
Sait, A and Nadipi Reddy, Prabhav and Sekharappa, V and Rajan, R and
Nambi Raj, NA and David, KS (2016)Biomechanical comparison of short-
segment posterior fixation including the fractured level and circumferential
fixation for unstable burst fractures of the lumbar spine in a calf spine model.
Journal of Neurosurgery: Spine, 25 (5). pp. 602-609. ISSN 1547-5646

Downloaded from: http://e-space.mmu.ac.uk/621069/

Publisher: American Association of Neurological Surgeons

DOI: https://doi.org/10.3171/2016.4.SPINE1671

Please cite the published version

https://e-space.mmu.ac.uk

http://e-space.mmu.ac.uk/view/creators/Sait=3AA=3A=3A.html
http://e-space.mmu.ac.uk/view/creators/Nadipi_Reddy=3APrabhav=3A=3A.html
http://e-space.mmu.ac.uk/view/creators/Sekharappa=3AV=3A=3A.html
http://e-space.mmu.ac.uk/view/creators/Rajan=3AR=3A=3A.html
http://e-space.mmu.ac.uk/view/creators/Nambi_Raj=3ANA=3A=3A.html
http://e-space.mmu.ac.uk/view/creators/David=3AKS=3A=3A.html
http://e-space.mmu.ac.uk/621069/
https://doi.org/10.3171/2016.4.SPINE1671
https://e-space.mmu.ac.uk


laboratory investigation
J Neurosurg Spine 25:602–609, 2016

Burst fractures commonly occur in young adults due 
to road traffic accidents or a fall from a height,19,39 
and they represent 10%–20% of all injuries in the 

thoracolumbar region.9 Because these fractures are com-
monly encountered in the younger age group, there is a 
significant economic burden on the family and society 
owing to loss of work, disability related to neurological 
deficits, and treatment expenses.

Burst fractures are considered unstable when there is 
more than a 50% loss of vertebral body height26 or when 
there is more than 20° of angulation at the thoracolumbar 
junction.26,29 Instrumented surgical stabilization is current-
ly the treatment of choice for unstable burst fractures.18,32,40 
Since the advent of pedicle screws, the posterior approach 
has been increasingly favored in the treatment of these in-
juries. Long posterior constructs offer greater mechanical 

Abbreviations  BMD = bone mineral density; LDC = load displacement curve; LSC = Load Sharing Classification; NP = neutral point; ROM = range of motion; SSPI = 
short-segment posterior fixation including the fractured level.
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Objective  There has been a transition from long- to short-segment instrumentation for unstable burst fractures to 
preserve motion segments. Circumferential fixation allows a stable short-segment construct, but the associated morbid-
ity and complications are high. Posterior short-segment fixation spanning one level above and below the fractured verte-
bra has led to clinical failures. Augmentation of this method by including the fractured level in the posterior instrumenta-
tion has given promising clinical results. The purpose of this study is to compare the biomechanical stability of short-
segment posterior fixation including the fractured level (SSPI) to circumferential fixation in thoracolumbar burst fractures.
Methods  An unstable burst fracture was created in 10 fresh-frozen bovine thoracolumbar spine specimens, which 
were grouped into a Group A and a Group B. Group A specimens were instrumented with SSPI and Group B with cir-
cumferential fixation. Biomechanical characteristics including range of motion (ROM) and load-displacement curves 
were recorded for the intact and instrumented specimens using Universal Testing Device and stereophotogrammetry.
Results  In Group A, ROM in flexion, extension, lateral flexion, and axial rotation was reduced by 46.9%, 52%, 49.3%, 
and 45.5%, respectively, compared with 58.1%, 46.5%, 66.6%, and 32.6% in Group B. Stiffness of the construct was 
increased by 77.8%, 59.8%, 67.8%, and 258.9% in flexion, extension, lateral flexion, and axial rotation, respectively, in 
Group A compared with 80.6%, 56.1%, 82.6%, and 121.2% in Group B; no statistical difference between the two groups 
was observed.
Conclusions  SSPI has comparable stiffness to that of circumferential fixation.
http://thejns.org/doi/abs/10.3171/2016.4.SPINE1671
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stability, but their placement entails longer surgical expo-
sures and the immobilization of a greater number of mo-
tion segments. There has been a transition from long- to 
short-segment instrumentation in efforts to preserve mo-
tion segments.11,16 However, posterior short-segment fixa-
tion constructs spanning one level above and one below the 
fractured vertebra can lead to early implant failure and ky-
phosis in unstable burst fractures.4,27,41 Various techniques 
have been described to augment the stability provided by 
short posterior pedicle screw constructs. These include per-
cutaneous balloon vertebroplasty,2 supplementation with 
sublaminar hooks,6 addition of cross-links,10,22 and inser-
tion of a screw into the fractured vertebra.12,14,24 Insertion of 
pedicle screws into the fractured level in addition to fixing 
one level above and one below has shown promising clini-
cal results, with a lower incidence of implant failure and 
kyphosis.12,16 This is a less morbid and less time-consum-
ing technique and helps in rapid rehabilitation.

