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Abstract—Support vector regression (SVR) is a widely used 
technique for reliability prediction.  The key issue for high pre- 
diction accuracy  is the selection of SVR parameters, which is 
essentially an optimization  problem.  As one of the most effective 
evolutionary optimization methods, particle swarm optimization 
(PSO) has been successfully applied to tune SVR parameters and 
is shown  to perform  well. However,  the  inherent  drawbacks of 
PSO, including slow convergence and local optima, have hindered 
its further application  in practical  reliability prediction problems. 
To overcome these drawbacks, many improvement strategies  are 
being developed on the mechanisms of PSO, whereas there is little 
research exploring a priori  information about historical data to 
improve  the  PSO  performance in the  SVR parameter selection 
task. In this paper,  a novel method controlling  the inertial  weight 
of PSO is proposed to accelerate its convergence and guide the 
evolution out of local optima,  by utilizing the analytical  selection 
(AS) method based on a priori  knowledge about SVR parameters. 
Experimental  results  show  that  the  proposed  ASPSO  method 
is almost  as  accurate   as  the  traditional PSO  and  outperforms 
it in convergence speed and ability in tuning SVR parameters. 
Therefore, the proposed ASPSO-SVR shows promising results for 
practical  reliability prediction  tasks. 

 

Index Terms—Analytical selection, parameter tuning, particle 
swarm optimization,  reliability prediction, support  vector regres- 
sion. 

 
 

ACRONYMS AND ABBREVIATIONS 
 

ARIMA Autoregressive integrated moving average. 

SVM Support vector machine. 

SRM  Structural risk minimization. 

ERM Empirical risk minimization. 

SVR Support vector regression. 
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AS                 Analytical selection. 

SA                Simulated annealing. 

GA                Genetic algorithm. 

PSO              Particle swarm optimization. 
 
 

NOTATION 
 

-dimension input vector. 

Real-valued  output. 

Number of data patterns. 

Weight vector of regression model. 

Intercept of the regression model. 

Nonlinear mapping that translates the complex 

nonlinear regression problem to a simple linear 

regression problem. 

Slack variables representing the deviation 

outside the  -insensitive zone. 
Width of insensitive zone. 

Penalty coefficient. 

Kernel width, a crucial parameter in Kernel 

function. 

Mean of output values. 

Standard deviation of output values. 

Noise level of the training dataset. 

Parameters vector  . 

Fitness         Index to evaluate the quality of a given 

chromosome  or particle. 

Probability of crossover and mutation in the GA 

methodology. 

Size of the particle swarm. 

Best position based on the individual experience 

and the group experience. 

Iter               Current iteration number. 

Velocity vector in the PSO methodology. 

Inertial weight in the PSO methodology. 

Learning coefficients in the PSO methodology. 

, . 

. 



 

D 

 
 
 

. 

Transit matrix of system status. 

Eigenvalues of  . 

Recognition degree measuring the probability 

that the current best position could be the global 

optimum. 

Convergence  speed. 

Monotonically  mapping  describing  the 

relationship between recognition degree and 

convergence speed. 

Linear coefficient. 

Global optimal position. 

Optimal position estimated by the AS method. 

Mahalanobis distance. 

 
 

I.  INTRODUCTION 
 

UE to the increasing  complexity  in modern  processes, 

systems, and plants, together with the usual necessities of 

business profitability,  safety of humans' life, and protection of 

the environment, safe and reliable operation of engineering sys- 

tems is becoming more and more important and has received 

increasing attention in research and practice. Reliability anal- 

ysis and risk assessment offer sound technical frameworks for 

the study of component and system failures, with quantification 

of their probabilities and consequences [1].Within these frame- 

works of analysis, one important task is the reliability  predic- 

tion. In those cases when the historical trend of reliability state 

is given as a time series of reliability, reliability prediction can 

be regarded as a time series prediction problem whose solution 

entails predicting the future values of reliability based on past 

data observations. 

A widely used time series prediction model is the autore- 

gressive integrated moving average model (ARIMA), with solid 

foundations in classical probability theory. However, the offline 

modeling efforts required for model identification and construc- 

tion limit its usefulness in practical applications [2]. In recent 

years, neural networks have emerged as a universal approxi- 

mator for any nonlinear continuous function varying over a time 

or space domain, and have been applied successfully to various 

reliability problems such as software reliability prediction [3] 

and complex system maintenance [4]. However, practical dif- 

ficulties are encountered due to the need of large datasets for 

training, no guarantee of convergence to optimality, and the 

danger of over-fitting [5], [6]. 

