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ABSTRACT 49 

Objective 50 

Siblings of patients with Crohn’s disease (CD) have elevated risk of developing CD and display aspects of 51 

disease phenotype, including faecal dysbiosis. Whether the mucosal microbiota is disrupted in these at-risk 52 

individuals is unknown. Objective: To determine the existence of mucosal dysbiosis in siblings of CD 53 

patients using 454 pyrosequencing and to comprehensively characterise, and determine the influence of 54 

genotypic and phenotypic factors, on that dysbiosis. 55 

Design 56 

Rectal biopsy DNA was extracted from 21 patients with quiescent CD, 17 of their healthy siblings and 19 57 

unrelated healthy controls. Mucosal microbiota was analysed by 16S rRNA gene pyrosequencing and were 58 

classified into core and rare species. Genotypic risk was determined using Illumina Immuno BeadChip, 59 

faecal calprotectin by ELISA and blood T-cell phenotype by flow cytometry. 60 

Results 61 

Core microbiota of both CD patients and healthy siblings were significantly less diverse than controls. 62 

Metacommunity profiling (Bray-Curtis (SBC) index) showed the sibling core microbial composition to be 63 

more similar to CD (SBC=0.70) than to HC, whereas the sibling rare microbiota was more similar to HC 64 

(SBC=0.42). Faecalibacterium prausnitzii contributed most to core metacommunity dissimilarity both 65 

between siblings and controls, and between patients and controls. Phenotype/genotype markers of CD-risk 66 

significantly influenced microbiota variation between and within groups, of which genotype had the largest 67 

effect. 68 

Conclusion 69 
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Individuals with elevated CD-risk display mucosal dysbiosis characterised by reduced diversity of core 70 

microbiota and lower abundance of F. prausnitzii. This dysbiosis in healthy people at-risk of CD implicates 71 

microbiological processes in CD pathogenesis.  72 
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SUMMARY BOX 73 

What is already known about this subject:  74 

 Patients with CD have mucosal dysbiosis, including reduced abundance of Faecalibacterium 75 

prausnitzii 76 

 Low mucosal Faecalibacterium prausnitzii predicts relapse after surgery in CD patients 77 

 Healthy siblings of CD patients have increased risk of developing CD and have altered abundance of 78 

key species in the gut lumen 79 

What are the new findings:  80 

 There is a distinct dysbiosis in the mucosal microbiota of healthy siblings of CD patients  81 

 The sibling dysbiosis comprises a fundamental distortion of microbial community composition, 82 

most notably reduced diversity of core microbiota and low abundance of mucosal Faecalibacterium 83 

prausnitzii 84 

 Mucosal microbiota disruption is not merely a consequence of the inflammation in CD but is 85 

present at healthy individuals at risk of CD 86 

 87 

How might it impact on clinical practice in the foreseeable future?  88 

 Identification of this at risk dysbiosis signals pathways in CD pathogenesis and raises the possibility 89 

of CD risk identification and CD risk intervention  90 
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INTRODUCTION 91 

Disruption of gut microbiota (dysbiosis) is an established feature of inflammatory bowel disease (IBD). The 92 

dysbiosis in Crohn’s disease (CD) has been well described and includes reduced microbial diversity, reduced 93 

abundance of Firmicutes particularly Faecalibacterium prausnitzii, reduced abundance of Bifidobacteria, 94 

increased γ-proteobacteria and disturbances in Bacteroides populations.[1] The involvement of several CD 95 

susceptibility genes in the recognition and handling of bacteria (e.g., NOD2, ATG16L1, IRGM) reinforces the 96 

position of the gut microbiota at the centre of IBD pathogenesis.  [2, 3, 4] 97 

Whether the CD dysbiosis is involved with pathogenesis is uncertain. The dependence on the presence of 98 

gut microbiota for the development of inflammation in animal models[5] as well as CD patients,[6] and the 99 

association between reduced mucosal F. prausnitzii and post-operative relapse[7] implies a pathogenic 100 

role. Conversely, the lack of therapeutic benefit of manipulating the microbiota,[8,9] suggests that 101 

dysbiosis in CD may not drive inflammation, but rather is consequent to established disease, reflecting for 102 

example, the differential survival of various species in an inflamed environment. Moreover, attempts to 103 

identify aspects of the CD dysbiosis that were present at disease initiation, which therefore potentially have 104 

a role in pathogenesis may be obfuscated by both the mature disease phenotype of the patients studied 105 

and the effect of the medical, surgical and patient-initiated attempts to treat and control symptoms.  106 

