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A B S T R A C T 

Titanium dioxide-based photocatalyst powders were obtained by deposition of copper and/or 

platinum clusters by means of pulsed direct current magnetron sputtering with different deposition 

time and plasma composition during Cu sputtering. A top-down configuration was employed with 

the sputtering source facing the powder holder mounted on a shaker mechanism, which 

continuously mixed the powders during the sputtering process. HRTEM analyses revealed the 

presence of well dispersed, subnanometric sized metal clusters, even for long deposition times, 

while XRD analysis showed no modification of the TiO2 crystal structure upon metal deposition. 

The so obtained powders were tested as photocatalysts in methanol photo-steam reforming for 

hydrogen production. The presence of Pt clusters increased the photoactivity with respect to that of 

bare TiO2. The plasma composition during Cu sputtering was found to strongly affect the 

photoactivity of the obtained materials, Cu alone deposited as co-catalyst in an Ar-only atmosphere 

imparting better photoactivity than Cu sputtered in Ar/O2. When the deposition of Cu clusters was 

coupled with the deposition of Pt clusters, an additive effect of the two metals in increasing TiO2 

photoactivity was observed only if Cu clusters were sputtered in the absence of oxygen. 
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1. Introduction 

Hydrogen is often considered the fuel for the future due to its pollution-free nature [1]. However, 

H2 production is still a major problem being far from being environmentally friendly. In this 

context, photocatalytic steam reforming, conceivably exploiting biomass as organic hole scavenger, 

could be a viable alternative to traditional H2 production processes [2]. Titanium dioxide, despite its 

relatively large bandgap [4], is still one of the most effective photocatalyst, due to its photostability 

and peculiar physico-chemical properties [3]. The photocatalytic performance can be increased in 

the presence of an organic compound, such as methanol, ethanol or glycerol, acting as hole 

scavenger [5–7], and of noble metal (Au, Pt, Pd, Ag) nanoparticles on the semiconductor surface 

acting as efficient electron traps [5,8]. Further addition of non-noble metal (i.e. Cu or Ni) 

nanoparticles may increase the photocatalytic activity and also lead to visible light activation of the 

photocatalysts [9–11]. Among all, titanium dioxide-based materials modified with both a noble 

metal and a non-noble metal, e.g. with Pt and Cu, respectively, proved to be more efficient than the 

corresponding monometallic materials. Recently, some of us reported high photocatalytic hydrogen 

productions with Cu and Pt nanoparticle-containing TiO2 photocatalysts obtained either by Cu 

grafting followed by Pt deposition [12] or by flame spray pyrolysis in a single step [13].  

Pulsed-Direct Current (p-DC) magnetron sputtering (MS) is a well-known technique used for the 

production of thin films. This technology is widely employed also on the industrial scale due to its 

scalability and versatility, and to the repeatability and high quality of the obtained coatings. In fact, 

MS is exploited for many applications, ranging from solar glazing products to micro-electronic 

coatings, from tool protecting layers to packaging coatings [14], allowing the deposition of both 

metallic and non-metallic coatings over various substrates. Recently, p-DC MS has been employed 

on the laboratory scale also for metal nanoparticles production and deposition on the surface of 

solid [15–18] or liquid supports [19–21], thus avoiding the contaminations of solvents and/or 

precursors typically occurring with more conventional techniques.  
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So far, the possibility of exploiting this technique to modify materials in powder form has been 

investigated only by the group of Teixeira et al. [16,17], who found that high metal loadings (larger 

than 0.5 wt.%) can be obtained even with short sputtering times. The great enhancement of the 

catalytic activity of the so obtained materials was attributed to the unimodal distribution and small 

average diameters (ca. 1.5 nm) of the deposited metal nanoparticles. 

In this work, we present our preliminary results on Cu and/or Pt clusters deposition on TiO2 

powders by p-DC-MS, employing a home-made apparatus [22]. This set-up is based on an 

oscillating bowl (powder holder) placed under the magnetrons. The oscillations force the powder 

particles to roll and mix around the bowl while the metal atoms are evaporated from the magnetron 

target. The obtained materials were tested as photocatalysts in the methanol photo-steam reforming 

reaction for hydrogen production, according to the reaction: CH3OH + H2O 
ℎ𝜈
→  3 H2 + CO2. 