Another powerful machine learning paradigm is the support 

vector  machine  (SVM)  developed  by  Vapnik  and  others  in 

1995 [7], based on statistics learning theory and VC dimension 

theory (the Vapnik-Chervonenkis dimension theory, which 

describes the complexity of the concerned learning function). 

SVM embodies the idea of minimizing the structural risk min- 

imization (SRM) rather than the empirical risk minimization 

(ERM) adopted in the neural network training. There are two 

main categories for SVM: support vector classification  (SVC) 

for partitioning discrete label values and support vector regres- 

sion (SVR) for fitting ordered real-valued samples [8]. Since 

the ERM principle is most suited for large training datasets, 

SVR has been proven to provide superior performances than 

neural networks on small datasets. For this reason, SVR has 

been applied to many machine learning tasks including time 

series   prediction   and  reliability   forecasting.   For  example, 

Hong [9] applied the SVR method to predict engine reliability 

and  compared  the  predicting  performance   with  the  Duane 

model, ARIMA model, and general regression neural networks. 

Experimental results show that the SVR model has better 

performance over the other models. 

Parameters selection is very important in SVR, for obtaining 

accurate regression/prediction. Existing methods of parameter 

selection for SVR can be divided into two classes. The first 

class of methods is based on prior knowledge of the analyst on 

the problem at hand. For example, Cherkassky [10] proposed 

an analytical  selection  (AS) method  to choose  SVR parame- 

ters directly from the training data, based on some existing con- 

sensus that the SVR parameters are suitably relative to statistical 

properties of the training data. This expert experience-type of 

methodology is simple and effective for determining the param- 

eters, provided that the prior knowledge is sufficiently informa- 

tive. Obviously, in complex problem settings (high dimensional 

spaces, very nonlinear functions, little representative data, etc.), 

these methods are not suitable. 

The second class of methods searches for the values of the 

parameters within an optimization scheme defined on specific 

performance objectives of the algorithm. In general, there are 

three types of searching methods that can be used for SVR pa- 

rameter selection: 

1)  First  are  the  exhaustive  methods  for searching  the  best 

values of the parameters in the entire parameter space. Be- 

cause  the SVR has real-valued  parameters,  a discretiza- 

tion operation  of the search space is first required before 

the searching. Therefore, some information may be lost 

and the method may be very time consuming if a refined 

grid is adopted. A typical exhaustive method is the Grid- 

Searching method [11], [12], which discretizes the param- 

eter space uniformly and calculates the SVR generalization 

performance with the parameters set at the values of each 

grid point. 

2) The second class of  searching methods comprises the 

traditional optimization methods including the gradient 

descent method [13], ellipsoid method [14], and simulta- 

neous perturbation stochastic approximation method [15]. 

The methods are not easily generalized and perform well 

only in specific situations. 

3)  The third class comprises intelligent optimization methods 

which are powerful searching methods that have emerged 

rapidly in recent years and have attracted significant 

attention because of their good performances in various 

problem settings, even highly complicated. For example, 

simulated annealing (SA) [16], genetic algorithm (GA) 

[5], [17], and particle swarm optimization (PSO) [18], [19] 

have been proposed to search for optimal values of the pa- 

rameters of SVR applied to system reliability prediction. 

These methods have become popular in application and 

GA is perhaps the most frequently used, because of its 

demonstrated global search efficacy. 



 
 
 

In this paper, the performance of AS, GA, and PSO methods 

in tuning SVR parameters is investigated and compared. Be- 

sides, to take simultaneously full advantage of prior knowledge 

on SVR parameter selection and of the search power of intel- 

ligent optimization methods, we propose a novel ASPSO-SVR 

method for reliability prediction which combines the AS and 

PSO methods. In the newly proposed method, the parameter 

values obtained by AS are used to guide the search process of 

PSO to avoid the local optima and accelerate its convergence. 

The results obtained in a number of experiments  illustrate that 

the PSO method has a better performance both in searching op- 

timal parameters and robustness than the AS method and GA 

method, and our ASPSO method is superior to PSO in conver- 

gence speed and robustness. 

The  remainder  of  the  paper  is  organized  as  follows. 