Siblings of CD patients have a relative risk (RR) of developing CD of up to 35 times that of the general 107 

population.[10] This risk is partly genetic, but is also driven by non-genetic factors many of which they 108 

share with their CD-affected sibling.[10,11] Several of these non-genetic risk factors, such as mode of 109 

delivery, breast feeding, maternal inoculum, home environment and weaning diet,[12] potentially impact 110 

gut microbial acquisition and development. It follows that any aspect of the CD dysbiosis which is also 111 

present in a healthy sibling cannot be disrupted as a consequence of disease, and rather may be implicated 112 

in processes driving CD pathogenesis.[12] 113 
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Attempts have been made to determine whether aspects of the CD phenotype are present in patients’ 114 

unaffected relatives. These have assessed dysbiosis[13] and other features of the CD phenotype such as 115 

raised faecal calprotectin (FC), increased intestinal permeability (IP) and the presence of anti-microbial 116 

antibodies.[12]  Using PCR probes selected to detect  dominant species that comprise the dysbiosis in CD, 117 

we have previously indicated that a faecal dysbiosis exists in healthy siblings of CD patients characterised by 118 

reduced faecal Firmicutes including F. prausnitzii.[14] Moreover, we previously demonstrated in siblings 119 

that a combination of luminal dysbiosis, raised FC, reduced abundance of circulating naïve T-cells, 120 

disturbances in their expression of gut-homing β7 integrin and at-risk genotype could be combined to 121 

create a multidimensional risk phenotype, which significantly distinguished healthy siblings of CD patients 122 

from healthy, unrelated controls.[14] 123 

It has been speculated that mucosal microbiota are of greater significance in CD pathogenesis than luminal 124 

microbiota given their closer spatial relationship to the gut immune system. Yet, studies comparing 125 

mucosal microbiota in CD patients, their families and healthy controls are rare due to the invasiveness of 126 

procedures required to obtain mucosal samples from otherwise healthy individuals. However, the potential 127 

rewards of obtaining such samples have been amplified by recent advances in the analysis of large, diverse 128 

and complex microbial communities. Pyrosequencing technology and meta-community profiling enables 129 

greater sampling depth permitting detection not only of dominant microbial community members but also 130 

low-abundance (rare) taxa.[15, 16] The capacity to characterise core and rare microbial communities 131 

separately may reveal microbial features associated with disease not otherwise readily apparent. 132 

Furthermore, 16S rRNA gene pyrosequencing and other next-generation technologies have demonstrated 133 

that microbial diversity can be orders of magnitude higher than previously appreciated.[16] Measuring 134 

diversity may be significant as healthy gut microbiota high diversity compared with microbial populations in 135 

other human body habitats.[18] Moreover, gut microbial diversity is consistently described as reduced both 136 

in CD,1 and other human diseases including obesity,[18, 19] colorectal cancer,[20] eczema,[21] and in 137 

addition has been linked with smoking.[22] 138 
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Therefore, we sought to use 454 pyrosequencing and metacommunity analysis to comprehensively 139 

characterise the structure and composition of the mucosal microbial community in an at-risk group of CD 140 

siblings compared with CD patients and healthy controls.  141 

MATERIALS AND METHODS 142 

Patients with inactive CD (Crohn’s Disease Activity Index (CDAI) <150 and C-reactive protein (CRP) ≤5mg/L, 143 

and their healthy siblings (both 16-35 years) were recruited from clinics at Barts Health NHS Trust and 144 

University College Hospitals NHS Foundation Trust (London, UK). Patients required a confirmed diagnosis of 145 

CD for >3months. All healthy siblings who volunteered and did not meet exclusion criteria (detailed in 146 

supplementary Table S1) were included, to limit bias in the selection of siblings with specific characteristics. 147 

Healthy controls were recruited by email sent to staff and students at King’s College London (London, UK), 148 

during the same period. Participants were informed that involvement in the study did not constitute 149 

screening for disease and that detection of clinical disease in any sibling or control would lead to exclusion 150 

from the study. Only participants consenting to rectoscopy and providing analysable biopsies were 151 

included. All participants provided written, informed consent. Ethical approval was provided by Bromley 152 

Local Research Ethics Committee (reference 07/H0805/46). 153 

At screening, demographics, medical and drug exposure history, physical examination, CRP, inclusion and 154 

exclusion criteria were assessed. Instructions regarding avoidance of prebiotics/probiotics for 4 weeks (to 155 

prevent impact on microbiota), non-steroidal anti-inflammatory drugs for 1 week and alcohol for 24h 156 

before the study (to prevent impact on IP) were provided. Blood samples were taken for routine 157 

haematology/biochemistry, T-cell analysis and genotyping. Participants completed a 5h urine collection for 158 

measurement of IP and underwent flexible rectoscopy without bowel cleansing. Biopsies from non-159 

inflamed rectum were snap frozen, and stored at -80⁰C before processing for histological and 160 

microbiological analyses. Stool was obtained and stored at -20⁰C before processing for FC quantification. 161 