2. Experimental 

2.1. Photocatalytic materials 

Copper and platinum were deposited over commercial P25 TiO2 powders (Sigma-Aldrich) by 

pulsed direct current (p-DC) magnetron sputtering (MS) in the already described rig [23]. A sketch 

of the employed set-up is shown in Fig. 1. Briefly, the deposition system consisted in a sputter-

down configuration, with a single 7.5 cm diameter type II unbalanced planar magnetron installed on 

the roof of the sputtering chamber. Thus, the target was facing an electrically floating substrate 

holder placed 5 cm underneath the magnetron, allowing a continuous powder mixing during the 

sputtering process via a shaker mechanism. The magnetron was powered by an Advanced Energy 

Pinnacle Plus power supply. The metal targets were sputtered at 250 W, 350 kHz, 50% duty cycle 

(corresponding to a pulse-off period of 1.4 µs, when the cathode voltage is reversed). The 

deposition process was performed in an Ar-only atmosphere for both Pt and Cu deposition and also 

in a 1:1 O2/Ar plasma for copper deposition. The working pressure was fixed, for all depositions, at 

ca. 2.6 Pa, after having evacuated the chamber below 5·10-3 Pa by means of a rotary (Leybold 
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Ttrivac 16B) and a turbomolecular (Leybold TurboVac i90) pump. The desired pressure was 

achieved by adjusting the gate valve between the chamber and the turbomolecular pump. The total 

gas flow during deposition was fixed at 20 sccm for all runs. 

3 g of P25 TiO2 were treated for different time (1-10 min) in different atmospheres. The so 

obtained modified photocatalyst samples are named as “P25” followed by deposition time (in min) 

and by the symbol of the sputtered metal(s), in the order in which they were deposited. In the case 

of copper, the Cu symbol is also followed by the main gas used during deposition. For instance, 

P25+1Cu-O2+5Pt indicates the P25-based sample first modified by a 1-min long Cu deposition in 

O2/Ar atmosphere followed by a 5 min-long platinum deposition in argon. Copper deposition 

always preceded platinum deposition, as in previous work [12] in which the two metals were 

deposited by different techniques. 

2.2. Photocatalyst characterisation 

UV-vis diffuse reflectance spectra of all powders were recorded on a Jasco V-670 

spectrophotometer equipped with a PIN-757 integrating sphere using barium sulphate as a 

reference. The reflectance R was then converted in absorption according to: A = 1 – R. 

X-Ray powder diffraction (XRPD) was carried out with a Panalytical Xpert diffractometer 

operating at 40 kV voltage and 30 mA current using the Cu Kα radiation (λ = 1.54056 Å), with the 

patterns recorded in the 20° < 2θ < 100° range (scan step = 0.013°). The crystal phase composition 

was evaluated by Rietveld refinement [24] using the Quanto software [25]. The Scherrer equation, 

from the most intense reflection at 2θ = 25.4°, was exploited to calculate the mean anatase 

crystallite size [26]. 

Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) analyses were 

performed with a Perkin Elmer Optima 8000 ICP-OES. Pt and Cu were dissolved by dispersing the 

sample in aqua regia (3:1 HCl:HNO3 solution) at 90 °C for 3 hours. 
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HRTEM analysis was carried out with a Zeiss LIBRA 200FE transmission electron microscope, 

equipped with STEM—HAADF and EDX (Oxford X-Stream 2 and INCA software). The 

microscope has a 200 kV field emission gun-like source with an in-column second-generation 

Omega filter for energy-selective spectroscopy. The samples were dispersed in isopropanol and 

then a drop of the suspension was deposited on a 300 mesh holey carbon copper (for Pt containing 

samples) or molybdenum (for Cu containing samples) grid.  