Section II introduces the background knowledge about SVR 

and the parameter tuning methods, including AS, GA, and PSO, 

necessary to render the paper self-contained. Section III gives 

a detailed description about our ASPSO-SVR method. The 

experiments are presented in Section IV and the results are 

analyzed therein. Section V provides the conclusions that can 

be drawn from the findings of our research. 

 
II.  THEORETICAL BACKGROUND 

 
A.  Support Vector Regression (SVR) 

 

In brief, for a dataset                         , where              denotes 

the  -dimension input vector,     denotes the real-valued output, 

and    is the number of data patterns, the regression task amounts 

to finding a function between     and    , which in the linear case 

can be described as follows [20]: 

 
(1) 

 
where and   are respectively the weight vector and intercept 

of the regression model, whose values need to be determined so 

that the linear function built indeed fits at best the linear relation 

between the input and the output, as represented by the available 

dataset. 

In the nonlinear case, a nonlinear mapping    : , where 

is the feature space of    , is introduced to translate the com- 

plex nonlinear regression  problem in       to a simple linear re- 

gression problem in    . The regression function after this trans- 

formation reads 

(2) 

To evaluate the goodness of the regression function, the  -in- 

sensitive loss function is used [21]: 
 
 

otherwise. 

represent the deviation of the training data outside the  -insen- 

sitive zone. 

Besides minimizing the empirical error by the   -insensitive 

loss function, we must also minimize the Euclidean norm of the 

linear weight   , i.e.,       , which is related to the generalization 

ability of the SVM model trained. As a result, a compromised 

quadratic optimization problem to identify the regression model 

arises as follows: 
 
 
 
 
 

(4) 
 
 
where  denotes  the  penalty  coefficient  that  determines  the 

trade-off between empirical and generalization errors, whose 

value needs to be properly set. Through a Lagrangian dual 

method, we can obtain the solution of this quadratic optimiza- 

tion problem and estimate the output value as 
 
 
 
 

(5) 
 

where                 is a kernel function satisfying the Mercer con- 

dition [22]. If not mentioned  specifically,  the kernel  function 

used in this paper is the radial basis function with width   : 

 
(6) 

 
 
B. AS Method: Prior Knowledge About the SVR Parameters 

In many works on SVR, it is mentioned that the selection of 

the optimal parameters of the SVR is closely related to the sta- 

tistical characteristics  of the training data. For example,  Mat- 

tera [23] suggested that a “good” value for parameter      can be 

chosen equal to the maximum in the range of output values in 

the training data set and Cherkassky [10] translated this in the 

following implementation: 
 

(7) 
 
where  and       are the mean and the standard deviation of the 

output values in the training data set. 

It is also broadly accepted that the value of should be pro- 

portional  to the input noise level [20], [24]. The choice  of 

should  also be related  to the size of the training  dataset:  in- 

tuitively,  for data sets of large size small   -values  should  be 

taken, which led Cherkassky  to propose  the selection  of  as 

follows [10]: 

(3) 
 

By ignoring the error if the difference between the estimated 

value obtained by (2) and the real value is smaller than   , the 

-insensitive loss function measures the empirical risk. The pa- 

rameter    is to be tuned. A procedure is set up for minimizing 

the empirical risk by introducing the slack variables         that 

(8) 
 
where is the noise level in the training dataset estimated by 

the   -nearest neighbors method. 

For the value of the width parameter     of the kernel func- 

tion, it is well accepted that it should be selected to reflect the 

variability range of the input in the training dataset. Considering 



 
 
 

univariate inputs, for simplicity of illustration,  could be, for 

example, set to 
 

(9) 
 

where . 

Equations  (7)–(9)  compose  a  method  of  analytic  se- 

lection  (AS)  of  the  values  of  the  SVR  parameter   triplet, 

, based on the characteristics  of the training 

data and the estimated noise level. 
 

C.  Overview of Genetic Algorithm 

GAs are a family of evolutionary computational models in- 

spired by the theory of evolution. These algorithms encode each 

potential solution of the optimization problem in a simple chro- 

mosome-like data structure, and then sift the critical information 

via some recombination operators that imitate biological evolu- 

tion processes such as survival of the fittest, crossover, and mu- 

tation [25]. The basic procedure of GA method adopted in our 

work is described as follows [5]: 

1) Representation: Chromosome is directly represented as 

an SVR parameter vector . 