Circumferential fixation using combined anterior and 
posterior approaches aids in direct decompression of the 
neural canal and reconstructs the unstable anterior and 
middle column using a stable mechanical device such 
as Harms cage, which is secured in compression by the 
posterior instrumentation. It allows for the use of a stable 
short-segment construct and preserves motion levels,1,26 
but it is associated with higher morbidity rate and opera-
tive complications.19

To our knowledge, there are no biomechanical studies 
directly comparing these two clinically successful fixa-
tion techniques. If both fixation techniques provide com-
parable stability under physiological loads, the one that 
causes less morbidity and is familiar to most surgeons can 
be chosen as a viable alternative to the other in treating 
unstable burst fractures. Our study is aimed at compar-
ing the biomechanical stability achieved by short-segment 
posterior fixation including the fractured level (SSPI) to 
circumferential fixation.

Methods
Study Design: Experimental Comparative Study
Specimen Collection and Preparation

Institutional review board and ethics committee ap-
provals were obtained. Ten spine specimens including 
the last two thoracic and first three lumbar vertebrae were 
harvested fresh from dairy calves of 4 to 6 months age. 
Specimens were obtained from a local slaughterhouse. 
Plain radiographs were obtained to rule out any gross 
pathology. Specimens were weighed and a DEXA (dual 
energy x-ray absorptiometry) scan was obtained to ensure 
that there is no gross difference among the specimens. 
Specimens were assigned to one of two groups—A or B 
(Table 1)—depending on the weight and bone mineral 
density (BMD). Specimens were labeled, double-packed 
in polythene bags, and stored in a deep freezer at -70°C.

One specimen was tested at a time. Before testing, the 
specimen was thawed over night at room temperature. The 
residual soft tissues were removed carefully, preserving 
the bony and discoligamentous anatomy (Fig. 1A–C). The 
end vertebrae were trimmed to fit the mounting cup and 
mounted using dental resin.

Creation of Unstable Burst Fracture
After the intact spine was biomechanically tested, an 

unstable burst fracture was created at the L-1 vertebra by 
drop-weight method. The index vertebra, L-1, was weak-
ened by making drill holes in the upper third in an H-
shaped fashion. A weight of 4.5 kg was dropped along a 
rail from a height of 1.25 m on to the upper end of the 
mounted specimen, which was kept in mild flexion.3,28,33 
The specimen was then wrapped in saline-soaked gauze 
and immediately taken for CT scanning. The fracture pat-
tern was studied in detail with the help of 3D reconstruct-
ed CT scans (Fig. 2A–C).