2.3. Photocatalytic tests 

The photocatalysts were tested in hydrogen production from methanol photo-steam reforming 

reaction by exploiting the recirculating stainless-steel closed system described elsewhere [13]. 

(15±2) mg of sample were dispersed in ca. 1 mL of MilliQ water and mixed with (7.10±0.05) g of 

quartz grains (20–40 mesh) and then dried in oven at 70 °C for at least 2 h. The so-obtained 

photocatalytic bed was loaded into the home-made steel photoreactor, closed with a Pyrex glass 

window. Before starting any run, the system was thoroughly purged with pure nitrogen in order to 

remove any trace of oxygen from both the gas phase and the 20 vol% methanol/water solution, kept 

at 30 °C. The gas phase, saturated with the solution vapours, was recirculated by means of a metal 

Bellows pump at 60 mL min-1. The photocatalytic bed was irradiated by a 300W Xenon arc lamp 

(LOT-Oriel), switched on 30 min before the run and positioned at 20 cm from the photoreactor, 

providing an incident power of ca. 120 mW cm-2 on the photocatalyst, as measured with a 

calibrated Thorlabs S130VC photodiode.  

The recirculating phase was sampled and analysed automatically at regular intervals by a gas-

chromatograph (Agilent 6890N) equipped with two columns (Molesieve 5A and HP-PlotU), two 

detectors (flame ionisation and thermo conductivity) and a Ni-catalyst system for CO and CO2 

methanation. Formic acid production was evaluated by analysing the liquid solution with an ion 

chromatograph (Metrohm 761 Compact IC) at the end of any run. 
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The photocatalytic tests were repeated at least twice in order to ensure the reproducibility of 

data. At the end of each run, the liquid solution was replaced with a new one and the system was 

thoroughly purged in pure nitrogen in the dark for 40 min before starting a new run. 

3. Results and discussion 

3.1. Photocatalysts characterisation 

The results of elemental ICP analysis on the produced photocatalysts are collected in Table 1. 

The platinum loading is ca. twice the copper loading attained under analogous sputtering 

conditions, with ca. 0.7 wt.% Pt vs. ca. 0.34 wt.% Cu deposited after 10 min-long deposition. This 

is actually due to the much higher atomic weight of Pt with respect to Cu (195 vs. 63.5, 

respectively). Indeed, the average deposition rate of Cu under Ar atmosphere is significantly higher 

than that of Pt (e.g., 8.9 vs. 6.1 mol s-1 after 10 min-long deposition, respectively). This is 

consistent with the higher relative sputtering yield of Cu with respect to that of Pt. The average 

deposition rate of Pt increased with increasing overall deposition time, while that of Cu decreased. 

As expected, the presence of O2 during the sputtering process caused an important decrease in the 

Cu sputtering yield since after 10 min deposition only 0.1 wt.% Cu was deposited on the TiO2 

powder under such conditions. 

The absorption spectra of the prepared materials shown in Fig. 2 confirm that Cu and/or Pt 

clusters were deposited on the TiO2 surface, because a characteristic absorption appeared in the 

visible region. No shift in the band gap absorption onset could be observed in the spectra of the 

modified samples compared to that of pristine TiO2. Thus, the room temperature sputtering process 

in vacuum does not affect the main structural characteristics of the supporting powder, in contrast 

with other metal deposition methods, e.g. grafting or deposition-precipitation [12], which imply a 

post-thermal treatment of the material. 
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Pt-modified TiO2 materials show an extended absorption in the visible range due to the presence 

of the noble metal that makes these samples greyish (Fig. 2a). As expected, the absorption in the 

400-800 nm range increases for longer deposition times, in agreement with the Pt loading increase. 