2) Fitness: The fitness value evaluating the quality of chro- 

mosome    is defined as follows: 
 
 

(10) 
 
 

where RMSE is the root mean squared error also used to 

describe the prediction accuracy in later sections, is the 

th reliability value,  is its estimate, and  is the size of 

the sample. 

3) Initialization and selection: In this study, the initial popula- 

tion is composed of 40 chromosomes randomly generated 

within the given range of variability of the three parame- 

ters to be tuned, and the standard roulette wheel method is 

employed to select survival chromosomes from the current 

population, in proportion to their fitness values. 

4) Crossover and mutation: As the core operations of GA, 

crossover and mutation play a fundamental role in the 

progress of searching the best chromosome.  In our study, 

the simulated binary crossover and polynomial mutation 

methods are chosen to realize such operations. The prob- 

abilities of crossover     and of mutation        are set to 0.8 

and 0.05, respectively. 

5) Elitist strategy: The chromosome with the best fitness skips 

the crossover and mutation procedure and directly survives 

to the next iteration. 

6)  Stopping criteria: steps 3–5 are repeated for a predefined 

number of iterations (in our application, it is set to 100). 

 
D.  Overview of Standard  Particle  Swarm Optimization 

 

PSO  is  a  population-based   meta-heuristics   that  simulates 

social behavior such as birds flocking to a promising position 

[18].  PSO  performs  searches  through  a  population   (called 

swarm) of individual solutions (called particles) that update 

iteratively. A particle is regarded as a point in an    -dimension 

space (in this text,               is the size of the hyper-parameter 

vector), and it can be described by its position and velocity 

in this space. The    -dimensional  position  for  particle      at 

iteration   can be represented  as                                             and 

likewise, the   -dimensional velocity vector for this particle can 

be represented as                                       . Then, we can define 

the status of the swarm at iteration    by 

and                                     , where     is the size of the swarm. 

For searching the optimal position, each particle changes its po- 

sition according to its current velocity, and changes its velocity 

according to its individual best previous position (     ) and the 

best previous position of the swarm (   ). The position and 

velocity of particle    in iteration   are updated as the following 

equation shows: 
 
 
 

(11) 
 
where      is the inertial weight,            are random numbers 

between 0 and 1, and      and      are positive constants called 

learning coefficients. In the standard PSO paradigm,    linearly 

varies with the iteration numbers. The following weighting 

function is usually used: 

 
(12) 

 
where 0.9 is the initial weighting and 0.6 is the final weighting, 

is the maximum iteration number, and Iter is the current 

iteration number. 

The performance of each particle is also described by the fit- 

ness value, as previously defined. If the best local solution has 

a higher fitness than the current global solution, then the best 

local solution replaces the best global solution. 

The  iteration  stops  when  the  maximum  iteration  time  is 

reached or stopping criterion is met. The stopping criterion 

used in this paper is stated as follows: 

 
(13) 

 
where    is a given positive number, here set to 0.05. 

In the above three sections, we have briefly overviewed  the 

methods of AS, GA, and PSO. In terms of their performance in 

tuning SVR parameters, PSO-SVR gives superior performances 

in prediction accuracy, whereas AS-SVR is easy to implement, 

but gives comparatively low accuracy and GA-SVR is some- 

what unstable as experiments will show in later sections. How- 

ever,  PSO is still not an ideal  approach  in practical  applica- 

tion for some inherent drawbacks, including premature and slow 

convergence, especially when handling problems with high di- 

mension or multiple local optima. 
 

III.  NOVEL ASPSO-SVR  METHOD 

In this section, to overcome the drawbacks of PSO, we origi- 

nally propose a hybrid method called ASPSO to find the optimal 

SVR parameters. Differently from all other researches on im- 

proving the PSO from its algorithm's mechanisms, the ASPSO 

method combines the PSO optimization progress with the prior 

knowledge of the handled data. In the following sections, anal- 

ysis of the convergence behavior of PSO and the relationship 



 
 
 

between data prior knowledge and the inertial weight coeffi- 

cients of PSO are given, which build the core idea of our ASPSO 

method. 

 
A. Analysis of the Convergence Behavior in PSO 

 

To begin the analysis, we first shrink the PSO algorithm to a 

simplest form where only one particle's behavior is investigated 

and the rest of the particles are assumed static [26]. So, we can 

drop the subscript identifying the particle and the formula of 

particle evolution can be rewritten as follows: 
 
 
 

(14) 

From (14), we can see that the PSO algorithm adjusts the 

velocity    by two terms: a cognition term and a social term [27]. 

