
Alismaeel, ZT and Abbas, AS and Albayati, TM and Doyle, Aidan (2018)
Biodiesel from batch and continuous oleic acid esterification using zeolite
catalysts. Fuel, 234. pp. 170-176. ISSN 0016-2361

Downloaded from: http://e-space.mmu.ac.uk/621244/

Version: Accepted Version

Publisher: Elsevier

DOI: https://doi.org/10.1016/j.fuel.2018.07.025

Please cite the published version

https://e-space.mmu.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by E-space: Manchester Metropolitan University's Research Repository

https://core.ac.uk/display/161894112?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://e-space.mmu.ac.uk/621244/
https://doi.org/10.1016/j.fuel.2018.07.025
https://e-space.mmu.ac.uk


1 
 

Biodiesel from batch and continuous oleic acid esterification using zeolite catalysts 

Ziad T. Alismaeel 1 Ammar S. Abbas2 Talib M. Albayati3 Aidan M. Doyle4* 

 

1. Department of Biochemical Engineering, Al-Khwarizmi College of Engineering, University 

of Baghdad, Al-Jadryah, P.O. Box 47008, Baghdad, Iraq. email: ziadalismaeel@yahoo.com.  

 

2. Department of Chemical Engineering, College of Engineering, University of Baghdad, Al-

Jadryah, P.O. Box 47221, Baghdad, Iraq. email: dr_ammar19@yahoo.com. 

 

3. Department of Chemical Engineering, University of Technology, 52 Alsinaa St., PO Box 

35010, Baghdad, Iraq. email: talib_albyati@yahoo.com. 

 

4. Division of Chemistry and Environmental Science, Manchester Metropolitan University, 

Chester St., Manchester, M1 5GD, United Kingdom. email:  a.m.doyle@mmu.ac.uk  

 

* Corresponding author: a.m.doyle@mmu.ac.uk 

 

Abstract 

The esterification of oleic acid with ethanol was studied in both batch and continuous 

conditions in a fixed-bed reactor over FAU-type zeolites prepared from shale rock. The 

addition of Co-Ni-Pt to the zeolite increased the catalyst activity over the entire reaction 

temperature range. Experiments confirmed that esterification follows pseudo first-order 

kinetics. Thermodynamic analysis and Thiele modulus calculations show that the reaction is 

kinetically controlled in batch conditions, while diffusional limitations occur at higher flow 

rates when conducted in continuous mode. The maximum oleic acid conversions were recorded 

as 93% for batch and 89% for continuous, which exceed those of any analogous studies. 
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1. Introduction 

Biodiesel is a carbon neutral fuel source that has the potential to provide almost unlimited 

renewable energy. Untreated biodiesel (natural oils) e.g. sunflower oil, typically consists of 

fatty acids that require (trans)esterification to produce methyl or ethyl esters that have 

appropriate viscosity and burning rate (cetane number) for use in existing diesel compression 

engines thereby making them suitable as fuels. Biodiesel is traditionally prepared using 

homogeneous catalysts e.g. sulfuric acid. Heterogeneous catalysts have the advantage of being 

easily removed from the biodiesel produced so it is not surprising that more recent research 

efforts have focussed on the development and testing of such heterogeneous systems.  

 

Oleic acid is present in natural oils and its acid catalysed esterification has become a model 

reaction in the study of biodiesel formation. Most of the literature around oleic acid 

esterification reports its reaction with methanol. Homogenous systems using mineral acid/base 

catalysts have been well studied so recent innovations in this area tend to focus on increasing 

the product yield by additional reaction treatment. Examples include the use of a water 

adsorption apparatus, which increases the reaction yield via water removal to enhance the oleic 

acid:methanol equilibrium towards the ester [1], and the application of ultrasound during 

reaction [2]. Heterogeneously catalysed oleic acid:methanol reactions have been reported over 

the following catalysts; Amberlyst-46 [3]; sulfonated carbon [4]; acid ion-exchange polymer 

resin [5]; titanium dioxide supported on natural phosphate [6]; 12-tungstophosphoric acid 

supported on mesoporous silica [7]; and solid acid catalysts prepared from Amazon flint kaolin 

[8]. Ethyl esters have superior properties to their methyl counterparts, evidenced by higher oil 

solubility, calorific value, cetane number, cold filtering plugging point, cloud point and pour 
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point. The catalysis of the oleic acid:ethanol reaction has been examined using; sulfonated 

cation exchange resin [9]; organophosphonic acid-functionalised silica [10]; sulfonated 

carbonised bamboo ash [11]; Amberlyst-15 [12] niobic acid [13]; calcium ferrite [14]; and 

zirconia supported 12-tungstophosphoric acid [15]. 