The absorption spectra of Cu modified TiO2 materials are characterized by the presence of a 

typical absorption band in the 600–800 nm region, due to the Cu d-d transition, and/or an 

absorption tail in the 400–500 nm region attributed to the interfacial charge transfer (IFCT) 

phenomenon between TiO2 valence band electrons and Cu(II) species [12]. The absorption spectra 

of the photocatalysts modified with Cu sputtering in an Ar-only atmosphere (see Fig. 2b) exhibit an 

absorption in the visible range, due to the presence of copper nanoparticles, increasing with 

increasing deposition time, but no absorption tail between 400 and 500 nm related to an IFCT. Such 

absorption feature appears only in the absorption spectrum of P25+1Cu-O2 (Fig. 2c), suggesting the 

presence of atomically dispersed Cu(II) species (consistent with its unique yellowish colour) in the 

low copper loading deposited in an oxidising atmosphere. Moreover, the absorption spectra of the 

photocatalysts obtained by Cu sputtering in an Ar/O2 plasma (Fig. 2c) show a weaker absorption in 

the visible range with respect to the absorption spectra of the analogous photocatalysts obtained by 

Cu sputtering in an Ar-only atmosphere. This is compatible with the lower deposition rate attained 

under reactive conditions. Finally, the absorption spectra of the Cu and Pt co-modified samples are 

basically dominated by the absorption profile of Pt nanoparticles in the visible region.  

Fig. 3 shows that the XRPD patterns of the metal modified materials are identical to that of 

pristine TiO2. In fact, the Rietveld refinement of XRPD data confirmed that the amount of anatase 

and rutile phases did not change after metal deposition, as well as the anatase crystallite mean size, 

calculated through the Scherrer equation (see Table 2). All samples are composed of a mixture of 

ca. 85% anatase and 15% rutile, with an average anatase crystalline size of 23 nm. No additional 

reflections related to metal Pt and Cu or copper oxides can be observed, due to their low loading 

and fine dispersion on the TiO2 surface. 
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The STEM—HAADF and EDX analyses of P25+10Pt shown in Fig. 4 reveal that the Pt particles 

are irregularly dispersed on the TiO2 surface. In particular, areas with finely dispersed Pt clusters 

(area 1 in Fig. 4 and its magnification shown in Fig. 5b) can be distinguished from areas with dense 

aggregates of Pt nanoparticles (area 2 in Fig. 4 and its magnification shown in Fig. 5a). This is very 

likely due to a non-perfect mixing of the powder during the sputtering process and generates a 

bimodal distribution of the Pt particles size, as shown in Fig. 5d. In particular, the mean particle size 

obtained by fitting the distribution with two Gaussian functions are 0.8 nm (0.5 nm standard 

deviation) and 2.2 nm (1.1 nm standard deviation). This particle size is similar or even smaller than 

that recently attained with other techniques, such as deposition-precipitation or flame spray 

pyrolysis [27], or even pDC-MS [16].The EDX quantitative elemental analysis of Pt in Area 1 of 

Fig. 4 gives a 0.7 wt.% Pt loading, while that of area 2 yields a 18 wt.% Pt loading. The Pt loading 

of area 1 measured by EDX is in agreement with the overall Pt loading determined by ICP analysis 

(0.71 wt.%, see Table 1). Thus, we can tentatively conclude that the major fraction of Pt is present 

in the form of well dispersed clusters (i.e. with particles size below 2 nm) together with some 

islands of Pt nanoparticle aggregates (it must be taken into account that HRTEM is a local probe). 

Similar Pt particles shape and distribution was detected by HRTEM analysis independently of the 

deposition time (i.e. in samples with different metal loadings). This suggests that different 

deposition settings, for instance a lower sputtering power (i.e., a lower Pt evaporation rate), as well 

as longer deposition time could lead to a more uniform Pt clusters distribution.  

Fig. 5c shows the HRTEM image of P25+10Cu-Ar. Cu clusters are more difficult to detect by 

STEM than Pt clusters, because Cu has a Z-contrast similar to that of Ti. Nevertheless, some Cu 

clusters can be recognized on the TiO2 surface, with a shape and dispersion similar to those of Pt 

clusters. 

3.2. Methanol photo-steam reforming tests 
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During the photocatalytic steam reforming process, methanol undergoes oxidation up CO2 

through the formation of formaldehyde and formic acid as intermediates, while methane, CO, and 

dimethylether are usually found as main side products, as already reported in previous work [27]. 