Both of these two terms are of the same form as , where 

is the best position ever found by the particle's experience in 

the first term or that found by the population consensus in the 

second term. So, we can redefine and simplify the formula to 

a shortened form as follows: 
 
 
 

(15) 
 

 
where  ,                  , and                   . This equation 

is algebraically identical to the standard two-term form. 

When PSO is used in application,  the position of     is con- 

stantly  updated  as      and       evolve  towards  an optimum.  In 

order to further simplify the system, we set     to a constant in 

the following analysis. We set also     to a constant to make the 

system more understandable,  whereas normally it is a random 

number. Thus, the sufficiently reduced system can be described 

as 

 
(16) 

 

 
By substituting                with         and rewriting the iteration 

index as subscript for convenience, the basic simplified dynamic 

model is defined by 

That is to say, the convergence behavior of the system is de- 

fined completely by , or more accurately, the eigenvalues of 

, which can be represented as follows: 

 
(21) 

 

 
where 
 

(22) 
 

Here,  is set to 2.99236 as recommended by Clerc [28] and 

is between 0.9 and 0.6. Thus,  is a negative number, so that 

are complex numbers. 

Then, we can define a matrix subjected to 

 
(23) 

We have 

(24) 

 
where is the state of initial population. 

From (24), it is obviously demonstrated that the convergence 

of the system is simply related to the modulus of      and    . We 

can reasonably define the convergence speed     as 

(25) 

From (25), we can draw the conclusion that the convergence 

speed of PSO is related to the inertial weight  . In order to ac- 

celerate the convergence speed of PSO, the next section presents 

a strategy to choose  according to the AS method. 
 

B. Prior Information and Inertial Weight 

In this section, we first define an index   , named recognition 

degree, to measure the probability that the current best position 

could be the global optimum. The range of is [0,1] and the 

global optimum has the highest value of 1. It is reasonably as- 

sumed that the particle will more easily converge to the current 

best when the current best position has higher recognition  de- 

gree, which is mathematically  represented as 

(17) 

Now the problem that the particle converges to the current 

best position, namely , is equivalent to the problem that 

. Stated in matrix form, the system model is 

 
(18) 

 
where  is the system state vector and is the transition ma- 

trix.  and are defined as follows: 

(19) 

Thus, we have 

 

(20) 

(26) 
 
where  is a monotonically increasing mapping function. In the 

simplest situation, we can set     as a linear function: 
 

(27) 
 
where     is the linear coefficient. 

In general PSO algorithms, it is not easy to estimate the recog- 

nition degree for lack of prior knowledge about the global op- 

timum. However, when PSO is applied to tune SVR parameters, 

the prior estimation of the optimum deduced from the training 

data (in this paper, we get it by the AS method) gives an intu- 

itive measurement  of the recognition degree. 

Considering the simplest and the most pervasive case, we as- 

sume that the current best position could be characterized  by a 

Gaussian distribution with mean         and covariance   .        is 

the global optimum. The recognition degree of a position could 



 
 
 

 
 

Fig. 1.  Flowchart of ASPSO-SVR. 

 
 

be measured by this probability distribution, which is expressed 

as follows: 

 
(28) 

 
where   is a constant number to make sure   is between 0 and 1. 

In order to calculate   ,  could be estimated by the AS 

method. That is to say, is set to obtained by (7)–(9). 

However, there is no theoretical approach to obtain the covari- 

ance   . Empirically, we set   as a unit matrix for normalized 

and . 

Considering (26)–(28), thus, we have 
 
 
 

(29) 
 

where  . Then, we can deduce the expression selecting 

the inertial weight according to the difference between and 

: 
 

 
(30) 

 

where   is a constant number defined by the user, and  is the 

Mahalanobis distance between  and  . 
 

C.  Implementation  of ASPSO-SVR 

On  the  basis  of  (14)  and  (30),  the  basic  flowchart   of 

ASPSO-SVR is depicted in Fig. 1 and its main steps are as 

follows: 

1) AS estimation. By applying (7)–(9) to the training data, 

the AS method gives a prior estimate of the optimal SVR 

parameters,  . 

2)  PSO  initialization.   The  initial  PSO  particles 

are randomly set within a preset 

range  , where 

is the population size. 

3) Calculation of optimal parameters by PSO. 