 

Zeolites are high surface area solid acids that have been widely used for water treatment and 

purification, humidity control, and heterogeneous catalysis [16]. Zeolite acidity originates from 

the charge imbalance between silica and alumina units bound within the stable crystalline 

aluminosilicate framework; these properties makes zeolites suitable to the acid-catalysed 

esterification of free fatty acids in biodiesel production, and a number of reviews have been 

published [17-22]. In addition to their preparation from laboratory based 

silicate/aluminosilicates reagents, zeolites may also be prepared from a variety of natural/waste 

materials; the compositions of silicon and aluminium based minerals in these materials is 

similar to those of aluminosilicate zeolites, and the literature describes examples of zeolites 

prepared from fly ash [23-33], kaolin [34-45], fly ash-kaolinite [46] and shale [47-51]. There 

are few reports in the literature on zeolite catalysed oleic acid esterification reactions, and the 

majority use methanol; zeolite beta [52,53]; mordenite, ZSM-5 and FAU-type zeolite [54]; and 

ZSM-5 modified with citric acid [55]. Oleic acid esterification with ethanol was studied in 

batch conditions over zeolite Y [56] and zeolite beta [57], and via pervaporation-assisted 

continuous esterification over Amberlyst-15 [58] and NaA zeolite membrane [59].  

 

We recently reported the preparation of pure FAU- zeolite from shale rock, and demonstrated 

that its catalytic activity was comparable to that of commercial Y zeolite in the esterification 

of oleic acid with ethanol [51]. Here, we expand on our previous experiments using FAU-type 

zeolite as a catalyst in both batch and continuous conditions, in which the maximum conversion 
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is enhanced by the straightforward addition of Co-Ni-Pt metals. Kinetic and thermodynamic 

parameters are also presented. 

 

2. Experimental 

2.1 Materials 

The following is a list of the materials’ source/supplier and purity; shale rock was collected 

from the surface of a tilled field on a working farm in county Wexford, Ireland, washed with 

water to remove all soil residue and dried at 120 °C for three hours; sodium hydroxide (NaOH) 

pellets, extra pure, Scharlau; sodium silicate (Na4SiO4), 99% purity, BDH Chemicals Ltd.; 

ammonium chloride (NH4Cl), Sigma Aldrich; absolute ethanol (C2H5OH) Sigma Aldrich; 

phenolphthalein, 2% in ethanol, Sigma-Aldrich; cobalt (II) nitrate hexahydrate, 

Co(NO3)2.6H2O, Sigma Aldrich; nickel (II) nitrate hexahydrate, Ni(NO3)2.6H2O, Sigma 

Aldrich; platinum (IV) oxide hydrate, PtO2.xH2O, Sigma Aldrich. 

 

2.2 Catalyst preparation 

The zeolite was prepared using a procedure based on our previous paper [51]. The washed 

shale was crushed in a ball mill apparatus, sieved to <90 µm and calcined in air at 800 °C for 

4 h to remove organic matter. 10 g of calcined shale was then refluxed with 40 cm3 of 5 M HCl 

at 85 °C for 4 h (to remove Fe) and the product recovered by filtration. 1 part (by mass) of 

calcined shale was mixed with 1.5 parts (by mass) of 40 wt % aqueous NaOH solution, heated 

at 850 °C in air for 3 h in a furnace to get fused shale, which was crushed to powder form after 

cooling to ambient temperature. 2 g of fused shale, 1 g sodium silicate and 16 g distilled water 

were added to a polypropylene bottle, stirred at room temperature for 3 h, then aged under 

static conditions at room temperature for 18 h, and finally hydrothermally treated at 100 °C for 

24 h. The product was recovered by filtration.  
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To convert the prepared zeolite from Na+ to NH4
+ form, 90 g of zeolite were added to 250 cm3 

of 2 M ammonium chloride and stirred in a round bottom flask at room temperature for 2 h. 