The gaseous products (H2, CO2 and CO) accumulate at constant rate in the recirculating gas phase 

within the same run (pseudo zero-order kinetics).  

As expected, the presence of Pt clusters on the TiO2 surface is beneficial to the photoactivity of 

the material, regardless of their amount. Indeed, the work-function of Pt (5.12 − 5.93 eV) is larger 

than that of TiO2 (4.6 – 4.7 eV) and a larger work function implies a Fermi level located at lower 

energy. Thus, the electrons photopromoted into the TiO2 conduction band are easily transferred to 

Pt clusters, while photoproduced holes remain in the TiO2 valence band, with the consequent 

decrease of electron-hole pair recombination probability. The work function of Cu is 4.53 − 5.10 

eV, i.e. lower than that of Pt but in a range that can exceed that of TiO2. This implies that also 

metallic Cu can in principle act as sink of photopromoted electrons, though being less efficient than 

Pt. In fact, the highest photocatalytic performance was attained with P25+10Pt, the photocatalyst 

obtained by 10 min-long Pt sputtering, leading to a 6-fold increase in H2 production rate (rH2
) with 

respect to that of bare titania (Fig. 6a). The selectivity towards CO and H2CO decreases with 

increasing Pt amount in the photocatalyst, while the opposite occurs for CO2 and HCOOH (Table 

3). These effects are well established for Pt-modified TiO2 because the noble metal is very effective 

in pushing methanol oxidation up to CO2. 

A similar behaviour, but to a lesser extent, can be observed for photocatalysts modified with Cu 

clusters sputtered in Ar-only plasma (Fig. 6b). For photocatalysts containing one of the two 

sputtered metals, rH2
 increased with increasing metal loading. In the case of P25+10Cu-Ar, a 4-fold 

increase of rH2
 was achieved with respect to that of bare titania. Conversely, Cu deposition in a 

reactive environment (i.e. O2/Ar plasma) was detrimental in the case of P25+1Cu-O2, or gave very 

low photoactivity enhancement (Fig. 6c), P25+10Cu-O2 being the only photocatalyst of this series 
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showing an increased H2 production rate with respect to bare TiO2. Thus, for this type of reaction 

copper in reduced state appears to be a more performing co-catalyst of TiO2 than copper oxides 

[28]. 

By comparing the two Cu-only modified photocatalyst series, sputtering copper in Ar-only gives 

better results than sputtering copper in Ar+O2 atmosphere. This is possibly related to the lower Cu 

loading achieved after the same deposition time, due to the lower copper evaporation rate in O2 

containing plasma, and also to the different Cu oxidation state. In particular, the photocatalytic 

performance attained with P25+1Cu-O2 is lower than that of pristine TiO2 (Fig. 6c). P25+1Cu-O2 is 

the only sample showing the characteristic IFCT absorption feature in Fig. 2c, involving the direct 

transition of an electron from the TiO2 valence band to surface Cu(II) species with the consequent 

copper reduction to Cu(I). However, the redox potential of C(II)/Cu(I) couple is expected to be 

more positive than that of the H+/H2 couple. Thus, electrons photopromoted into the copper oxide 

clusters are not useful for hydrogen production and Cu(I) can be oxidized back to Cu(II) by valence 

band holes with the consequent loss of photon energy and decrease of the overall photocatalytic 

performance. 

TiO2 was also modified by deposition of both metals, Cu sputtering always preceding Pt 

sputtering, in line with the deposition sequence optimised in previous studies [12]. The Pt 

deposition time was fixed at 5 min, while Cu was sputtered for either 1 or 5 min. Fig. 6d shows that 

with the photocatalysts obtained by sputtering copper in an Ar-only plasma for 1 or 5 min the rate 

of hydrogen production (9.6 mmol h-1 gcat
-1) was close to the sum of the rates attained with the 

corresponding single-metal modified materials. Thus, in such materials copper and platinum 

clusters on the TiO2 surface appear to have additive, rather than synergistic effects on photoactivity. 