For  : 

a)   Fitness  calculation.  For the population   in the 

th iteration, the fitness value of each particle is cal- 

culated analogously  to what is done for the standard 

PSO-SVR. Then, we also have the current best posi- 

tions  , where each 

best position is composed of an individual term 

with the highest fitness value traversing one particle's 

experience and a group term with the highest fit- 

ness value considering all current particles. 

b)  Inertial   weight   selection.   By   substituting 

and             to   (30),   the   inertial   weight   vector, 

, is selected. 

c)  Update. Based on (14), the particles' state of current 

iteration  is updated to  . 

d)  Interception. Steps a)–c) are repeated until   reaches 

the defined maximum number of iterations (in our ap- 

plication this threshold is set to 100) or a defined stop- 

ping criterion as (13) is met. 

4)  SVR prediction: With the optimal parameters obtained by 

PSO, we can predict  the future  reliability  values by the 

SVR model. 
 

IV.  EXPERIMENTAL STUDIES 

In this section, some experiments  are analyzed to verify the 

performance of our proposed ASPSO-SVR method. Firstly, we 

look at a problem of regression of an artificial function, which 

holds similar characteristics to the problem of reliability predic- 

tion while, on the other hand, is easily implemented and control- 

lable for experimentation;  then, we apply our method to fore- 

cast real reliability data. A single-step-ahead  prediction model 

is considered in this case: that is, each sample      is regarded as a 

function of the sample in the previous time step. Then, the rela- 

tionship between the prediction at the current time and the input 

at the previous time is described by the following equation. 

(31) 

Though different form of data is concerned in the reliability 

forecasting case, essentially, it is a generalized application of re- 

gression problems. It is to say, the ability of SVR in addressing 

reliability forecasting problems is essentially a generalization of 

its basic ability in regression. That is the reason that the regres- 

sion performance of the various methods is investigated first in 

the experimental  section. 

Through these experiments,  we can systematically  compare 

the prediction performance of the proposed ASPSO method with 

benchmark methods like AS, GA, and PSO; the comparison in- 

cludes aspects of accuracy, stability, and convergence speed. 
 

A. Study of Artificial Function Data 

The first group of experiments is based on artificial uni-di- 

mensional datasets. Each dataset used in the experiments de- 

scribed in this section is built by taking output values of a chosen 

function in correspondence of inputs with additive noise. The 

experiments are here presented progressively. 

Case 1:  In the first case, we consider a sinc function as 
 

(32) 



 
 
 

 
 

Fig. 2.  Regression results of different SVR parameters selection method. 

 
 

TABLE I 
RMSE FOR DIFFERENT  FUNCTION  TYPES WITH DIFFERENT  NOISE LEVELS 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The simulated training data are    pairs             (                     ), 

where the input values     are random-uniformly  sampled in the 

range [       , 10] and the output values      are generated as 

 
(33) 

 
where    is the Gaussian additive white noise. In this case 1, we 

set the noise standard deviation (standard)            and              . 

The test data are also random-uniformly sampled as the training 

data. Fig. 2 shows the regression results of the four methods con- 

sidered. We can see that the outputs of all methods approximate 

the target function values, with GA, PSO, and ASPSO yielding 

better generalization. 

Case 2:  In the second case, we consider different target func- 

tions and noise levels. To compare the prediction accuracy of the 

four methods objectively,  we use the RMSE between the SVR 

estimates and the corresponding true values of the target func- 

tion for the test input values. To account for the randomness of 

the estimation process, we perform the regression ten times and 

calculate the mean value and the variance of RMSE for each 

target function and noise level. The results of the repeated ex- 

periments are reported in Table I. 



 
 
 

 
 

Fig. 3.  Average fitness curves of PSO and ASPSO. 

 
 

TABLE II 
COMPARISON  OF CONVERGENCE  PERFORMANCE  OF PSO-SVR AND ASPSO-SVR 

 

 
 

 

 
 
 
 
 
 
 
 
 

Generally,  as expected, the GA, PSO, and ASPSO methods 

perform  better than the AS method.  Further, the RMSE mean 

value and standard deviation of the GA method tends to become 

large as the noise level increases: this shows the GA method in- 

stability and sensitivity to noise. On the contrary, for all func- 

tion types and noise levels considered, the PSO method per- 

forms satisfactorily in both mean value and standard deviation. 

The ASPSO-SVR has almost the same performance of the PSO- 

SVR, due to the similarity of the optimization mechanisms. 

