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Abstract—We present path entropy, an information-theoretic
measure that captures the notion of patterning due to phase
separation in organic tissues. Recent work has demonstrated,
both in silico and in vitro, that phase separation in epithelia
can arise simply from the forces at play between cells with
differing mechanical properties. These qualitative results give
rise to numerous questions about how the degree of patterning
relates to model parameters or underlying biophysical properties.
Answering these questions requires a consistent and meaningful
way of quantifying degree of patterning that we observe. We
define a resolution-independent measure that is better suited than
image-processing techniques for comparing cellular structures.
We show how this measure can be usefully applied in a selection
of scenarios from biological experiment and computer simulation,
and argue for the establishment of a tissue-graph library to assist
with parameter estimation for synthetic morphology.

I. INTRODUCTION

One of the major mechanisms for understanding tissue
development is adhesion-mediated sorting of cell mixtures into
homotypic groups, which was discovered by Steinberg in the
1960s [1]. Interest in this phase separation mechanism has
recently surged, partly because of its ability to create synthetic
biological patterning mechanisms [2] and partly because it
has been found to drive events critical to the formation of
organoids from stem cells [3, 4], making the process relevant
to biotechnology as well as to basic development.

These investigations in experimental and synthetic biology
have been paralleled by the development of analytic and
computational models to explain pattern development. The first
class of these are reaction-diffusion systems, such as those of
Turing [5] and Gierer [6], in which a slowly diffusing activator
molecule activates its own synthesis and also the synthesis
of a rapidly diffusing inhibitor molecule. In such a system,
small random asymmetries lead to slightly elevated production
of activator morphogens and become centres of activator
production and inhibit nearby sites from doing the same. The
result is a field with separated spots, patches or stripes of
high activator expression, which can be modelled for a two-
component fluid system by the Cahn-Hilliard equation [7].

The second class of model is discrete, and pattern-
ing emerges from the mechanical properties of the cells
themselves: cell-cell adhesion, contractility, and the balance

between cell surface area and volume. In this class are the
Cellular Potts model [8] and the model of Newman et al. [9],
in which motion takes place on a mesh of a scale much smaller
than a cell, and Vertex models [10, 11], in which the system is
represented as a dynamic and irregular mesh where polygons
correspond directly to cells. Recently, analytic results have
become available [12, 13] that predict cell shapes produced
by both numerical simulations and models in a homogeneous
setting and they have been demonstrated [14] to produce phase
separation in simulation in a heterogeneous setting.

Against this background, there is a dearth of tools for
comparing data produced by each of these disparate methods.
Qualitatively, snapshots of tissues undergoing phase separation
in simulation [13, 14] look similar to those produced experi-
mentally by engineering cells with different levels of cadherin
molecules [2]. In both cases the mechanism is understood to
be Steinbergian differential adhesion, but the commonly used
methods for quantitative techniques on epithelial sheets are
mainly concerned with polygon distributions [15] or structural
motifs [16] and are not straightforwardly extended to a setting
with multiple cell types.

Graph-based distance, or graph similarity measures are
well known. Eschera and Fu [17] define a distance between
attributed feature graphs extracted from images in terms of
transformations required to derive one from the other. Others
such as Bunke and Shearer [18] define a distance (in fact, a
metric) in terms of the size of the maximal common subgraph.
Measures of these types do not, however, contain any intrinsic
notion of pattern or information, so do not adequately capture
these higher-level concepts. They are, in a sense, overspecific.

Shannon’s entropy [19] has proven difficult to extend to two
or more dimensions in a meaningful way. The fundamental
problem is that entropy depends fundamentally on the under-
lying probability distribution over some set of possibilities,
but there is no unique way to decide which set is appropriate.
Entropy is an extrinsic anthropomorphic concept, not an
intrinsic property of the system [20] precisely because of this
freedom to choose the appropriate distribution. Information-
theoretic measures for images are known, but they are typically
constructed on the probability distribution of pixel values in
an image [21–23], essentially transforming a two-dimensional
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problem into one dimension, sacrificing spatial structure in the
process.

The Maximum Entropy technique [24], widely used in
image reconstruction from partial data, treats an image as a
two dimensional structure, but is necessarily sensitive to image
resolution. Likewise, other measures such as by Rubner et
al. [25] and the vast literature on distances between images
for retrieval purposes do encode something of the information
content, are also relative to the image resolution. For that
reason, without some kind of pre-alignment such as with Cu-
turi & Doucet’s technique of fast computation of Wasserstein
Barycentres [26], they are not directly applicable to the task
of comparing tissue examples from vastly different sources —
experimental imagery on the one hand and simulation data
on the other. A similar criticism can be made of Larkin’s
delentropy measure [27] (however, see section 2 of Larkin’s
paper for an extended discussion of information-theoretic
measures of images).