The solid was recovered by filtration, washed with distilled water and the ion-exchange 

procedure was repeated a further two times using 60 g and 30 g, respectively. The solid was 

again recovered by filtration, washed with distilled water, dried for 12 h at 120 °C and calcined 

in air at 500 ºC for 4 h to give zeolite in H+ form, hereafter labelled H-FAU. 

 

Before metal loading, the zeolite was dried in an oven at 110 ˚C for 2 h to remove any absorbed 

water. Precious metals were added to the zeolite using incipient wetness; solutions were 

prepared by dissolving the appropriate masses of Co, Ni, and Pt metal precursors in 0.1 M HCl, 

which were then added to the zeolite to give loadings of 1 wt.% of each metal. After 

impregnation, the catalysts were dried overnight at ambient temperature, heated for 24 h at 120 

ºC, and calcined in air at 500 ºC for 4 h to give Co-Ni-Pt-FAU. 

 

2.3 Characterization 

Nitrogen adsorption/desorption measurements were carried out using a Micromeritics ASAP 

2020 Surface Analyser at -196 °C. Samples were degassed under vacuum (p < 10-5 mbar) for 

12 h at 350 °C prior to analysis. BET surface areas of the samples were calculated in the relative 

pressure range 0.05-0.30. Microscopic images were recorded using a JEOL JSM-5600LV 

scanning electron microscope (SEM). Semi-quantitative chemical analysis was performed by 

energy-dispersive X-ray spectroscopy (EDAX) using a detector from Oxford Instruments. 

 

2.4 Catalyst testing 

2.4.1 Batch reactor 
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The esterification reaction of oleic acid with ethanol was performed by reflux in a 500 ml batch 

reactor placed in a thermostatic oil bath under stirring. The desired amount of catalyst was 

dried before reaction at 130 °C for 2 h. The reactor was loaded with 50 ml (44.75 g) of oleic 

acid and the desired amount of pre-heated ethanol was then added to give an ethanol to oleic 

acid molar ratio of 6. Esterification was carried out at reaction temperatures 40, 50, 60 and 70 

°C. 5 ml samples were withdrawn from the reaction mixture at 15 minute intervals, and 

centrifuged for 10 min at 3000 rpm to separate the solid zeolite from the liquid phase.  

The supernatant layer was purified by rotary evaporator to remove excess ethanol and water 

generated during reaction and analysed by titration with 0.1 M KOH, using phenolphthalein 

indicator, to calculate the acid value (AV) as shown in the following equation; 

 

                                          AV =  
ml of KOH ×N ×56

Weight of Sample
                                         (1) 

 

From the acid value, the conversion of oleic acid was calculated for each amount of catalyst as 

shown in the following equation; 

 

                                        conversion% =
AVt0−AVt

AVt0
 x100%                                 (2) 

where: 

 AVto (acid value of the reaction product at time 0) 

 AVt (acid value of the reaction product at time t) 

 

2.4.2 Continuous fixed-bed reactor 

Oleic acid esterification was conducted in continuous mode using a vertical fixed-bed quartz 

reactor (Fig. 1) with internal diameter 10 mm and height 650 mm. 6.35 g of catalyst pellets 
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were prepared by compressing the catalyst powder at 2 tonnes for 1 min in a hydraulic press, 

followed by crushing and sieving to the size range 355 to 500 µm. Ethanol and oleic acid were 

mixed and preheated (using the same quantities as in the batch reaction), and delivered upwards 

to the reactor using a Perkin Elmer LC pump. The reaction temperature was controlled by 

circulating water from a bath. Different flow rates were employed to obtain sufficient residence 

times between the reactants and catalyst inside the reactor column (30, 60, 90, 120, 150 and 

180 mins). The product stream was collected in an accumulation tank, during which 10 ml 

samples were taken for analysis at each flow rate and temperature. The product was purified 

and analysed in the same manner as that used in the batch reaction. 

 

3. Results and Discussion 

3.1 Characterisation 

The XRD patterns for H-FAU prepared from shale rock confirm the faujasite structure; these 

were discussed in detail by the authors in reference 51 so will not be repeated here. The BET 

surface area of H-FAU decreased from 571 m2g-1 to 490 m2g-1 after the addition of Co, Ni and 

Pt metal salts by incipient wetness, and subsequent heating and calcination in air. A decrease 

in surface area is expected as the Co-Ni-Pt-FAU has undergone twice the period of calcination 

as H-FAU, thereby causing some loss of the metastable zeolite porosity but, nonetheless, 

retains a high surface area. SEM images, Fig. 2, show the characteristic micron sized particles, 

approximately 2 μm, of both H-FAU and Co-Ni-Pt-FAU, while EDAX confirms the presence 

of cobalt, nickel and platinum in addition to silicon and aluminium in the underlying zeolite. 