Case 3:  Although PSO possesses a comparative advantage 

over AS and GA in generalization ability and stability as above 

illustrated,  the slow convergence  speed of PSO is still a chal- 

lenge for its practical application. In this case 3, the convergence 

performance of PSO and ASPSO is investigated. The dataset 

used in this case is the same as that used in case 1. 

To look into the convergence  performance,  the curve of the 

average fitness (regarded as a function of the iteration number) 

is given  in Fig. 3. Here, the stop criterion  in (13) is not ap- 

plied because what we are investigating is the trend with which 

the average fitness varies with the iteration number, and each 

searching process is left to last until reaching the maximum iter- 

ation number, 100. The results show that our ASPSO can effec- 

tively improve the convergence  progress of standard PSO: the 

two methods have a similar fitness level at convergence, which 

means similar generalization ability, but ASPSO converges to 

“a good solution” much faster than standard PSO method. 

Table II shows the experimental  results that the stop crite- 

rion is concerned.  It gives the iteration numbers until the stop 

criterion is met for five repeated experiments, which fully illus- 

trates that our ASPSO-SVR has significantly reduced the time 

for optimally tuning the SVR parameters: considering that the 

time for AS estimation and    selection in ASPSO is negligible 

compared to that of one searching iteration, we can reasonably 

deduce that less iterations lead to less computational burden. 
 

 
B.  Reliability Prediction 
 

In this section, we apply the ASPSO-SVR for predicting real 

reliability data taken from literature cases, and compare its pre- 

diction accuracy with GA-SVR and standard PSO-SVR. 

Case 1:  The first case study concerns the forecasting of the 

time-to-failure of turbochargers of a specific type. The data 

comprise the time-to-failure  for 40 suits of turbo chargers. Out 

of the set of 40 data, 35 samples are used as training data and 

the remaining five samples as test data, as adopted in previous 

studies [18], [19], [29], [30]. The initial population is randomly 

generated for GA, PSO, and ASPSO. The corresponding 

predictive  outputs  of the three search  methods  are illustrated 

in Fig. 4. To account for the stochasticity  inherent in the GA 

and PSO search, the optimization  is repeated 10 times and the 

RMSE of the results are listed in Table III. 

The results of Fig. 4 and Table III show that the two PSO 

methods are comparable in prediction accuracy and superior to 

the GA method, on average. Also, the PSO-based methods are 

more stable than GA, if we look at the dispersion of listed ten 

RMSEs. 



 
 
 

 
 

Fig. 4.  Prediction results of GA-SVR, PSO-SVR, and ASPSO-SVR in forecasting the turbochargers failure data. 

 
TABLE III 

PREDICTION  ACCURACY  OF GA-SVR, PSO-SVR, AND ASPSO-SVR IN RELIABILITY  PREDICTION  CASE 1 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

Fig. 5.  Average fitness curves of PSO-SVR and ASPSO-SVR in reliability prediction case 1. 

 
 

Next, we want to compare the convergence speed of the two 

PSO methods. Fig. 5 represents the average fitness of these two 

methods: it is seen that, again, the average fitness of ASPSO 

reaches an optimal and stable value faster than PSO. The run- 

ning times of GA-SVR, PSO-SVR, and ASPSO-SVR when the 

premise criterion is met are reported in Table IV. We repeated 

the simulation for 10 times with Microsoft Windows 7, Matlab 

7.9.0 on Intel 2.4 GHz. From Table IV, the evident improve- 

ment in the running time of our ASPSO-SVR is shown. The 

reason for this improvement  is that the ASPSO method can ef- 

fectively accelerate the convergence of PSO, which means less 

iterations and this compensates some computationally negli- 



 
 
 

TABLE IV 
RUNNING  TIME OF GA-SVR, PSO-SVR, AND ASPSO-SVR IN RELIABILITY  PREDICTION  CASE 1 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

TABLE V 
PREDICTION  ACCURACY  OF GA-SVR, PSO-SVR, AND ASPSO-SVR IN RELIABILITY  PREDICTION  CASE 2 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TABLE VI 
RUNNING  TIME OF GA-SVR, PSO-SVR, AND ASPSO-SVR IN RELIABILITY  PREDICTION  CASE 2 

 
 

 
 
 
 
 
 
 
 
 
 

gible time spent for AS operations. With such time-saving  ad- 

vantage, the ASPSO-SVR  can be fitter for practical reliability 

prediction tasks. 