Faecal calprotectin 162 
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FC extraction and ELISA analysis (Calpro AS, Lysaker, Norway) were carried out according to manufacturer’s 163 

instructions using duplicate appropriately diluted samples. FC concentration (µg/g) was determined relative 164 

to standard curves. 165 

Peripheral blood T-cell flow cytometry 166 

Whole blood, collected in lithium-heparin Vacutainer tubes (BD Bioscience), was stored at room 167 

temperature for ≤4 h before labelling with fluorescently conjugated monoclonal antibodies to detect CD3 T-168 

cells, naïve (CD45RA+) and memory (CD45RA−) subsets of CD4 and CD8 T-cells. Integrin α4β7 expression was 169 

assessed by labelling with anti-β7 (see supplementary methods for antibodies used). Data were acquired 170 

using a LSRII 4-colour flow cytometer (BD Bioscience) and collected using fluorescence-activated cell sorting 171 

Diva software V.4.1.2 (BD Bioscience) using Flow-Count fluorospheres (Beckman Coulter) for absolute 172 

quantitation. Colour compensation was performed offline using Winlist V.6.0 (Verity Software House). 173 

Genotyping 174 

Human DNA was extracted from whole blood using the phenol chloroform-isoamyl alcohol method. 175 

Genotyping was performed using the Illumina Infinium Immunochip.[2, 23] To increase detection of NOD2 176 

mutations and capture the enhanced risk of NOD2 compound heterozygosity, three NOD2 mutations 177 

(rs2066845/G908R, rs2066844/R702W and rs5743293/3020insC) were individually assessed. Cumulative 178 

genotype relative risk (GRR) for each participant was therefore calculated across 72 CD-risk loci. A 179 

population distribution model of CD-risk was generated using the REGENT R program[24] and previously 180 

published odds ratios.[2] Participants were categorised into reduced, average, elevated or high genotype 181 

risk with reference to this model.[25] 182 

Intestinal permeability 183 

IP was measured using lactulose-rhamnose tests as previously described.[14] 
184 

Gut mucosal microbiota 185 
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Biopsy DNA extraction was carried out using a phenol/chloroform based method, as described 186 

previously.[26] A detailed extraction protocol is provided in the supplementary methods. DNA extracts 187 

were quantified using the Picodrop Microlitre Spectrophotometer (GRI, Braintree, UK). Negative controls 188 

(sterile water), were included in the DNA extraction and PCR amplification steps.  189 

Bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP) was performed as described previously using 190 

Gray28F 5'-TTTGATCNTGGCTCAG-3' and Gray519r 5'-GTNTTACNGCGGCKGCTG-3'.[27] Detailed protocols 191 

for 16S rRNA gene sequencing and sequence data processing are provided in the supplementary methods.  192 

To assign bacterial identities to 16S rRNA gene sequences, sequence data were de-noised, assembled into 193 

OTU clusters at 97% identity, and queried using a distributed .NEt algorithm that utilises Blastn+ 194 

(KrakenBLAST, www.krakenblast.com) against a database of high quality 16S rRNA gene bacterial 195 

sequences. Using a .NET and C# analysis pipeline the resulting BLASTn+ outputs were compiled, data 196 

reduction analysis performed, and sequence identity classification carried out, as described previously.[28] 197 

Statistical analyses 198 

Bacterial species within each metacommunity were partitioned into common and rare groups using a 199 

modification of a previously described method.[15]  Three complementary measurements of diversity were 200 

used to compare microbial diversity between samples, as previously described: species richness (S*, the 201 

total number of species), Shannon-Wiener (H’, a metric accounting for both number and relative 202 

abundance of species), and Simpson’s (1-D, a measure of the probability that two species randomly 203 

selected from a sample will differ).[15, 26] To avoid potential bias due to varying sequences per sample, all 204 

measures were calculated using randomised re-sampling to a uniform number of sequence reads per 205 

sample.[26] Mean diversity measures were calculated from the re-sampling of the reads from each 206 

specimen to the lowest number of sequence reads among all specimens for 1000 iterations. Diversity 207 

analysis was performed in R.[29] Two sample t-tests, regression analysis, coefficients of determination (r2), 208 

residuals and significance (P) were calculated using Minitab software (version 16, Minitab, University Park, 209 
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PA, USA). Canonical correspondence analysis (CCA), analysis of similarity (ANOSIM), similarity of 210 

percentages (SIMPER) analysis were performed using the PAST (Palaeontological Statistics, version 3.01) 211 

program available from the University of Oslo website link (http://folk.uio.no/ohammer/ past) run by 212 