A similar rH2 value was also attained with P25+1Cu-O2+5Pt, while the corresponding Cu-only 

modified P25+1Cu-O2 sample showed very low photoactivity. Thus, in this case the hydrogen 

production rate value was larger than the sum of the H2 production rates obtained with the singly 

modified materials, possibly due to almost complete copper reduction during Pt sputtering. This 
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behaviour is similar to that reported in a recent work of some of us [12]. In contrast, larger amounts 

of copper sputtered in the presence of O2, followed by Pt sputtering, proved to have negative effects 

on the photocatalytic activity, with a decrease of rH2 down to 6.3 mmol h-1 gcat
-1 in the case of 

P25+1Cu-O2+5Pt. Moreover, Fig. 6d shows that all Pt-Cu co-modified materials, apart from 

P25+1Cu-O2+5Pt, showed very similar hydrogen production rates, suggesting that the presence of 

Pt clusters on the TiO2 surface is determining their photoactivity. 

4. Conclusions 

This work demonstrates that pulsed-DC magnetron sputtering is a potential excellent technique 

to produce large amounts of photocatalyst powders modified with tailored metal nanoparticles in 

short time, also avoiding any structural change of the starting material. The operation conditions 

need to be optimized to increase the homogeneity of the metal clusters dispersion, for instance, by 

lowering the sputtering power and by adopting longer deposition times, or a higher shaking 

frequency during metal sputtering. The properties of the deposited metal clusters also depend on the 

composition of the plasma during metal sputtering. In fact, when sputtered under Ar-only plasma, 

Cu sputtered clusters on TiO2 behave as typical metal co-catalysts, enhancing TiO2 photoactivity 

with increasing loading, but without any synergistic effect when co-deposited with Pt. 
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Tables 

 

Table 1. ICP results reporting Pt and/or Cu loading on different samples and average metal 

deposition rate calculated by the wt.% divided by the overall deposition time. 

Sample Dep. time (s) Amount (wt.%) Average dep. rate (mol s-1) 

  Pt  Cu  Pt Cu 

P25+1Pt 60 0.04 / 3.4  

P25+10Pt 600 0.71 / 6.1  

P25+1Cu-Ar+5Pt 60 + 300 0.19 0.07 3.2 18.4 

P25+1Cu-Ar 60 / 0.05  13.1 

P25+10Cu-Ar 600 / 0.34  8.9 

P25+10Cu-O2 600 / 0.09  2.4 

 

 

Table 2. Average diameter of anatase nanoparticles and crystal phase composition. 

Sample danatase (nm) Anatase (%) Rutile (%) 

P25 23.5 85.8 14.2 

P25+10Pt 23.0 84.9 15.1 

P25+10Cu-Ar 23.4 86.4 13.6 

P25+10Cu-O2 23.7 86.8 13.2 
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Table 3. Photocatalytic performance of the investigated materials in methanol photo-steam 

reforming, in terms of rates of products formation, r, and percent selectivity in relation to hydrogen 

production, S. Reaction conditions: 0.015 g of photocatalyst fed in recirculation mode with 60 mL 