In this paper, we provide such a method by defining a
family of resolution-independent entropy measures on graphs
that captures the different patterns observed throughout the
literature on phase separation in cellular tissues. We choose to
frame the measure in terms of graphs not only because the cell-
cell contacts of epithelial and other biological tissues are in-
trinsically graph-like [28], but because it is independent of the
scaling or resolution of imagery. The property of resolution-
independence is important because it allows comparison across
different experiments, both in vitro and in silico. Using this
measure, it is possible to answer such salient questions as how
quickly a pattern forms when starting from a random tissue
or to meaningfully compare the degree of patterning observed
in different numerical or wet-lab experiments. This capability
enables workflows in synthetic mammalian biology where the
goal is to engineer cell lines that will produce these kinds of
patterns. Whether and to what extent the desired pattern is
achieved can be consistently measured, and this information
fed back into the system as the genome, host environment or
external stimulus is adjusted.

II. MATHEMATICAL PRELIMINARIES

We will use some concepts from graph theory and from
information theory and probability. We assume a basic level
familiarity with these on the part of the reader. Nevertheless,
we review some key definitions and clarify the notation that
we use throughout.

A set, X is a collection of elements. The number of
elements in the set, its cardinality, is written as |X|. If another
set Y is a subset of X , written Y ⊆ X , then the chance of
choosing an element x of X uniformly at random and finding
that it is also an element of Y is Pr(x ∈ Y ) = |Y |

|X| .
A partition of a set, is a set of non-empty subsets of X

called {Yi}, such that each element in X is in exactly one
of the Yi. A partition gives rise to a probability distribution,
which has the property that,∑

i

Pr(x ∈ Yi) =
∑
i

|Yi|
|X|

= 1 (1)

The Cartesian product of two sets, X×Y is the set of pairs
(x ∈ X, y ∈ Y ). If both sets are the same, this is also written
as X2 and analogously for higher powers.

A directed graph, G, consists of a set of vertices, V , also
called nodes, and a set of edges that connect the vertices, E ⊂
V 2. A path of length n on the graph is a sequence of vertices,
(v0, v1, . . . , vn) such that (vi, vi+1) ∈ E for 0 ≤ i < n. We
take the special case of zero-length paths to be simply the set
of vertices itself. Let us write Sn(G) for the set of all paths
of length n from the graph, G.

A graph invariant is a quantity that depends only on the
structure of the graph itself and not any representation or
labelling. In particular it is a quantity that is invariant under
graph isomorphism.

Let C be a set of colours and χ : V → C be a function
that maps vertices to colours. A coloured graph, (V,E, χ) is
a graph together with such a function. Note that χ induces
a partition on G when applied to each vertex. This partition
map groups vertices together by colour.

III. PATH ENTROPY

To motivate our pattern complexity measure more con-
cretely, let us consider some exemplar simulated tissues,
shown in Figure 1. These consist of three kinds of cells,
represented as different colours, in equal proportion. The
qualitative difference between each of the images is intuitively
clear, from no discernible pattern, to a kind of quasi-uniform
distribution of white cells, in long, thin stripes and round
patches reminiscent of the “dappling” calculated by hand by
Turing. We seek a measurement that can be made on these
that is able to distinguish them.

We choose to define this measure on the coloured adjacency
graph of cells, as opposed to an image of the tissue as in
the approach taken, for example, in [27]. The reason for this
choice is that when calculated on the graph, the measure
is resolution independent. It can be applied equally well
to simulation data that has no intrinsic notion of image or
resolution or to processed outputs from experimental imagery
of cell colonies or epithelial sheets. As an important goal is to
be able to compare data from different sources, this property
is important.

Let us proceed as follows. The entities of interest are cells
so let us say that V corresponds to the set of cells in a given
tissue. Further, let E be the edges, the adjacencies between
cells. The patterns of interest are meaningful in terms of
different kinds of cells so let the colours, C, correspond to the
kind. For the purposes of this paper we are concerned with the
resulting coloured graph which we call the adjacency graph
of cells.

