.0815
PSO 0.3101  0.1397 1.2607 0.0648 0.4941 0.2232 0.0097 0.4963 0.1321 0.2031 0.33338 0.3646
ASPSO 0.3095 0.1411 1.0135 0.0852 0.4991 0.2238 0.0109 0.5107 0.1317 0.1978 (.31233 0.2965
Target function : y =5~ +5+1
AS 7.6928 49.5629 10.8916 17.3639 12.9373 22.2204 42.8112 9.1254 19.2354 20.3694 21.2210 14.1208
=5 GA 11.3244 11.6291 4.4968 9.2407 18.4272 12.5531 31.2114 9.3786 16.3451 114197 13.6026 7.2694
PSO 8.5105 7.3955 2.2536 2.7347 14.5867 10.8193 10.6673 7.9917 3.5328 11.2160 7.9708 4.0839
ASPSO 7.9836 7.5567 3.0125 24912 B9963 8.7954 B.BBS2Z 9.6321 8.7427 5.6566 7.1752 2.5762
AS 72.7756 37.8415 23.4862 39.4547 66.1863 129.980 55.4052 49.5631 56.2038 33.7417 56.4638 29.9146
=10 GA  70.7827 18.6030 12.7345 16.2283 128.013 64.0742 5.4549 13.8893 56.3145 62,1987 44.8293 38.6445
PSO B1.6381 27.4305 15.6488 11.9962 42.3675 61.2897 8.5596 20.3741 4(1.889% 45.1744 35.5368 23.4042
ASPSO 75.2345 30.0126 16.7832 12.0362 40.1973 58.1364 9.2082 12.9826 25.3647 30.1796 31.0135 21.5311
Target fimetion : ¥ =sin{s)
AS 03734 03047 03123 0.3381 04152 03976 03241 03126 03354 0.3099 0.3423  0.0394
GA 00842 0.08595 0.1429 0.0672 0.1814 0.1289 0.0849 0.0712 0.1230 0.9643 0.1933  0.2732
=05 PSO 0.1190 0.0904 0.1620 0.08235 0.1557 0.1307 0.0847 0.1023 0.0951 0.1273 (.1149 0.0287
ASPSO 0.1056 0.0917 0.1539 0.0904 0.1467 0.1356 0.0835 0.0739 0.1011 0.1301 0.1112 0.0281
AS 0.3274 0.1761 0.2637 0.4132 0.1814 0.2005 0.2142 0.3961 0.3026 0.2718 (.2747 0.0851
=025 GA 0.0723 0.0248 0.0125 0.1101 0.0338 0.0308 0.0640 0.0958 0.0233 0.0495 0.0516 0.0329
PSO 0.0379 0.0168 0.0085 0.0675 0.0490 0.0227 0.0671 0.0377 0.0812 0.0231 0.0411 0.0244
ASPSO 0.0411 0.0201 0.0094 0.0723 0.0506 0.0215 0.0649 0.0361 0.0213 0.037 0.0374 0.0204
The simulated training data are npairs 7z, .~ ¢ HB,... 1), the target function values, with GA, PSO, and ASPSO yielding

where the input values =_ are random-uniformly sampled in the

range [—0_, 10] and the output values _ are generated as

f==+= 33)

where = is the Gaussian additive white noise. In this case 1, we
set the noise standard deviation (standard)i1 = and n _

The test data are also random-uniformly sampled as the training
data. Fig. 2 shows the regression results of the four methods con-
sidered. We can see that the outputs of all methods approximate

better generalization.

Case 2: In the second case, we consider different target func-
tions and noise levels. To compare the prediction accuracy of the
four methods objectively, we use the RMSE between the SVR
estimates and the corresponding true values of the target func-
tion for the test input values. To account for the randomness of
the estimation process, we perform the regression ten times and
calculate the mean value and the variance of RMSE for each
target function and noise level. The results of the repeated ex-
periments are reported in Table 1.
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Fig. 3. Average fitness curves of PSO and ASPSO.