Øyvind Hammer. The Bray-Curtis quantitative index of similarity was used as the underpinning community 213 

similarity measure for CCA, ANOSIM, and SIMPER tests.   214 

RESULTS 215 

Demographic and disease characteristics of the 21 patients with quiescent CD, 17 of their healthy siblings, 216 

and 19 unrelated healthy controls that were included are summarised in Table 1. At the time of the study 217 

only one patient was cohabiting with one of the included siblings. GRR, FC, faecal Firmicute abundance and 218 

circulating T-cell characteristics were all significantly different in both CD patients and healthy siblings 219 

compared with healthy controls as previously published,[14] and as summarised in Table 1.  220 

  221 
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Table 1 Summary of demographic variables in patients, siblings and controls as well as clinical 222 

characteristics in patients. The features of the at-risk phenotype that have previously been delineated in 223 

this cohort are also displayed. 224 

  
Patients 
(n=21) 

Siblings 
(n=17) 

Controls 
(n=19) P-value 

Mean age years, (SD) 27.7 (6.6) 25.5 (4.5) 27.7 (5.8) 0.783* 

Males, n (%)  13 (62) 11 (65) 9 (47) 0.515† 

Body Mass Index, kg/m2 (SD) 24.5 (5.0) 24.5 (3.6) 23.9 (3.4) 0.870* 

Ethnicity n (%) 

White British 17 (81) 15 (88) 17 (90) 

0.469† 

Asian/Asian 
British 

3 (14) 1 (6) 0 (0) 

Black British or 
mixed 
black/white 

1 (5) 1 (6) 2 (11) 

Smoking n (%) 

Never 14 (67) 10 (59) 12 (63) 

0.830† Current 4 (19) 5 (29) 3 (16) 

Previous  3 (14) 2 (12) 4 (21) 

Age at diagnosis, 
n (%) 

Below 16 years 7 (33)  

16-40 years 14 (67)  

Disease location, 
n (%) 

Ileal 7 (33)  

Colonic 5 (24)  

Ileocolonic 9 (43)  

Concomitant upper GI disease, n (%) 1 (5)  

Disease 
behaviour, n (%) 

Non-stricturing, 
non-penetrating 

11 (52)  

Stricturing 5 (24)  

Penetrating 5 (24)  

Perianal disease, n (%) 4 (19)  

Current 5-ASA n (%) 11 (52)  

Current immuno- 
suppressant,  
n (%) 

Azathioprine 
Mercaptopurine 
Methotrexate 

7 (33) 
2 (10) 
1 (5) 

 

Ileocaecal resection / right 
hemicolectomy, n (%) 

9 (43)  

Isolated small bowel resection, n (%) 1 (5)  

Genotype 
relative risk,ǁ n 
(%) 

High 3 (14) 1 (6) 0 (0) 

0.175† Elevated 2 (10) 3 (18) 0 (0) 

Average 10 (48) 8 (47) 8 (42) 
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Reduced 6 (29) 5 (29) 11 (58) 

Fecal calprotectin, m/g (IQR) 
281 
(144-855) 

30 
(13-83) 

13 
(7-33) 

<0.001‡ 

Faecal F. prausnitzii, % (IQR) 0.1 (0.0-2.9) 3.7 (0.4-7.1) 5.2 (2.3-7.2) 0.001‡ 

T-cells with memory phenotype, % 
(IQR) 

73 (63-82) 74 (67-83) 65 (54-70) 0.011‡ 

Naïve CD4+ T-cells, cells/ ml (IQR) 
194,132 
(71,053-
341,156) 

198,220 
(128,550-
296,351) 

380,256 
(279,118-
564,861) 

<0.001‡ 

Naïve CD4+ T-cells expressing β7 
integrin, % (IQR) 

76 (63-85) 74 (61-83) 52 (32-71) 0.003‡ 

Intestinal permeability: urinary 
lactulose-rhamnose ratio, (IQR)§ 

0.061 
(0.033-
0.111) 

0.034 
(0.024-
0.056) 

0.038 
(0.025-
0.050) 

0.081‡ 

* One-way ANOVA   225 
† Chi-squared test   226 
‡ Kruskall-Wallis test 227 
§ Data from 20 patients, 17 siblings and 16 controls contributed to the intestinal permeability analysis 228 
ǁ Cumulative genotype relative risk (GRR) for each participant was calculated across 72 CD-risk loci (detected using the Illumina 229 
Infinium Immunochip). Participants were categorised into reduced, average, elevated or high genotype risk with reference to a 230 
population distribution model of CD-risk, previously described.[14] 231 