Intuitively, a pattern is found in the sequence of colours
extending out in one direction or another from a given point in
the tissue. To capture this, we lift the colouring function from
operating on vertices, to operating on sequences of vertices,
or paths, χn : Sn(G) → Cn for a given path length, n. As
with χ, the χn induces a partition of Sn(G): paths with the
same colour sequence get into the same class.
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(a) Initial conditions (b) Case I (c) Case III (d) Case IV

Figure 1: A selection exemplar simulated tissue configurations for three cell types in equal proportion. At left, randomly
distributed populations on a regular hexagonal lattice (typical initial conditions for simulation). The others are the resulting
configurations after some elapsed time for different costs of heterotypic and homotypic edges between cells. In particular, the
cost of a heterotypic edge with a white cell increases from left to right, and the cost of a homotypic edge between white cells
decreases. The precise meaning of Case I through Case IV is explained in Section XI.

We use this partition to obtain a probability distribution over
Cn,

pn(G)(s) =
|{σ ∈ Sn(G), χn(σ) = s}|

|Sn(G)|
=
|χ−1n (s)|
|Sn(G)|

(2)

where s ∈ Cn. Where there is no risk of confusion or
ambiguity, we will write pn(s) in place of pn(G)(s) from
now on.

Definition. Given a coloured graph, G = (V,E, χ) and
the probability distribution over colour sequences given by
Equation 2, we define the n-th order Path Entropy on the graph
to be the Shannon Entropy of this distribution:

En(G) = −
∑

s∈Cn+1

pn(s) log (pn(s)) (3)

As with the probability distribution, we write simply En in
place of En(G) where there is no risk of confusion.

Note that though the motivation is a measure on planar
graphs representing epithelial sheets, there is nothing in this
formulation that presupposes such a restriction. The family of
entropy measures is equally well defined on graphs that embed
into three or higher dimensional spaces.

IV. GENERALISATION TO MOTIFS

The foregoing is concerned with paths only, one-
dimensional sequences of vertices. There is evidence that it
may be fruitful to consider two dimensional motifs, or graph
fragments [16]. The approach given here can be straightfor-
wardly applied to motifs. The general pattern for defining an
entropy on a graph is to come up with a partition map and
use the probability distribution that arises from that to get an
entropy [29]. A set of motifs induces a partition on the graph:
the set of sets of subgraphs matched by each motif. Indeed a
path of length n is simply a special kind of motif.

In order to deal with coloured graphs, or heterogeneous
tissues, the matching function is simply lifted to a form that
distinguishes differently coloured motifs as opposed to the
purely structural ones considered by Vincente et al. This is
precisely analogous to the coloured paths that we have used

above. The corresponding notion of Motif Entropy follows
directly.

V. COMPUTATIONAL COMPLEXITY OF PATH ENTROPY

The steps required to calculate En, following directly from
the definition in Section III, are as follows.
A. We begin by enumerating of paths of length n, Sn(G).

This can be accomplished with a depth-first search to
depth n for each vertex. Fortunately, though the number
of paths can be very large, |V |n+1 for a complete graph,
we do not need to store the paths themselves: we can
simply proceed to the next step and count occurrences of
each colour sequence. Naturally we need to produce each
path, so we must have time complexity of O(k|Sn(G)|)
where k is a factor describing the complexity of produ-
cing a single path. This method time complexity in the
worst case of O(|V |n+1) [30] for a complete graph, and
because paths can be produced incrementally during the
search, k must be no more than a constant. For planar
graphs of the kind considered here, where average degree
〈d〉 ≈ 6 [15], the situation is somewhat better, with time
complexity of O(|V | 〈d〉n). The depth-first search has
space complexity of O(|V |) to keep track of each vertex
visited.

B. For each path, σ ∈ Sn(G), we compute its colour
sequence, χn(σ), and count the occurrences of each
sequence. This requires visiting each vertex v ∈ σ
and computing χ(v). The time complexity is therefore
O(|Sn(G)|), just as for the previous step. An upper bound
on the space complexity can be obtained by supposing
that all possible colour sequences occur. This is certainly
the case for small numbers of colours and short paths
such as we consider here. In this case, a count must be
stored for each colour sequence, giving space complexity
of O(|C|n).

C. We next compute the probability distribution, Equation 2.
We must know |Sn(G)|, and for each colour sequence
count from the previous step, |χ−1(s)|, to work out the
ratio of paths with each sequence to the total number
of paths. We can bound this as we have done with the
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Figure 2: Empirical running time of calculation of En of
the graph of Figure 1d for increasing values of n with an
implementation in Python running on a 2.4GHz Intel Xeon
E5645 CPU.

previous step at one division per sequence, and store a
floating-point number for each, giving both space and
time complexity of O(|C|n).