Instrumentation
Once the fracture had been created and the CT scan 

had been taken, the specimen was immediately instru-
mented. Group A specimens were instrumented with SSPI 
(Fig. 3A and B). Group B specimens, after anterior cor-
pectomy, were instrumented with circumferential fixation 
involving an anterior cage that was held in position under 
compression using pedicle screws one level above and be-
low the index vertebra, simulating a combined anterior-
posterior procedure (Fig. 3C and D). All specimens were 
instrumented using 5-mm-diameter, 34- to 38-mm-long. 
monoaxial pedicle screws (Jayon). The corresponding 
specimens in each group were instrumented using pedicle 
screws of the same length. Instrumentation was placed in 
the standard fashion. There was no visible pedicle vio-
lation during instrumentation, nor was there a need for 
screw repositioning. Plain radiographs obtained following 
instrumentation showed hardware was well positioned.

Biomechanical Testing
Specimens were tested in flexion-extension, right-left 

lateral flexion, and axial rotation in clockwise and anti-
clockwise directions. The intact specimen was tested first. 
followed by instrumented specimen after creating a burst 
fracture. The mounted specimen was firmly fixed to the 
testing fixture on either end using 4 screws drilled through 
it. An electromagnetic 3D motion tracking system (Polhe-
mus, Inc.) was used to record the orientation of the spine 
in space. The 6 degree-of-freedom sensors were attached 
to the vertebra above and the vertebra below the index lev-

TABLE 1. Grouping of the specimens based on weight and BMD

Specimen No.* Weight (g) BMD (g/cm2)

A1 430 0.912
B1 410 0.927
A2 390 0.877
B2 390 0.865
A3 450 0.768
B3 460 0.783
A4 360 0.686
B4 350 0.651
A5 390 0.812
B5 400 0.835

*  A = Group A specimen; B = Group B specimen.
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el. Neutral point (NP) coordinates were measured for each 
test direction before loading. A nondestructive, unidirec-
tional bending moment was applied in each test direction 
using a Servohydraulic Universal Testing Machine (Tin-
ius, Oslen) having a system of cables and pulleys8 (Fig. 4). 
The test direction was determined by the relative orienta-
tion of the specimen to the cables and pulleys. Flexion-

extension was tested by orienting the cables sagittally to 
the specimen, while lateral flexion was tested by orienting 
the cables coronally. Axial rotation was tested by the hori-
zontal arrangement of the pulleys attached to the upper 
mounting fixture.

Three preconditioning loading cycles of 200 N were 
applied in the test direction at a displacement control 

Fig. 1. Anterior (A), lateral (B) and posterior (C) photographs of the prepared specimen showing the retained bony and discoliga-
mentous anatomy after soft-tissue clearance. Figure is available in color online only.

Fig. 2. CT images of a specimen showing the features of an unstable burst fracture: anterior and middle column comminution (A) 
and vertical laminar fracture (B and C). Figure is available in color online only.

Fig. 3. Instrumented specimens: Group A specimen instrumented with SSPI (A and B) and Group B specimen instrumented with 
circumferential fixation (C and D). Figure is available in color online only.
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mode of 5 mm/sec to correspond roughly to a bending 
moment of 7.5 Nm.1 Coordinates were recorded after the 
third preconditioning cycle. The angular change between 
the NP and the end of the preconditioning cycle was taken 
as the neutral zone.31 The load displacement curve (LDC) 
obtained from the fourth cycle was used to calculate the 
stiffness of the construct. The applied load, which was 
recorded by the load cell placed on the actuator arm of 

the testing device, was plotted against the displacement 
of the actuator arm to obtain the LDC.37 The stiffness of 
the construct was calculated from the slope of the elastic 
zone of LDC and was expressed in newtons/millimeter. A 
continuous record of the relative motion of the vertebrae 
in space was obtained for the fourth loading cycle until the 
peak loading value of 200 N was reached. The coordinate 
values were converted into angles using a custom-made 
software. The range of motion (ROM) was calculated as 
the angular difference between the NP and the end of 
the peak loading.13,38 The angular difference between the 
starting point and the end of the fourth loading cycle was 
taken as the elastic zone of ROM. After the test was com-
pleted for each direction, the apparatus was reconfigured 
for testing in another direction.