 

3.2 Esterification reactions 

The esterification of oleic acid with ethanol is used as a test reaction to assess the catalytic 

activity of the shale zeolite. This is a reversible reaction so an excess quantity of ethanol, 6:1 
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ethanol/oleic acid molar ratio, is used to enhance conversion. The fractional conversions of 

oleic acid over H-FAU, Fig 3, increase with reaction time at all temperatures where the 

maximum conversion increases from 45% at 40 °C to 78% at 70 °C. The addition of Co-Ni-Pt 

increases the catalyst activity over the entire temperature range such that the maximum 

conversion increases from 58% at 40 °C to 93% at 70 °C. The activity of the Co-Ni-Pt-FAU 

catalyst exceeds those of the zeolite Y prepared from kaolin in our previous study, and also 

that of a commercially sourced Y zeolite in H- form (85% at 70 °C) [45]. 

 

As previously noted, most of the literature documenting zeolite catalysed oleic acid 

esterification uses methanol as the alcohol reagent; maximum conversion rates (of oleic acid) 

were reported as follows; 86% for zeolite beta [52,53]; 81% for mordenite, 80% for ZSM-5, 

and 78% for FAU-type zeolite [54]; 80% for ZSM-5 [55]; and 83% for citric acid modified 

ZSM-5 [56]. For zeolite catalysed oleic acid and ethanol batch esterification. Marchetti et al. 

reported a maximum conversion of 27% after two hours over Na-Y zeolite at 55 °C using an 

ethanol:oleic acid ratio of 6.3:1; the low value of 27% is likely to be due to using the Na+ form 

of zeolite, which is much less acidic than the H+ form [56]. Sun et al. reported a conversion 

rate of 73.6% over zeolite beta after 10 hours at 78 °C using an ethanol:oleic acid ratio of 20:1 

[57]. The zeolite prepared here from shale is more active than either of these catalysts, 

evidenced by conversions of 59% at 50 °C and 71% at 60 °C, versus 27% at 55 °C over Na-Y 

[56], and 78% at 70 °C versus 73.6% at 78 °C over zeolte beta [57]. 

 

Reaction rate constants were calculated from plots of ln oleic acid concentration versus time, 

Fig. 4; the gradients are the pseudo first-order rate constants (ethanol in excess) which are then 

converted to the ‘true’ second-order rate constants by accounting for the concentration of 

ethanol. The best fits were found to occur up to and including 1 hour reaction time; thereafter 
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the reaction approaches/reaches equilibrium where the extent of the reverse hydrolysis reaction 

is such that the measurement of oleic acid alone is insufficient for a meaningful kinetic study. 

All plots showed excellent linearity (regression coefficient 0.99 or greater). The pseudo first-

order and second-order rate constants, Table 2, increase with both reaction temperature and the 

addition of Co-Ni-Pt to the zeolite. The vast majority of papers in the literature do not report 

the second-order rate constants. This is unfortunate, as their inclusion would allow a direct 

comparison of catalyst activities between research groups doing similar studies. The pseudo 

first-order rate constant is sometimes mentioned but, on its own, is not an accurate means of 

disseminating catalyst activity for the purpose of comparison, due to the numerical value not 

accounting quantitatively for the excess alcohol concentration. 