D. Finally, we calculate the entropy as in Equation 3. This
entails iterating over each element, pi, in the distribution
and calculating pi log (pi), while keeping a running sum.
This clearly hasO(1) additional space complexity and the
number of arithmetic operations is linear in the number
of elements in the distribution, so time complexity is
O(|C|n).

In summary, the time complexity of calculating En is
bounded by,

O(n|V | 〈d〉n + |C|n) Average case
O(n|V |n+1 + |C|n) Worst case (4)

and the space complexity by,

O(|V |+ |C|n) (5)

Additionally we can verify empirically that the running time
for the above procedure for calculating En increases compar-
ably to an exponential function of n, as shown in Figure 2.
As we see below, in practice it is unnecessary to calculate En
directly for n > 1 so the exponential running time is not a
serious handicap.

A. Linearity of Path Entropy

As discussed below in Section X, we find an empirical result
that, for the graphs and colourings under consideration here,
that the path entropy En is linear in n. That is,

En = (E1 − E0)n+ E0 n > 0 (6)

This observation is significant because as shown by Equa-
tion 4, the computational work to calculate En directly grows
exponentially with n. Since it can be worked out simply from
E0, E1 and n, there is little benefit in the direct calculation.

It is important to note that this result does not hold in
general. An easy way to find a counterexample is to construct
a graph where the colour of the (n + 1)th vertex in a path
depends not only on the nth but also on previous vertices.
Fortunately the paths in the coloured planar graphs that
we consider here do not appear to have this property. An

interesting theoretical problem that we do not treat here is to
precisely determine for which underlying coloured graphs this
linear relation holds, and for graphs where it does not, what
can be deduced about the path entropy for paths of lengths
greater than two.

VI. RELATIVE ENTROPY

For completeness, and because it will be used later, we
review the concept of relative entropy between two probability
distributions. This is known in a more general setting as the
Kullback-Leibler divergence [31] and is written,

D(p | q) =
∑
i

pi log

(
pi
qi

)
(7)

for two distributions, p = {pi} and q = {qi}. For this to be
well-defined, it is required that pi = 0 if qi = 0. Intuitively it
gives a notion of distance between two distributions, however
this intuition should be taken with a grain of salt: as formu-
lated, in general it will violate the triangle inequality.

In the present context, we consider the distance from a
reference graph containing paths R to a given graph G. The
reference graph could be the initial conditions for a simulation
or experiment or it could be an exemplar or “typical” pattern.
This distance in this setting is simply,

D1(G |R) =
∑
s∈C2

p1(G)(s) log

(
p1(G)(s)

p1(R)(s)

)
(8)

VII. EXAMPLES IN TWO COLOURS

To see how path entropy works in practice, and before
considering real examples, let us consider a few simple cases.
We first consider very simple patterns in two colours for which
entropies can be calculated by hand on rectangular lattices, and
then more complex but nevertheless artificial patterns in three
colours on hexagonal lattices shown in Figure 5.

Starting with the simplest possible regular, symmetric two-
colour, diagram will illustrate how the measure E1 captures
clustering. In what follows we do not impose periodic bound-
ary conditions, although it would be perfectly natural to do
so. Instead, we opt to consider, for clarity of presentation, the
graphs exactly as they appear on the page.

Consider a 2x2 checkerboard,

|S1| = 8

|χ−11 (wb)| = |χ−11 (bw)| = 4

E1 = 1

This can obviously be extended to checkerboards of arbitrary
size. Furthermore, larger checkerboards will, provided sym-
metry is preserved, give numerically the same value for E1

because there are no like-colour adjacencies and every unlike-
colour adjacency is reflexive.

|S1| = 8

|χ−11 (ww)| = |χ−11 (bb)| = 2

|χ−11 (wb)| = |χ−11 (bw)| = 2

E1 = 2
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Rearranging the squares into stripes, we can see the measure
E1 distinguish between different kinds of regularity. With
a little more work, we can see that this value for E1 is
characteristic of stripes one cell wide on a rectangular lattice,

|S1| = 48

|χ−11 (ww)| = |χ−11 (bb)| = 12

|χ−11 (wb)| = |χ−11 (bw)| = 12

E1 = 2

Rearranging the stripes into a thick and two thin, however,
we see that the E1 measure counts it as, in some sense, more
regular. Or, more to the point, more clustered,

|χ−11 (ww)| = 12

|χ−11 (bb)| = 20

|χ−11 (wb)| = |χ−11 (bw)| = 8

E1 = 1.89

Finally, two thick stripes,

|χ−11 (ww)| = 20

|χ−11 (bb)| = 20

|χ−11 (wb)| = |χ−11 (bw)| = 4

E1 = 1.65

and this is maximally clustered and a local minimum of the
E1 entropy. It is a local minimum because any change would
increase the number of heterotypic edges, and decrease the
homotypic ones. Such a change to the distribution of paths
can only increase the corresponding entropy.