TABLE II
COMPARISON OF CONVERGENCE PERFORMANCE OF PSO-SVR AND ASPSO-SVR
Iteration Number
Fxperiment Index PSO-SVR ASPSO-SVR
1 55 21
2 58 23
3 71 19
4 48 11
5 51 22
Mean 56.6 19.2
Standard Deviation 8.9050 4.8167

Generally, as expected, the GA, PSO, and ASPSO methods
perform better than the AS method. Further, the RMSE mean
value and standard deviation of the GA method tends to become
large as the noise level increases: this shows the GA method in-
stability and sensitivity to noise. On the contrary, for all func-
tion types and noise levels considered, the PSO method per-
forms satisfactorily in both mean value and standard deviation.
The ASPSO-SVR has almost the same performance of the PSO-
SVR, due to the similarity of the optimization mechanisms.

Case 3: Although PSO possesses a comparative advantage
over AS and GA in generalization ability and stability as above
illustrated, the slow convergence speed of PSO is still a chal-
lenge for its practical application. In this case 3, the convergence
performance of PSO and ASPSO is investigated. The dataset
used in this case is the same as that used in case 1.

To look into the convergence performance, the curve of the
average fitness (regarded as a function of the iteration number)
is given in Fig. 3. Here, the stop criterion in (13) is not ap-
plied because what we are investigating is the trend with which
the average fitness varies with the iteration number, and each
searching process is left to last until reaching the maximum iter-
ation number, 100. The results show that our ASPSO can effec-
tively improve the convergence progress of standard PSO: the
two methods have a similar fitness level at convergence, which
means similar generalization ability, but ASPSO converges to
“a good solution” much faster than standard PSO method.

Table II shows the experimental results that the stop crite-
rion is concerned. It gives the iteration numbers until the stop

criterion is met for five repeated experiments, which fully illus-
trates that our ASPSO-SVR has significantly reduced the time
for optimally tuning the SVR parameters: considering that the
time for AS estimation and 11 selection in ASPSO is negligible
compared to that of one searching iteration, we can reasonably
deduce that less iterations lead to less computational burden.

B. Reliability Prediction

In this section, we apply the ASPSO-SVR for predicting real
reliability data taken from literature cases, and compare its pre-
diction accuracy with GA-SVR and standard PSO-SVR.

Case 1: The first case study concerns the forecasting of the
time-to-failure of turbochargers of a specific type. The data
comprise the time-to-failure for 40 suits of turbo chargers. Out
of the set of 40 data, 35 samples are used as training data and
the remaining five samples as test data, as adopted in previous
studies [18], [19], [29], [30]. The initial population is randomly
generated for GA, PSO, and ASPSO. The corresponding
predictive outputs of the three search methods are illustrated
in Fig. 4. To account for the stochasticity inherent in the GA
and PSO search, the optimization is repeated 10 times and the
RMSE of the results are listed in Table III.

The results of Fig. 4 and Table III show that the two PSO
methods are comparable in prediction accuracy and superior to
the GA method, on average. Also, the PSO-based methods are
more stable than GA, if we look at the dispersion of listed ten
RMSEs.
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Fig. 4. Prediction results of GA-SVR, PSO-SVR, and ASPSO-SVR in forecasting the turbochargers failure data.

TABLE III
PREDICTION AcCCURACY OF GA-SVR, PSO-SVR, AND ASPSO-SVR IN RELIABILITY PREDICTION CASE 1

] RMSE

Experiments Index GA-SVR PSO-SVR ASPSO-SVR
1 0.0106 0.0127 0.0124
2 0.3659 0.0131 0.0125
3 0.5280 0.0128 0.0128
4 0.0253 0.0126 0.0126
5 0.0068 0.0128 0.0125
6 0.9592 0.0129 0.0127
7 0.0159 0.0132 0.0123
8 0.0451 0.0126 0.0119
9 0.2839 0.0131 0.0126
10 0.1179 0.0128 0.0127
Mean 0.2359 0.0129 0.0125

Standard Deviation 0.3116 0.00021 0.00026
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Fig. 5. Average fitness curves of PSO-SVR and ASPSO-SVR in reliability prediction case 1.