 

The Arrhenius parameters of oleic acid esterification were calculated from the second-order 

rate constants, Fig. 5, giving activation energies of 28.6 kJ mol-1 for H-FAU and 31.9 kJ mol-1 

for Co-Ni-Pt-FAU, Table 1. The slightly higher activation energy over the Co-Ni-Pt-FAU 

catalyst is surprising, given the associated higher rates of reaction relative to H-FAU. However, 

activation energy is a measure of the temperature response of an activated reaction and the 

results here may simply indicate a different reaction mechanism over Co-Ni-Pt-FAU (at least 

for a portion of reacting molecules). This is somewhat confirmed by the higher value of the 

Arrhenius frequency factor; 16804 dm3 mol-1 h-1 for Co-Ni-Pt-FAU versus 3886 dm3 mol-1 h-1 

for H-FAU. It is not possible to make a direct comparison of these Arrhenius frequency factors 

to those from other studies as most papers make no such mention, and for those that do, the 

numerical value and units are calculated using the pseudo-first order rate constants. The 

Arrhenius frequency factor is an approximate measure of the collision rate of reacting 

molecules. Accordingly, we tentatively attribute the higher Arrhenius frequency factor to the 

greater affinity of oleic acid to the metal surface(s) (as opposed to the underlying zeolite), 
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which concentrates the oleic acid solution near the zeolite acid sites thereby increasing the 

reaction rate. (It is important to note that the esterification reaction is catalysed by the zeolite 

acid sites, and not necessarily Co, Ni or Pt.) This increased affinity may be due to the direct 

adsorption/interaction between the oleic acid double bond and the metal phase e.g. Pt. The 

resulting increase in oleic acid concentration near the zeolite surface could also increase any 

ionic interaction between the carboxylic acid group of oleic acid and the zeolite surface, 

providing further reactant concentration and an associated increase in reaction rate.  

Activation energies >20 kJ mol-1 are consistent with kinetically controlled reactions, so the 

results here confirm that the oleic acid esterification reaction over FAU-zeolite is kinetically 

controlled i.e. not diffusion limited [60]. The extent of diffusion may be evaluated more 

precisely using the Thiele modulus, ϕ, which for a spherical particle of radius R (such as that 

in the present paper of SEM diameter 2 μm) is calculated using the following equation [61]: 

 

                                         𝜙 =
𝑅

3
√

𝑘′

𝐷𝑒𝑓𝑓
                                        (3) 

 

This approach thus combines a theoretical calculation of the effective diffusion coefficient, 

Deff, with the experimental value of the pseudo first-order rate constant k’. A ϕ value < 0.4 

indicates that the reaction concentration profile does not drop significantly within the catalyst 

pores i.e. the reaction is not diffusion limited. The effective diffusion coefficient was calculated 

using the following equation [62]: 

 

𝐷𝑒𝑓𝑓 =
𝐷𝐴𝐵𝜀𝑝

𝜏𝑝
     (4) 

 

where DAB is the molecular diffusion coefficient of the limiting reactant A in solvent B, εp is 

the catalyst particle porosity and τp is the catalyst pore tortuosity. For the study presented here, 
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the molecular diffusion coefficient of oleic acid in ethanol was calculated using the Wilke-

Chang method [63] to be 5.27 x 10-11 m2 s-1 at 40 °C, which is similar to that calculated for 

triglyceride in methanol, 6.1 x 10-11 m2 s-1 [64]. The Thiele modulus values were calculated for 

each batch reaction using an εp value of 0.345, determined from the nitrogen adsorption void 

fraction, and a τp value of 4 [62]. The calculated values, Table 1, range from 5.68 x 10-4 to 8.01 

x 10-4, which is well below 0.4 thereby providing further evidence that the reaction is 

kinetically controlled i.e. not diffusion limited. 

  

The increased reaction rate using Co-Ni-Pt-FAU is also evident when the reaction is conducted 

on a continuous basis in the fixed-bed reactor. The maximum conversions of oleic acid, Fig. 6, 

reach 41% at 40 °C and 75% at 70 °C over H-FAU, while the equivalent figures over Co-Ni-

Pt-FAU are 54% and 89%, respectively. Pseudo first-order kinetics were confirmed for both 

H-FAU and Co-Ni-Pt-FAU catalysts when used in the fixed-bed reactor, Fig. 7, which matches 

with the rate law found in batch. It is interesting to note that the kinetic treatment showed the 

greatest linearity of fit at lower LHSVs, particularly so in the case of Co-Ni-Pt-FAU. Further 

evidence of the superior catalytic activity by the addition of Co-Ni-Pt can be seen in Fig. 7, 

where the absolute reaction rates (measured as the quantity of oleic acid converted) are plotted. 