These minima are interesting. In general, for the two-colour
case, the entropy will have two minima: for a maximally
clustered pattern and for maximally dispersed, checkerboard
pattern. The latter is easily seen to be a global minimum as all
adjacencies are of the same, heterotypic, type. For the clustered
case, while as many edges as possible are homotypic, there still
must be an interface between clusters of different colours so
not all adjacencies can be the same. The outcome of choosing
an arbitrary adjacency at random cannot then be certain, so
the entropy must be greater than for the checkerboard.

VIII. TWO-SPECIES EPITHELIA

We are now in a position to apply these measures to some
real-world cases. We start with some data from the same series
as the phase separation study previously mentioned [2]. In that
study, cells are genetically engineered to vary their level of
production of cadherin molecules in response to external reg-
ulation using tetracycline. The cadherin molecules govern the
adhesiveness of the cells to their neighbours. Two varieties of
these cells, differing only in the nature of cadherin expressed,
and therefore adhesiveness, upon tetracycline induction, were
mixed randomly together in a 50:50 mixture and allowed
to settle. Cell cultures from experiments with, and without
tetracycline are shown in Figures 3a and 3b.

Some processing is needed to take this data into a form
where the measures that we define here can be applied. The

procedure is relatively straightforward. First, positions and
kinds of the nuclei are identified directly from the image.
These provide the vertices for our graph. Next, neighbour
relationships are derived from the Voronoi tessellation of these
points. The results of this procedure on the confocal images
are shown in Figures 3c and 3d.

The simulation method that we use to compare to this exper-
imental data is similar to that of Osborne et al. [14] using the
Chaste software package [32] and Farhadifar’s potential [11].
In brief, the tissue is described by a potential,

U =
∑
i∈V

K

2
(Ai −A0)2 +

∑
i,j∈V 2

λijEij +
∑
i∈V

Γ

2
P 2
i (9)

where Ai and Pi are the area and perimeter of the ith cell,
respectively, A0 is the preferred area of a cell (assumed to be
uniform in the population of interest in the present scenario),
and Eij is the length of an edge between cells i and j
(defined to be zero if the cells are not adjacent). The first
term represents compression or dilation of the cell away from
its preferred area and the last, the contractility of the perimeter.
The constants, K and Γ that trade off the relative importance
of these effects are held fixed.

The entire coding for differential adhesion takes place in
the middle term of Equation 9. λij is cost per unit length
of an edge between the two cells. For the two-species case,
this matrix has entries that are either zero for cells that are
not adjacent, or values that depend on the kind of each cell.
Heterotypic edges have one value and homotypic another. In
what follows, we abuse the notation slightly and interpret λαβ
to mean the cost per unit length of an edge between cells of
type α and β, and we use Λ to refer to the matrix of these
costs for different cell types.

The simulation proceeds from randomly coloured cells on a
regular hexagonal lattice, and the tissue is allowed to relax, in
a direction that minimises the potential, rearranging according
to the standard topological transitions for foams [33, 34]. To
avoid settling to a local minimum, at each step vertices are
subjected to some noise, an additional small force in a random
direction.

We model the effect of tetracycline indirectly, representing
the induced adhesion effect as the cost of edges. For these sim-
ulations we used values for heterotypic edges approximately
twice as costly as for homotypic1 and the result is a time-series
of tissue exemplars beginning with cells randomly distributed
and gradually developing more structure, or clustering. The
claim [14] is that this sequence is representative of the process
that occurs in vitro. Figure 3e shows how the absolute entropy,
E1, of these tissue exemplars changes over time. Clearly it is
decreasing overall.