  232 
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A total of 180,696 bacterial sequence reads (mean  per sample 3235 ± SD 205), identifying 160 genera and 233 

351 distinct operational taxonomic units (OTUs) classified to species level (Table S2), were generated from 234 

all samples combined. The numbers of bacterial sequence reads per sample were similar among the three 235 

cohorts (mean ± SD): CD, 3296 ± 258 (n =21); siblings, 3190 ± 423 (n =17); and healthy, 3210 ± 393 (n =19). 236 

Species abundance was directly correlated with distribution 237 

We have previously established that the categorisation of human microbiota into core and rare species 238 

revealed important aspects of metacommunity species-abundance distributions that would be neglected 239 

without such a distinction.[15] A coherent metacommunity could be expected to exhibit a direct 240 

relationship between prevalence and abundance of individual species within the constituent communities. 241 

Consistent with this prediction, the abundance of species in each study group significantly correlated with 242 

the number of individual sample communities those species occupied (CD (R2 =0.62, F1,227 =366.9, P < 243 

0.0001); siblings (R2 =0.71, F1,259 =590.1, P < 0.0001); and healthy controls (R2 =0.68, F1, 258 =552.6, P < 244 

0.0001)), (Fig. 1).  245 

In CD patients a lower proportion of the mucosal microbiota were core species 246 

Individual species in each cohort metacommunity were then classified as core or rare based on their falling 247 

within or outside the upper quartile of subject occupancy, respectively (Fig. 1). Of the 229 species that 248 

comprised the CD metacommunity, only 7 were core and 222 were rare species. The healthy siblings 249 

metacommunity (261 species) comprised 18 core and 243 rare species, and the healthy controls 250 

metacommunity (260 species) comprised 25 and 235 species, respectively. In addition, the core species 251 

within each cohort metacommunity accounted for 44.7% ± 4.8% (CD), 67.6%,± 5.5% (healthy siblings) and 252 

67.4% ± 4.6 (healthy controls) of the mean (± SD) relative abundance. The mean relative abundances in the 253 

CD core microbiota were significantly lower than the healthy siblings and healthy controls (P < 0.0001 in 254 

both cases), but were not different between the siblings and healthy controls (P =0.907). 255 

Microbial diversity was lower in both siblings and patients compared with controls 256 
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The mean microbial diversity of subject communities for each cohort was compared using three indices of 257 

diversity (Fig. 2). Diversity was compared between the three cohorts for the whole microbiota, as well as 258 

core and rare species groups (Fig. 2). These analyses revealed the siblings’ whole and core microbiota to be 259 

significantly more diverse than the CD cohort, but the sibling core microbiota was significantly less diverse 260 

than the healthy core microbiota. No significant difference in diversity was observed between the whole 261 

microbiota between the siblings and healthy cohorts, emphasising the advantage of analysing core and rare 262 

populations separately. In addition, the CD rare microbiota was significantly less diverse than the other two 263 

rare species cohorts, which in turn were not significantly different from each other. All of these 264 

observations were underpinned by all three measures of diversity in each instance (Fig. 2). 265 

Interestingly, within the CD population, diversity of the whole microbiota was lower in the nine patients 266 

with an ileocaecal resection / right hemicolectomy compared with the 11 patients without these operations 267 

(as shown by Richness P<0.0001; Shannon-Wiener P=0.046; but not Simpson’s P=0.768). This was largely 268 

driven by lower diversity of rare taxa (as shown by Richness P<0.0001; Shannon-Wiener P=0.019; but not 269 

Simpson’s P=0.159) rather than core taxa (Richness P=0.523; Simpson’s P=0.612; Shannon-Wiener 270 

P=0.824). 271 

Significant divergence in whole and core microbial composition between CD patients and healthy 272 

controls, but not between CD patients and healthy siblings 273 

The distribution of the microbiota within the three cohorts was determined by direct ordination using Bray-274 

Curtis similarity measures. Using Analysis of Similarities (ANOSIM) tests, the CD and healthy whole and core 275 

microbiota were significantly divergent from each other. However, the whole and core microbiota of 276 

siblings were not significantly divergent from either that of the CD or healthy controls (Fig. 3). In all 277 

instances rare microbiota were significantly divergent between cohorts, including between siblings and 278 

healthy controls.  279 
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Lower Faecalibacterium prausnitzii made the greatest contribution to the dissimilarity in microbiota 280 

between both healthy siblings and healthy controls and between CD and healthy controls 281 