min-1 of a 2% CH3OH / 3% H2O / N2 (balance) gas mixture 

 Production rate / mmol h-1 gcat
-1 

 Selectivity in relation to H2 

production / % 

Photocatalyst H2 CO2 CO H2CO HCO2H CH4  CO2 CO H2CO HCO2H 

P25 1.63 0.10 0.12 1.76 0.17 8·10-4  18.8 15.7 67.2 21.3 

P25+1Pt 3.32 0.22 0.22 2.33 0.33 2·10-3  19.8 13.0 39.2 19.7 

P25+5Pt 7.73 0.81 0.38 3.74 0.73 3·10-3  31.4 9.8 27.1 18.9 

P25+10Pt 10.03 1.12 0.36 4.93 1.40 6·10-3  33.4 7.2 25.9 28.0 

P25+1Cu-Ar 1.80 0.11 0.13 1.63 0.24 7·10-4  18.5 14.6 51.0 26.4 

P25+5Cu-Ar 3.20 0.33 0.21 2.58 0.35 7·10-4  25.8 15.2 63.4 22.1 

P25+10Cu-Ar 3.68 0.93 0.34 3.29 0.88 2·10-3  42.0 10.0 27.6 26.5 

P25+1Cu-O2 0.59 0.03 0.05 1.13 0.07 8·10-4  14.8 17.3 116.1 25.6 

P25+5Cu- O2 1.62 0.10 0.12 1.20 0.19 5·10-4  18.6 14.6 41.3 23.8 

P25+10Cu- O2 2.75 0.21 0.17 1.84 0.34 2·10-3  22.9 12.4 37.7 24.8 

P25+1Cu-Ar+5Pt 9.63 1.18 0.42 4.21 0.85 3·10-3  36.8 8.7 24.5 17.5 

P25+5Cu-Ar+5Pt 9.67 1.42 0.40 3.55 1.01 4·10-3  44.1 8.3 20.6 20.8 

P25+1Cu-O2+5Pt 9.62 1.10 0.39 4.51 1.01 2·10-3  34.4 8.2 26.3 21.0 

P25+5Cu- O2+5Pt 6.31 0.61 0.30 3.99 0.56 1·10-3  28.8 9.6 35.4 17.7 
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Figure captions 

Figure 1. Sketch of the employed p-DC magnetron sputtering set up. 

Figure 2. Absorption spectra of the a) P25+xPt, b) P25+xCu-Ar, c) P25+xCu-O2, (x = 1, 5 and 10 

min); d) Cu and Pt co-modified photocatalyst series, all compared the absorption spectrum of bare 

P25 TiO2 (dashed black line).  

Figure 3. XRPD patterns of selected samples. The inset shows superimposed patterns in the 2 24–

28° range, demonstrating that the sputtering treatment did not alter the crystal structure. 

Figure 4. STEM—HAADF + EDX analysis of the P25+10Pt sample. 

Figure 5. (a) STEM-HAADF image of P25+10Pt and HRTEM micrographs of (b) P25+10Pt and 

(c) P25+10Cu-Ar. (d) Pt particle size distribution of P25+10Pt. The red curve is the distribution 

fitting obtained using two Gaussian curves (green curves). The red arrows in (b) and (c) point to Pt 

and Cu clusters, respectively. 

Figure 6. Hydrogen and by-products production rates obtained with (a) Pt-modified TiO2, (b) Ar-

sputtered Cu-modified TiO2, (c) Ar/O2-sputtered Cu-modified TiO2, (d) Pt and Cu co-modified 

TiO2, compared to bare, unmodified P25 TiO2. 
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Figure 1. Sketch of the employed p-DC magnetron sputtering set up. 

 

 

 

Figure 2. Absorption spectra of the (a) P25+XPt, (b) P25+XCu-Ar, (c) P25+XCu-O2, (d) Cu and Pt 

co-modified photocatalyst series, all compared the absorption spectrum of bare P25 TiO2 (dashed 

black line). X = 1, 5, 10 min 
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Figure 3. XRPD patterns of selected samples. The inset shows superimposed patterns in the 2 24–

28° range, demonstrating that the sputtering treatment did not alter the crystal structure. 
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Figure 4. STEM—HAADF + EDX analysis of the P25+10Pt sample. 
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Figure 5. (a) STEM-HAADF image of P25+10Pt and HRTEM micrographs of (b) P25+10Pt and 

(c) P25+10Cu-Ar. (d) Pt particle size distribution of P25+10Pt. The red curve is the distribution 

fitting obtained using two Gaussian curves (green curves). The red arrows in (b) and (c) point to Pt 

and Cu clusters, respectively. 
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Figure 6. Hydrogen and by-products production rates obtained with (a) Pt-modified TiO2, (b) Ar-

sputtered Cu-modified TiO2, (c) Ar/O2-sputtered Cu-modified TiO2, (d) Pt and Cu co-modified 

TiO2, compared to bare, unmodified P25 TiO2. 
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