Finally, we can use Equation 8 to work out the extent
to which tissue snapshots from the numerical simulation are
similar to the experimental data. The relative entropies of the
simulation to each of the experimental cases, with and without
tetracycline are shown in Figure 3f. Each has a minimum,
and the minimum for the case with tetracycline occurs later,

1In particular, λpp = λee = 0.05 and λpe = λep = 0.096, and in all
cases Γ = 0.04 and K = 1
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(a) Confocal no tetracycline (b) Confocal tetracycline (c) Voronoi no tetracycline (d) Voronoi tetracycline
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Figure 3: Top row experimental data, bottom row simulation data. Figures 3a and 3b show raw confocal images from Cachat
et al.’s study of phase separation due to differential adhesion, after 24 hours. All cell nuclei are stained to appear blue, while
only the nuclei of the E-cadherin variety appear green. Figures 3c and 3d show the graph derived from the voronoi tesselation
of the cell centroids from the confocal images. Figure 3e shows the entropy trace of a typical simulation where heterotypic
edges between cells are more costly than homotypic edges. Figure 3f shows the data from the same simulation, compared
using relative entropy with the Voronoi tessellations of Figures 3c and 3d. Finally, Figures 3g and 3h show simulated tissues
at the minimum of the relative entropy curves in Figure 3f, that is, those that correspond most closely to experiment by our
measure. Both curves increase as the simulation becomes yet more clustered than the experiment.

at a stage where the simulation has become more ordered
(lower absolute entropy) than without. The tissue exemplars
corresponding to these two minima are shown in Figure 3g
and 3h, and they correspond qualitatively well with their
experimental counterparts. Our measure makes this impression
quantitative.

Notice that the distance to the reference snapshot increases
as the simulation progresses. This means that the simulated
tissue, for these parameter values, becomes more ordered
according to our measure than the experimental data. Given a
suitably large library of simulation data with which to compare
to experiment, one would naturally wish to find one where the
distance measure converges to zero in order to make a well-
supported claim that the simulation parameters are a good fit
to the experiment.

IX. RATE OF PATTERN FORMATION

If a time-series of experimental data is available (unfortu-
nately in this instance it is not) it is also possible to compare
the rate of pattern formation. We can, however, show how path
entropy can be used to quantify the rate of pattern formation
with a set of numerical experiments. In these experiments we
aim to understand more precisely how differential adhesion
affects pattern formation. The salient model parameters are

the homotypic edge cost, λαα, which is held fixed, an the
heterotypic edge cost, λαβ which we allow to vary. Other
parameters such as perimeter contractility, Γ, the area pressure
constant, K, and the amount of noise, Z, we also hold fixed.
The results are shown by plotting E1 for various values of
λαα in Figure 4.
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Figure 4: Path entropy time series for simulations with various
values for the heterotypic edge cost, λαβ . In all cases the
homotypic value is λαα = 0.05.
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As suggested by the simple examples in Section VII and
can be seen in Figure 3, lower entropy values correspond to
more “dappling” patterns as they were described by Turing.
The physical reason for the emergence of the pattern, in
discrete models such as the Vertex or Cellular Potts models
governed by a potential such as Equation 9 is quite simple.
The heterotypic perimeter of a patch is expensive compared
to the homotypic interior, so the dynamics simply arise from
the process of minimising (up to the appropriate constants)
the ratio of perimeter to surface area. Absent topological
constraints, the shape that accomplishes this minimisation is a
circle. In an equal mixture of cells constrained to be a planar
graph, both kinds of cells cannot form circular patches simply
because it is not possible to tile a plane with circles. Therefore
competing but symmetric tendencies of each kind of cell to
try to form circular patches results in the familiar pattern.

Given this understanding of the process, what we can
read from the figure is, all else being equal, the greater the
difference between the homotypic and heterotypic edge costs,
the more rapidly the entropy of the tissue decreases. It takes
about twice as long for the simulation with a heterotypic edge
cost, λαβ = 0.07 as does the one for which λαβ = 0.09 to
reach degree of pattern present that corresponds to E1 = 1.9.
When the heterotypic cost is only slightly larger than the
homotypic cost, it may take much longer indeed to achieve
that same degree of patterning.

Not shown are cases where the homotypic cost is allowed
to vary, but the conclusions are straightforward and readily
apparent from the time-series of our E1 measure for them.
Larger values of λαα that are still smaller than λαβ do result
in patterning, but more slowly. This makes sense because these
larger values are more rigid and as a result the entire system
changes more slowly and the topological transitions that are
necessary for pattern development due to cell migration less
frequent. When λαα is allowed to be greater than λαβ , the
resulting pattern is very different because now rather than
minimising the number of heterotypic edges they should be
maximised. In this way we get patterns much like a check-
erboard as predicted in Section VII. While these underlying
mechanisms are well known, their effect is clearly exposed by
studying the behaviour of E1.