Case 2: The second literature case study comes from the ob- 

servation of unscheduled  maintenance  actions for a submarine 

diesel engine undergoing a deterioration process [31]. The first 

60 samples are used as training data and the remaining 10 sam- 

ples as test data. Other settings are same as in case 1. Experi- 

mental results about prediction accuracy and running time are 

listed in Tables V and VI. 

From Tables  V and VI, we can draw the same conclusion 

as in case 1, which is that the ASPSO-SVR  can accelerate the 

parameters tuning with no less of accuracy and more robustness. 

Case 3: In the previous two real cases, both the concerned re- 

liability data are of obviously linear trend. For more comprehen- 

sive illustration, the case concerning the reliability data without 

clear trend is required. Therefore, a reliability series consisting 

of the reliability data of a car engine is introduced. In this case, 

distance between two unscheduled and consecutive corrective 

maintenance times is considered as a reliability indicator of the 

car engine. The data of 100 engines  are treated as a time se- 

ries. Figs. 6 and 7 give the prediction results and average fit- 

ness curves when the first 90 samples are used as training data 

and the rest as test data. Then, the prediction accuracy and run- 

ning time of plenty of repeated experiments are also listed in 

Tables  VII and VIII. In this case, though  the data concerned 



 
 
 

 
 

Fig. 6.  Prediction results of GA-SVR, PSO-SVR, and ASPSO-SVR in reliability prediction case 3. 

 

 
 

Fig. 7.  Average fitness curves of PSO-SVR and ASPSO-SVR in forecasting the reliability data of a car engine. 

 
TABLE VII 

PREDICTION  ACCURACY  OF GA-SVR, PSO-SVR, AND ASPSO-SVR IN RELIABILITY  PREDICTION  CASE 3 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

are with no longer linear trend, it also shows the similar exper- 

imental results. 

It is worth noting that we have also performed the experi- 

ments for larger number of generations and individuals for GA 



 
 
 

TABLE VIII 

RUNNING  TIME OF GA-SVR, PSO-SVR, AND ASPSO-SVR IN RELIABILITY  PREDICTION  CASE 3 
 

 
 

 
 

 
 
 
 
 

TABLE IX 
PREDICTION  ACCURACY OF GA-SVR WITH LARGE INDIVIDUALS  AND GENERATIONS  IN RELIABILITY  PREDICTION  CASE 1, 2, 3, COMPARED  WITH PSO-SVR AND 

ASPSO-SVR METHOD 

 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

in all three above-mentioned reliability case studies. The experi- 

mental results show that when these parameters change, GA be- 

comes much more stable and accurate, at cost of much heavier 

computational  burden, however. After all, the performance  of 

GA is still poor compared with PSO and ASPSO methods in 

tuning SVR parameters. That is the reason why the number of 

individuals and iterations are not very large in our experiments. 

Table IX lists the RMSE of GA with 100 individuals and 500 

generations  for 10 repeated  experiments,  which is quite large 

for real-time requirement. 
 

V.  CONCLUSION 

In this paper, a novel ASPSO-SVR  scheme is proposed for 

solving reliability prediction problems. Differently from other 

improved PSO algorithms, the proposed scheme utilizes the 

prior knowledge of SVR for the selection of inertial weight in 

the PSO method. Based on mathematical deductions, a strategy 

of adapting the inertial weight by comparing the current parti- 

cles knowledge with the prior SVR knowledge is proposed. Be- 

cause of the adaptability of the inertial weight, the ASPSO-SVR 

scheme has superior prediction performance over that of tradi- 

tional GA-SVR and standard PSO-SVR, as demonstrated in the 

case studies based on both artificial and real data. The results 

obtained in these case studies show that the standard PSO-SVR 

and ASPSO-SVR have comparable performances in prediction 

accuracy and robustness  ability, both of which are better than 

GA-SVR. But in terms of convergence speed, our ASPSO-SVR 

shows a significant advantage. Due to the properties of compu- 

tational speed and robustness, the ASPSO method is fitter for the 

practical reliability prediction tasks than the GA method or the 

standard PSO method for tuning SVR parameters. In the future 

research, more reliability applications will be considered to fur- 

ther investigate the detailed performance of the ASPSO-SVR 

method, and improvements in describing the prior knowledge 

of SVR and integrating it within intelligent searching processes 

will be explored. 
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