Given the involvement of core species in differences of relative abundance, diversity and microbiota 282 

composition, the contribution of individual taxa to the dissimilarity between core microbiota was assessed 283 

by Similarities of Percentages (SIMPER) analyses (Table 2). Both F. prausnitzii and Escherichia fergusonii 284 

contributed the most to the dissimilarity between all cohorts.  As a proportion of core species F. prausnitzii 285 

had a higher relative abundance in the healthy controls (30.9%) than both the CD (22.4%) and siblings 286 

(24.2%). Conversely, E. fergusonii was more abundant in the CD cohort (21.4%) than in siblings (9.7%) and 287 

healthy controls (4.1%). 288 

  289 
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Table 2 Similarity of Percentages (SIMPER) analysis of microbial community dissimilarity (Bray-Curtis) 290 

between core species groups for (A) CD and siblings, (B) healthy and siblings, and (C) CD and healthy 291 

cohorts. Given is mean % abundance of sequences for core species only across the samples each was 292 

observed to occupy and the average dissimilarity between samples (overall mean (A) =73.4% and (B) 293 

=55.0%, (C) =73.0%). Percentage contribution is the mean contribution divided by mean dissimilarity across 294 

samples.  The list of species is not exhaustive so cumulative % value does not sum to 100%. Species level 295 

identities of detected taxa are reported here. However, given the length of the ribosomal sequences 296 

analysed, these identities should be considered putative. 297 

A Crohn's Siblings 
  

Name mean abundance mean abundance % Contribution Cumulative % 

Faecalibacterium prausnitzii 22.4 24.2 20.7 20.7 
Escherichia fergusonii 21.4 9.7 15.9 36.6 
Shigella flexneri 13.6 7.2 10.7 47.3 
Ruminococcus gnavus 13.1 5.2 8.9 56.2 
Bacteroides vulgatus 13.2 7.6 7.8 64.0 
Eubacterium rectale 9.8 6.4 6.6 70.6 
Oscillospira guilliermondii 0 8.0 5.9 76.5 
Escherichia coli 6.5 0 4.5 81.0 
Sutterella wadsworthensis 0 6.0 4.5 85.5 
Bacteroides dorei 0 5.7 4.2 89.6 
Roseburia faecis 0 4.0 2.9 92.6 

     B Healthy Siblings 
  

Name mean abundance mean abundance % Contribution Cumulative % 

Faecalibacterium prausnitzii 30.9 24.2 18.9 18.9 
Escherichia fergusonii 4.1 9.7 10.6 29.5 
Sutterella wadsworthensis 8.7 6.0 9.4 38.9 
Shigella flexneri 3.6 7.2 8.4 47.3 
Bacteroides vulgatus 8.0 7.6 8.4 55.7 
Eubacterium rectale 9.9 6.4 7.0 62.8 
Oscillospira guilliermondii 8.5 8.0 7.0 69.8 
Bacteroides dorei 0 5.7 5.4 75.2 
Ruminococcus gnavus 4.1 5.2 4.1 79.3 
Bacteroides uniformis 2.9 2.0 3.1 82.4 
Roseburia faecis 2.4 4.0 3.0 85.4 
Coprococcus eutactus 2.3 0 2.2 87.7 
Shigella dysenteriae 2.1 0 2.1 89.8 
Blautia producta 2.0 1.8 1.8 91.6 

     C Crohn's Healthy 
  

Name mean abundance mean abundance % Contribution Cumulative % 

Faecalibacterium prausnitzii 22.4 30.9 22.4 22.4 
Escherichia fergusonii 21.4 4.1 14.4 36.7 
Shigella flexneri 13.6 3.6 9.3 46.0 
Ruminococcus gnavus 13.1 4.1 8.6 54.6 
Bacteroides vulgatus 13.2 8.0 8.0 62.7 
Eubacterium rectale 9.8 9.9 7.4 70.1 
Sutterella wadsworthensis 0 8.7 6.4 76.5 
Oscillospira guilliermondii 0 8.5 6.2 82.8 
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Escherichia coli 6.5 0 4.4 87.2 
Bacteroides uniformis 0 2.9 2.1 89.3 
Roseburia faecis 0 2.4 1.8 91.1 