Outcome Measures and Statistical Analysis
The ROM and stiffness of the construct were the pri-

mary outcome measures used to determine the stability 
after placement of the instrumentation.38 These two pa-
rameters were calculated for each specimen in each test 
direction, and the values were compared before and after 
instrumentation for each group using paired t-test. The 
mean decrease in ROM and the mean increase in the stiff-
ness of the construct after instrumentation were compared 
between Group A and B for each test direction by using 
comparison of means.

Results
Instrumentation significantly reduced ROM and in-

creased construct stiffness for all test directions in both 
Group A and Group B (Fig. 5). In Group A, ROM in flex-
ion and extension was reduced by 46.9% and 52%, respec-
tively, compared with 58.1% and 46.5%, respectively, in 
Group B. ROM in lateral flexion was reduced by 49.3% 
and axial rotation by 45.5% in Group A, whereas it was re-
duced by 66.6% and 32.6%, respectively, in Group B (Fig. 
6). The ROM decrease in lateral flexion was significantly 
greater in Group B, while the ROM decrease in axial rota-
tion was significantly greater in Group A (p > 0.05). How-
ever, there was no significant difference between the two 
groups in the decrease in sagittal-plane ROM. Construct 
stiffness was increased by 77.8% in flexion, 59.8% in ex-
tension, 67.8% in lateral flexion, and 258.9% in axial rota-
tion in Group A and by 80.6%, 56.1%, 82.6%, and 121.2% 
in Group B, respectively (Fig. 7). There was no significant 
intergroup difference in the increase in construct stiffness 
after instrumentation.

Discussion
Treatment of unstable burst fractures has evolved from 

the use of long- to short-segment fixation in efforts to pre-
serve motion segments. Traditionally, multilevel instru-
mentation involving 2–3 levels cranially and caudally was 
used when posterior fusion was performed using hooks 
and wires, which relied only on posterior fixation points. 
The advent of pedicle screws that offered transpedicular 
three-column fixation popularized the short-segment con-
struct, which used the ligamentotaxis to indirectly restore 

Fig. 4. The test setup for flexion moment. A = actuator; LC = load cell; S1 
and S2 = 6-d.f. motion sensors. Figure is available in color online only.
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Fig. 5. Graphs depicting ROM for each specimen in Groups A and B before and after instrumentation for coronal (A and B), 
sagittal (C and D) and axial planes (E and F). A1–A5 and B1–B5 represent specimens in Group A and B. AC = anticlockwise; AR 
= axial rotation; C = clockwise; i = instrumented; LF = lateral flexion; NR = neutral range; u = uninstrumented. Figure is available in 
color online only.
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the vertebral body height and decompress the neural ca-
nal.11 Later clinical and biomechanical studies revealed the 
inadequacy of such a construct, as the short spanning con-
structs often failed in kyphosis.3,5,12,20,27 McCormack et al. 
pointed out the relevance of anterior column integrity in 
successful treatment with a short-segment construct25 and 
recommended circumferential fixation in burst fractures 
that involved severe anterior column disruption.

Circumferential fixation replaces the unstable commi-
nuted anterior column with a stable anterior construct that 

transmits load across the anterior column in burst frac-
tures with a Load Sharing Classification (LSC) score > 
7 proposed by McCormack et al.25 This greatly reduces 
the cantilever bending of the posterior spanning screws 
and prevents kyphotic collapse.26 Circumferential fixa-
tion also allows the addition of an anterior fixation device 
to resist the sagittal-plane forces. Despite the mechanical 
advantages, its lack of surgeon familiarity, longer operat-
ing time, associated blood loss, and complications limit its 
use, especially in patients with multiple injuries.

Fig. 6. Graph comparing the percentage of decrease in ROM for each test direction after instrumentation between Group A and 
Group B. Figure is available in color online only.