X. EXAMPLES IN THREE COLOURS

The patterns in Figure 5 are all regular, except for the first,
which is random. The random pattern is in fact representative
of the initial conditions of the simulations which we will
see later. They use three colours and a regular hexagonal
lattice. This has some important consequences for the minimal
entropy in a three-colour setting as we will see.

Figure 5 shows some example graphs in three colours and
the corresponding path entropies. As usual, the number of cells
of each colour is equal. Again, we include a randomly coloured
graph and we include the generalisation of a checkerboard to
a hexagonal lattice. We also include thin and thick stripes.

Some observations about the minima of the entropy can be
made here and they are different from the two colour case. The
example with thick stripes, or greater clustering, has lower

entropy than the others and it is a minimum by the same
argument from Section VII, namely that any change can only
increase the entropy by lessening the number of homogeneous
edges.

In the three-colour case, however it has a lower entropy
than the maximally dispersed, equivalent of the checkerboard.
This is because it is not possible to colour a hexagonal lattice
with only two colours while respecting the constraint that no
two adjacent cells may have the same colour. Three colours
are needed. This means that it is no longer true that for the
maximally dispersed case all adjacencies are identical. The
hexagonal checkerboard therefore no longer corresponds to a
global minimum of E1. In fact the maximally clustered graph
must now be the global minimum.

For these examples, the entropy for longer path lengths was
also calculated directly. The results, shown in Figure 5e clearly
illustrate that there is no benefit to the extra computational
cost of calculating path entropy for paths of longer than 2
cells. This provides some further justification to our choice to
confine our attention to E1. The reasoning about the minimum
of E1 for the three-colour case shows that this measure
appropriately captures the degree of clustering or homogeneity.

XI. THREE-SPECIES EPITHELIA

Turning finally to the examples from Figure 1, we briefly
study the patterning dynamics of epithelia consisting of three
cells. We show that the E1 metric can also be employed
to evaluate whether one can distinguish the rate of pattern
formation in systems with multiple cell types. As with the
two-cell case, we consider interactions between cell types, but
now form a 3x3 matrix,

Λ =

λrr λrw λrb
λwr λww λwb
λbr λbw λbb

 (10)

accordingly as an edge is between red, r, white, w, or blue,
b cells. We presume that this matrix is symmetric, and indeed
it can always be symmetrised without changing the behaviour
simply by taking, λ′αβ = λ′βα = 1

2 (λαβ + λβα).
We consider four cases, in an attempt to find a regime where

the presence of a third kind of cell materially affects phase
separation and pattern development. Namely,
I. Homotypic red and blue edges are inexpensive, homotypic

white edges are very expensive. Heterotypic edges with
a white cell are very inexpensive and heterotypic red-
blue edges are relatively expensive. In the absence of
white cells, this behaves like the typical red-blue dappled
pattern. Adding white cells should have them maximally
dispersed.

II. As with Case I, but the relationships to white cells
inverted. Homotypic edges among white cells are now
very inexpensive, and heterotypic ones are now very
expensive. This is expected to form round patches of
white cells.

III. All homotypic edges have the same, low cost. Heterotypic
edges with white cells are relatively inexpensive and
red-blue edges are relatively expensive. The low cost
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(a) Random (b) 6-checkers (c) Thin stripes (d) Thick stripes
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Figure 5: A selection of three-coloured planar graphs Figure 5e shows the path entropies, En, for these graphs, for path lengths
n from 0 to 7.

of white-heterotypic edges produces long, thin, white
borders between red and blue regions.

IV. As with Case III, but with the heterotypic costs inverted.
Red-white and blue-white edges are now expensive and
red-blue heterotypic edges are relatively inexpensive. This
produces results very similar to Case II.

For these numerical experiments, in each case, the propor-
tion of white cells was varied from 0 to 33%. The results of
calculating time-series for E1 are shown in Figure 6.
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Figure 6: Entropy for various population fractions of white
cells, for each of the cases above. The salient observation is
that the slopes of the curves, the rate at which entropy changes,
do not vary perceptibly with the amount of white cells.

This cursory search of four regions of the parameter space
does not uncover a regime where a third kind of cell affects
the rate or degree of pattern formation. This fact is made quite
clear by the E1 measure, whose rate of change is essentially
the same for all of the cases. It remains an open area of
research whether or not there is a regime where the presence
of a third kind of cell accelerates or retards pattern formation
by acting analogously to a lubricant or a glue.