 298 

  299 
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Genotype and phenotypic features associated with CD and CD-risk significantly explained microbiota 300 

variation 301 

Canonical correspondence analysis (CCA) was used to relate the variability in the distribution of microbiota 302 

between cohorts to clinical and demographic variables (Table 3 and Fig. 4). Variables that significantly 303 

explained variation in mucosal microbiota were determined with forward selection (999 Monte Carlo 304 

permutations; P < 0.05) and used in CCA. Based on the direct ordination approach, the microbiota between 305 

cohorts was significantly influenced by factors listed in Table 3. The same analytical approach was used to 306 

assess the extent to which variance in the microbiota distribution within cohorts could be accounted for by 307 

variation in measures of clinical and demographic factors, (Table 3).  GRR was the most significant factor in 308 

explaining variance between the three cohorts, but also within each cohort. FC was also significant in 309 

explaining variance between cohorts, particularly in the core microbiota. However, in the within-group 310 

analyses FC was significant in explaining microbial variance in patients and siblings but not in controls. 311 

Blood T-cell factors explained a higher proportion of variance in siblings and controls than in patients. 312 

Conversely, age significantly associated with variance in controls but not in patients or siblings. 313 
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Table 3 Canonical correspondence analyses for determination of percent variation in the whole, core, and rare microbiota between and within the three 314 

subject cohorts by clinical variables significant at the P < 0.05 level. * Ileal/Colonic involvement in CD patients used as a factor for the corresponding siblings. n/a 315 

denotes not applicable for between cohort or within healthy cohort analyses.  316 

  Between Cohorts Within Crohn's Within Siblings Within Healthy 

Variable Whole Core Rare Whole Core Rare Whole Core Rare Whole Core Rare 

Age - - - - - - - - - 5.37 6.08 5.08 

Blood concentration of naïve CD4
+
 T-cells (cells /ml) - 2.8 - 4.15 3.69 4.54 7.34 8.84 8.30 - - - 

Calprotectin 1.7 3.4 2.7 4.68 5.36 4.63 4.85 5.70 7.10 - - - 

Gender 1.8 - 2.4 5.03 - 6.20 6.04 9.12 7.03 6.31 4.57 7.19 

Genotype relative risk (GRR) 5.1 4.3 4.7 8.56 6.75 9.11 6.53 12.54 5.64 5.57 6.26 5.34 

Ileal/Colonic involvement* n/a n/a n/a 5.50 - 5.87 4.94 6.40 5.81 n/a n/a n/a 

Proportion of blood T-cells with memory phenotype (%) 2.0 - 2.4 - - - 8.71 5.77 9.24 5.19 - 6.87 

Proportion of CD4
+
 naïve T-cells expressing β7 integrin (%) - 3.6 - 4.85 5.84 5.19 5.30 - 7.81 5.60 10.08 4.15 

Undetermined 89.4 85.9 87.8 67.2 78.4 64.5 56.3 51.6 49.1 72.0 73.0 71.4 

* Ileal/Colonic involvement in Crohn’s patients used as a factor for the corresponding Sibling subjects. n/a denotes not applicable for between cohort or within 317 
Healthy cohort analyses.    318 
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DISCUSSION 319 

This is the first study to detail the mucosal microbiota of clinically and genetically well-characterised 320 

healthy siblings of CD patients, and to compare them with both their CD-affected siblings and healthy 321 

controls. Moreover, this study is unique in uncovering interactions of mucosal microbiota with genotype 322 

and features of the CD-risk phenotype. This manuscript is a significant advance on the preliminary account 323 

of the multidimensional risk phenotype previously described, which centred on qPCR sampling of faecal 324 

microbiota.[14] The current study not only focuses on the mucosal microbiota but also employs next-325 

generation sequencing and advanced statistical analysis to reveal the complexity of the metacommunities 326 

in healthy siblings of CD patients. The core mucosal microbiota in siblings was characterised by lower 327 

diversity compared with controls, and lower abundance of F. prausnitzii made the greatest contribution to 328 

the dissimilarity between these two groups. Genetic CD-risk explained the highest proportion of microbial 329 

variance both between all three groups, and within the patient and sibling groups. These findings are 330 

unlikely to be confounded by cohabitation as only one patient cohabited with one sibling. 331 