Fig. 7. Graph comparing the percentage of increase in stiffness for each test direction after instrumentation between Group A and 
Group B. Figure is available in color online only.
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The role of intermediate screws in the long-term main-
tenance of kyphotic correction in burst fractures with 
severe anterior column comminution has been well ac-
knowledged in clinical studies.12,16 In a recent retrospec-
tive review of unstable burst fractures classified as LSC ≥ 
7 in 32 patients who underwent SSPI, Kanna et al. reported 
good maintenance of kyphotic correction in a minimum 
follow-up period of 2 years. The authors questioned the 
relevance of LSC in predicting implant failure in cases in-
volving intermediate screw fixation.16 The biomechanical 
role of an intermediate screw inserted into the fractured 
vertebra to augment a short-segment construct is well rec-
ognized.3,10,30,35 The biomechanical stability conferred by 
the intermediate screw is based on the fact that most of 
the stiffness of the construct and the pullout strength of 
the pedicle screw are derived from the screw’s purchase 
within the pedicle15,21 and from the fact that the pedicle is 
usually intact in a burst fracture of Magerl23 Grades A.3.1 
to A3.3. The addition of another posterior fixation point 
might also provide an alternative path for load transfer 
and could theoretically reduce the stress on the individual 
components of the whole instrumented unit. Intermedi-
ate screws may also stiffen the construct by splitting the 
length of the rod into two half-length parts, thus decreas-
ing motion at the bone-screw interface.3

The “intermediate screw” technique is performed via 
the posterior approach, which is familiar to the majority 
of spine surgeons. Operating time, blood loss, incidence 
of intraoperative complications, and duration of hospital 
stay have all been shown to be significantly lower with this 
approach.4,19 Our results show that both circumferential 
fixation and short-segment posterior fixation with interme-
diate screws decrease the ROM significantly and that the 
construct stiffness does not differ significantly between 
the two techniques. Considering the relatively superior 
safety profile of the posterior-only approach, we believe 
that short-segment posterior fixation in which intermedi-
ate screws are placed into the fracture site is a viable al-
ternative to circumferential fixation for stabilizing burst 
fractures of the thoracolumbar spine.

The use of the calf spine rather than human cadaveric 
specimens is a potential limitation of our study. However, 
the calf spine has been shown to best match the anatomy 
and motion characteristics of the human spine in the tho-
racolumbar region and is widely used to test pedicle screw 
systems.7,36 Its comparable equivalent BMD, compres-
sive strength, and compressive modulus to that of young 
human vertebrae make it a good model for young non-
osteoporotic human spine34 in which burst fractures are 
commonly encountered. The load-displacement properties 
and ROM of calf spine specimens have been compared 
with those of human cadaveric spine specimens in previ-
ous biomechanical studies, and calf spine specimens have 
been proven to be suitable for testing rigid fixation sys-
tems using pedicle screws for in vitro flexibility tests.17,37 
We therefore chose to use calf spines for this comparative 
study, in part also because they are easily attainable and 
possess low interspecimen variability.

The use of a fixed pulley system for applying unidirec-
tional bending moments has the potential to create an ele-
ment of constant deformation termed “impure moment”’ 

acting on the spine in all test directions. This necessitates 
moving the pulleys repeatedly to achieve parallelism of 
the pulleys and thereby reducing the impure moment act-
ing on the construct.30 We avoided readjusting the pulley 
system repeatedly to minimize the effect on the sensors, 
which were continuously recording the coordinate points. 
Moreover, the deformation effect seen was almost iden-
tical in all specimens. In the present study we did not 
evaluate the role of anterior fixation devices in the circum-
ferential construct, although most surgeons performing 
an anterior approach would prefer to place the hardware 
anteriorly. Further biomechanical studies are required to 
compare SSPI to circumferential fixation with additional 
anterior fixation. Finally, this study compared only the im-
mediate postfixation stability in both groups. The durabil-
ity of these fixation constructs need to be evaluated using 
cyclical loading tests. However, we believe the results of 
this study can be clinically applied in the immediate post-
operative rehabilitation of patients who are undergoing 
short-segment fixation.

Conclusions
Short-segment fixation with intermediate screws 

achieves comparable stiffness to that of circumferential 
short-segment fixation and may be used as an alternative 
to circumferential fixation in unstable burst fractures of 
thoracolumbar spine considering the clinical safety of this 
procedure.
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