XII. TISSUE LIBRARY FOR PARAMETER FITTING

A natural supposition, given this ability to measure how
well patterns in simulated tissue graphs correspond to exper-
imentally derived ones, is that we may be able to estimate
the parameters in the Farhadifar potential, Equation 9, to the
experimental data. This possibility is suggested by the observa-
tion that, not only is the degree of patterning measurable using
our technique, so is the rate of pattern development. These
two measures, E1 and its time derivative could in principle be
used for parameter estimation. Equally they could be used as
predictors of experimental behaviour, for example estimating
the concentration of a certain inducer required for a given rate
of phase separation.

Up to normalisation, the parameters Λ and Γ do correspond
to physical phenomena. This kind of fitting is indeed possible,
with some limitations. The main limitation is that it is not
possible to distinguish, within the region of interest between
equally good pairs of parameters, (Λ,Γ), along an iso-surface
in the phase diagram [12, 13]. However, holding one fixed (Γ),
it is indeed possible to derive an estimate of the corresponding
value for Λ.

The procedure is simple but would require a large library of
simulation data. For each parameter value, the time-series of
E1 can be calculated and stored, along with other statistics
of interest (such as the degree distribution of cells). Data
emanating from experimental imagery, processed into a col-
oured graph using the Voronoi tessellation or other techniques,
can then be compared, and a best guess at the parameters
arrived at. The time derivative of E1 is important because often
different adhesion values (Λ) that produce similar patterns can
be distinguished by the rate at which the patterns appear.

Producing such a library is a very computationally intensive
task. For the present work, we have simulated only a small
subspace of possible parameter choices for two cells, and for
three, and without necessarily reaching a steady state in all
cases this has consumed several CPU-decades of processing
time. Furthermore for accurate distributions, the tissue size
should be as large as possible and at present tissues larger
than about 5000 cells are prohibitive.

Despite the challenges, it is worthwhile to create and make
available such a resource which the authors believe would be
a valuable quantitative tool for synthetic morphology research.
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XIII. CONCLUSIONS

Aside from application in synthetic morphology, the method
presented can also be adapted to analyse samples of natural
tissues and applied to the study of cancer progression. Re-
cent successes using deep learning neural networks [35] to
characterise cancer progression in tissue imagery samples are
instructive. In that study accuracy rates with deep learning
were comparable to trained pathologists but the technique
does not permit inspection or reverse-engineering to identify
the salient features being recognised. Successes using similar
techniques have also been reported for identifying certain
cardiovascular pathologies [36]. By contrast, our measure has
much more stringent requirements on input data — we require
input in the form of a coloured graph — but its principle of
operation is straightforward to understand.

There is an important limitation when applying this tech-
nique to imagery from naturally occurring, as opposed to
synthetic, tissue. Path Entropy is defined by cell types and their
adjacencies. Synthetically engineered tissue designed to study
mechanical interactions among cells is much more regular than
its naturally occurring counterpart. This means it is corres-
pondingly easier to extract the information needed to calculate
path entropy from images of synthetic tissues. Accommodating
structural heterogeneity in naturally occurring tissue likely
requires segmentation techniques that consider actual cell
boundaries and not a Voronoi tessellation derived from nuclei
as we have done here. Advances in microscopy and optical
technologies make possible high-throughput analysis and sim-
ultaneous measurements of proteins and other molecules (such
as miRNA) in histological specimens and tissue micro-arrays.
This allows the identification of subpopulations of genetically
similar cells within tissue samples, using measurement of loci-
specific fluorescence in situ Hybridization (FISH) spot signals
for each nucleus [37, 38]. The use of neural networks to
perform segmentation at the tissue level has been shown and
remains a current topic of research [39–41]. These methodo-
logies could facilitate the construction of the graph underlying
an epithelial tissue and suggest an appropriate extension of the
metric proposed in this work.

In this paper, we have defined a specialised class of entropy
measures, path entropies, on adjacency graphs designed to
quantify the degree of patterning present in cellular tissues and
noted some of its interesting properties. We have demonstrated
how this measure can be used on two dimensional epithelial
tissues to establish a correspondence between experimental
and simulation data that quantifies the impression of similarity
between the patterns expressed. We have further demonstrated
how the measure generalises to tissues consisting of three
species and noted some differences from the two species
case. Finally, we have proposed, for the specific application of
synthetic morphology, the establishment of a library of tissue
data upon which these measures can be calculated, to assist in
parameter estimation, providing a useful quantitative tool for
synthetic morphology.
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