Visual inspection of both H-FAU and Co-Ni-Pt-FAU gradients shows that, overall, the reaction 

rates for most catalysts increase relatively linearly up to one hour reaction time, and, thereafter, 

there is a noticeable reduction in the degree of increase. This change in response is due to 

diffusional limitations where the reactant flow rates are sufficiently high to prevent complete 

reaction (these effects are currently under investigation and will not be discussed here as they 

are beyond the scope of this paper). However, it is interesting to examine the dynamics of rate 

changes at times greater than one hour. In the case of H-FAU, the reaction rates decrease 

slightly between one and two hours at temperatures 40 °C and 50 °C, but increase at 60 °C and 
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70 °C. For Co-Ni-Pt-FAU, the rates increase at all temperatures over the same range. This 

effect is due to the higher reaction rate caused by the Co, Ni and Pt on the zeolite; while the 

contribution by the metals is insufficient to eliminate the diffusion effects entirely, it does 

nonetheless partially mitigate the diffusional limitations, and increases the absolute reaction 

rate overall. 

 

To our knowledge, there are no other reports of zeolite catalysed oleic acid esterification with 

ethanol under continuous conditions. Zeolites have however been used to remove water by 

pervaporation, where a non-zeolitic material was the active catalyst. Han et al. reported a 

maximum conversion of 84.2% over a cation exchange resin catalyst, that increased to 87.1% 

when a NaY zeolite membrane was added for pervaporation [59]. The maximum conversions 

of the same reaction under continuous conditions, but which do not incorporate zeolites, are up 

to 55% from 50-70 °C using Amberlyst-15, and up to 90% at 249 °C using niobic acid [13]. 

Considering the reactions in this paper used a maximum temperature 70 °C and reaction time 

1.5-2 h, our conversion results, 93% batch and 89% continuous, obtained without the need for 

pervaporation, are particularly promising. 

 

4. Conclusions 

Shale rock is found to be an excellent natural material to prepare FAU-type zeolite for the 

catalysed esterification of oleic acid and ethanol, a model reaction for biodiesel production. 

The conversion rates increased in both batch and continuous conditions with temperature and 

the addition of Co, Ni and Pt to the zeolite. Kinetic and thermodynamic studies proved that the 

reaction is pseudo first-order, with respect to oleic acid, and is kinetically controlled. On a 

wider level, these findings confirm the suitability of using zeolites as heterogeneous catalysts 

in biodiesel preparation. 
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Fig. 1: Schematic of continuous fixed-bed reactor. 
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Fig. 2: SEM and EDAX images for H-FAU (top) and Co-Ni-Pt-FAU (bottom). 
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Fig. 3: Oleic acid conversion vs. reaction temperature in batch reactor: H-FAU (top) and Co-

Ni-Pt-FAU (bottom). 
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Fig. 4: Pseudo first-order plots vs. reaction temperature in batch reactor, FAU (top) and Co-Ni-

Pt-FAU (bottom). 
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Fig. 5: Arrhenius plots for oleic acid esterification in batch reactor. 
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Fig. 6: Oleic acid conversion vs. LHSV and reaction temperature in continuous fixed-bed 

reactor: H-FAU (top) and Co-Ni-Pt-FAU (bottom). 
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Fig. 7: Psuedo first-order plots vs. LHSV and reaction temperature in continuous fixed-bed 

reactor: H-FAU (top) and Co-Ni-Pt-FAU (bottom). 
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Fig. 8: Reaction rate (of oleic acid) vs. LHSV and reaction temperature in continuous fixed-

bed reactor: H-FAU (top) and Co-Ni-Pt-FAU (bottom). 
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Table 1: Pseudo first-order rate constants, second order rate constants, Thiele modulus and 

thermodynamic data for oleic acid esterification using H-FAU and Co-Ni-Pt-FAU in batch 

conditions. 

  H-FAU Co-Ni-Pt-FAU 

T/°C k'/h
-1

 k/dm
3
 mol

-1
 h

-1
 

 

ϕ/10-4 k'/h
-1

 k/dm
3
 mol

-1
 h

-1
 

 

ϕ/10-4 

40 0.552 0.0635 5.68 0.704 0.0816 6.42 

50 0.813 0.095 6.23 0.969 0.113 6.81 

60 1.13 0.133 6.68 1.44 0.171 7.54 

70 1.39 0.164 6.74 1.96 0.234 8.01 

Ea/kJ mol
-1

 28.6 31.9 

A/dm
3
 mol

-1
 h

-1
 3886 16804 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