Next, we want to compare the convergence speed of the two
PSO methods. Fig. 5 represents the average fitness of these two
methods: it is seen that, again, the average fitness of ASPSO
reaches an optimal and stable value faster than PSO. The run-
ning times of GA-SVR, PSO-SVR, and ASPSO-SVR when the
premise criterion is met are reported in Table IV. We repeated

the simulation for 10 times with Microsoft Windows 7, Matlab
7.9.0 on Intel 2.4 GHz. From Table IV, the evident improve-
ment in the running time of our ASPSO-SVR is shown. The
reason for this improvement is that the ASPSO method can ef-
fectively accelerate the convergence of PSO, which means less
iterations and this compensates some computationally negli-



TABLE IV
RuUNNING TIME OF GA-SVR, PSO-SVR, AND ASPSO-SVR IN RELIABILITY PREDICTION CASE 1

Running time (seconds)
Experiments Index GA-SVR PSO-SVR ASPSO-SVR
1 823.1 513.4 793
2 396.7 490.8 88.5
3 528.5 499.0 76.8
4 677.9 528.9 82.3
5 1021.6 505.7 84.9
6 633.8 5213 87.8
7 752.1 506.8 81.6
8 596.4 477.6 84.1
9 917.2 489.5 93.3
10 846.5 499.7 87.9
Mean 719.4 503.3 84.7
TABLE V

PREDICTION ACCURACY OF GA-SVR, PSO-SVR, AND ASPSO-SVR IN RELIABILITY PREDICTION CASE 2

RMSE

Experiments Index GA-SVR PSO-SVR ASPSO-SVR

1 3.2773 0.1025 0.0877

2 5.2770 0.0873 0.0881

3 0.1149 0.1028 0.0896

4 1.2547 0.0874 0.0901

5 3.3135 0.1009 0.0876

6 2.7140 0.1033 0.1006

7 3.9856 0.1524 0.0874

8 0.2533 0.0889 0.0877

9 0.6039 0.0875 0.0880

10 1.8492 0.1073 0.0769

Mean 2.2643 0.1020 0.0884

Standard Deviation 1.7314 0.0194 0.0057

TABLE VI
RUNNING TIME OF GA-SVR, PSO-SVR, AND ASPSO-SVR IN RELIABILITY PREDICTION CASE 2

Running time (seconds)
Experiments Index GASVR PSO-SVR ASPSO-SVR
T 12068 10184 2567
2 1336.5 983.8 341.6
3 976.4 917.5 329.4
4 1562.8 1430.7 316.0
5 1021.6 1128.9 405.8
Mean 1220.82 1095.86 329.9

gible time spent for AS operations. With such time-saving ad-
vantage, the ASPSO-SVR can be fitter for practical reliability
prediction tasks.

Case 2: The second literature case study comes from the ob-
servation of unscheduled maintenance actions for a submarine
diesel engine undergoing a deterioration process [31]. The first
60 samples are used as training data and the remaining 10 sam-
ples as test data. Other settings are same as in case 1. Experi-
mental results about prediction accuracy and running time are
listed in Tables V and VI.

From Tables V and VI, we can draw the same conclusion
as in case 1, which is that the ASPSO-SVR can accelerate the
parameters tuning with no less of accuracy and more robustness.

Case 3: In the previous two real cases, both the concerned re-
liability data are of obviously linear trend. For more comprehen-
sive illustration, the case concerning the reliability data without
clear trend is required. Therefore, a reliability series consisting
of the reliability data of a car engine is introduced. In this case,
distance between two unscheduled and consecutive corrective
maintenance times is considered as a reliability indicator of the
car engine. The data of 100 engines are treated as a time se-
ries. Figs. 6 and 7 give the prediction results and average fit-
ness curves when the first 90 samples are used as training data
and the rest as test data. Then, the prediction accuracy and run-
ning time of plenty of repeated experiments are also listed in
Tables VII and VIIL In this case, though the data concerned
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Fig. 7. Average fitness curves of PSO-SVR and ASPSO-SVR in forecasting the reliability data of a car engine.

TABLE VII
PREDICTION ACCURACY OF GA-SVR, PSO-SVR, AND ASPSO-SVR IN RELIABILITY PREDICTION CASE 3

. RMSE
Experiments lndex GASVR PSO-SVR ASPSO-SVR
1 0.7703 0.8199 0.7582
2 1.2737 0.8865 0.8628
3 1.3585 0.8872 0.8865
4 1.0231 0.8881 0.8763
5 1.1258 0.7998 0.8129
6 1.7933 0.8237 0.8433
7 0.9384 0.8699 0.8216
8 1.0276 0.9124 0.7843
9 1.2183 0.8671 0.7965
10 0.6119 0.8890 0.8933
Mean 1.1141 0.8644 0.8336
Standard Deviation 0.3291 0.0370 0.0462
are with no longer linear trend, it also shows the similar exper- It is worth noting that we have also performed the experi-

imental results. ments for larger number of generations and individuals for GA



TABLE VIII
RUNNING TIME OF GA-SVR, PSO-SVR, AND ASPSO-SVR IN RELIABILITY PREDICTION CASE 3

Running time (seconds)
Experiments Index GA-SVR PSO-SVR ASPSO-SVR
1 1398.5 12173 412.8
2 1571.3 1472.7 349.7
3 1459.9 1385.1 515.4
4 1613.8 1430.7 498.6
5 1415.8 1517.4 503.5
Mean 1491.86 1404.64 456
Standard Deviation 95.790 115.655 72.051
TABLE IX

PREDICTION ACCURACY OF GA-SVR WITH LARGE INDIVIDUALS AND GENERATIONS IN RELIABILITY PREDICTION CASE 1, 2, 3, CoMPARED WITH PSO-SVR AND
ASPSO-SVR METHOD

. RMSE
Experiments Index Case 1 Case 2 Case 3
1 0.2202 0.2373 0.8545
2 0.1860 0.2074 0.8897
3 0.2396 0.2088 0.8336
4 0.1261 0.2074 0.8813
~ 5 0.2287 0.2328 0,7972
GA-SVR 6 0.1588 0.2267 0.8786
7 0.2193 0.3768 0.9192
8 0.1334 0.3283 0.8639
9 0.1308 0.2476 0.8506
10 0.1594 0.2685 0.9608

Means

GA-SVR 0.1802 0.2542 0.8729
PSO-SVR 0.0129 0.1020 0.8644
ASPSO-SVR 0.0125 0.0884 0.8171

in all three above-mentioned reliability case studies. The experi-
mental results show that when these parameters change, GA be-
comes much more stable and accurate, at cost of much heavier
computational burden, however. After all, the performance of
GA is still poor compared with PSO and ASPSO methods in
tuning SVR parameters. That is the reason why the number of
individuals and iterations are not very large in our experiments.
Table IX lists the RMSE of GA with 100 individuals and 500
generations for 10 repeated experiments, which is quite large
for real-time requirement.

V. CONCLUSION

In this paper, a novel ASPSO-SVR scheme is proposed for
solving reliability prediction problems. Differently from other
improved PSO algorithms, the proposed scheme utilizes the
prior knowledge of SVR for the selection of inertial weight in
the PSO method. Based on mathematical deductions, a strategy
of adapting the inertial weight by comparing the current parti-
cles knowledge with the prior SVR knowledge is proposed. Be-
cause of the adaptability of the inertial weight, the ASPSO-SVR
scheme has superior prediction performance over that of tradi-
tional GA-SVR and standard PSO-SVR, as demonstrated in the
case studies based on both artificial and real data. The results
obtained in these case studies show that the standard PSO-SVR

and ASPSO-SVR have comparable performances in prediction
accuracy and robustness ability, both of which are better than
GA-SVR. But in terms of convergence speed, our ASPSO-SVR
shows a significant advantage. Due to the properties of compu-
tational speed and robustness, the ASPSO method is fitter for the
practical reliability prediction tasks than the GA method or the
standard PSO method for tuning SVR parameters. In the future
research, more reliability applications will be considered to fur-
ther investigate the detailed performance of the ASPSO-SVR
method, and improvements in describing the prior knowledge
of SVR and integrating it within intelligent searching processes
will be explored.
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