Although related healthy individuals are known to harbour similar gut microbiota,[19] the similarity in the 332 

microbiota between CD patients and their healthy siblings is of considerable pathogenic relevance. Previous 333 

studies have shown that when one sibling has CD, familial microbial similarity is disrupted, even in disease-334 

discordant monozygotic twins.[30] Thus, microbial features which are similar between affected and 335 

unaffected siblings, but which are not present in low CD-risk healthy individuals, may be part of the CD-risk 336 

phenotype and therefore pertinent to CD pathogenesis. In order to discern these features associated with 337 

familial risk, comparison with healthy, unrelated individuals is essential. 338 

The validity of the data presented is supported by the correlation between species-abundance and 339 

distribution, which is consonant with a coherent metacommunity structure and is similar to distributions 340 

described in other ecological communities.[15] This feature of community structure facilitated delineation 341 

of core species which are abundant and persistent, and allowed resolution of features of the mucosal 342 

microbiota without obfuscation from rare microbiota which may be highly variable, transient and scarce. A 343 
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significantly higher proportion of the microbiota in CD patients belonged to the rare group compared with 344 

healthy siblings and healthy controls. As described below this is at least in part attributable to loss of 345 

principal members of the core group, most notably Firmicutes. 346 

Reduced microbial diversity is an almost universally reported feature of mucosal CD dysbiosis.[1] The 347 

current study reveals that core microbiota diversity is also lost in siblings of CD patients, indicating that this 348 

may be a fundamental step in CD pathogenesis. Reduced diversity may be an indicator of the health of 349 

human microbial communities, as it is reduced in a variety of disorders.[18-21] Lower diversity may be 350 

associated with incomplete occupation of ecological niches resulting in reduced resistance to pathogen 351 

colonisation; additionally a more restricted gut metagenome contains a lower array of genes which may 352 

result in the loss of key functions. 353 

Lower diversity indicates altered mucosal microbial composition, and microbial composition in CD patients 354 

and healthy controls were significantly distinct from one another. In contrast, the composition of the whole 355 

and core microbiota in healthy siblings was not significantly different from either CD patients or healthy 356 

controls, indicating that from a microbial metacommunity perspective, siblings lie somewhere between 357 

patients and controls. The greater variability in the composition of the microbiota in at-risk siblings 358 

(illustrated by larger 95% concentration ellipse in Figure 3 (panel B)) probably reflects the range of CD-risk 359 

contained within this group, with siblings with higher CD-risk lying closer to or within the CD region. In 360 

addition, diversity was lower in core and rare microbiota in patients with ileocaecal resection/ right 361 

hemicolectomy, potentially explained by differences in disease phenotype, or the absence of the ileocaecal 362 

valve that would otherwise constitute a barrier between small and large intestinal microbiota. 363 

Consonant with previous work highlighting the importance of F. prausnitzii in CD dysbiosis,[7, 12, 14] F. 364 

prausnitzii made the greatest contribution to the dissimilarity between CD patients and healthy control 365 

microbiota. The prominence of F. prausnitzii has biological significance as it is the only microbial factor 366 

shown to be predictive of the natural history of CD,[7] and response to treatment.[31] Strikingly, F. 367 
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prausnitzii was also the biggest contributor to the dissimilarity of the core mucosal microbiota between 368 

healthy siblings and healthy controls, establishing that mucosal F. prausnitzii not only correlates to the 369 

natural history of CD, but is also a key feature of the at-risk phenotype. Taken together these findings 370 

strongly support the hypothesis that depletion of F. prausnitzii is part of CD pathogenesis rather than 371 

consequent to established CD. Several mechanisms exist whereby F. prausnitzii and other Firmicutes may 372 

contribute to gut health, including the production of short-chain fatty acids (SCFAs),[32, 33] SCFA-373 

independent, NFκB-mediated effects,[7] and via production of longer-chain fatty acids such as conjugated 374 

linoleic acid.[34] 
375 

The pathogenic role of reduced F. prausnitzii in CD has been questioned by a study describing increased 376 

mucosal F. prausnitzii in newly-diagnosed pediatric IBD.[35] However, whether increased abundance of F. 377 

prausnitzii is a distinctive feature of pediatric-onset IBD, with low F. prausnitzii being associated with later-378 

onset CD, or whether the abundance of F. prausnitzii may bloom in childhood and then critically decline in 379 

those at risk of CD, may only be determined by longitudinal studies. 380 

Other species contributing to the dissimilarity in the core mucosal microbiota between CD patients and 381 

healthy controls were congruent with species previously identified as characterising the CD dysbiosis, 382 

including a greater abundance of most Proteobacteria such as E. fergusonii and Escherichia coli. Similar 383 

species contributed to the dissimilarity between siblings and controls. However, the presence of E. coli was 384 

specific to CD mucosa, and therefore may be a feature of established CD rather than pathogenic. Features 385 

of the inflamed gut such as increased activity of nitric oxide synthases[36], or reduction in faecal butyrate 386 

producers which will result in a rise in pH, potentially favour the survival of organisms that are inhibited at 387 

acidic pH such as E. coli.[37] 388 

GRR was the factor associated most strongly with the variation in the microbiota in both the between-389 

group analysis, and analysis within each of the three groups. Although the proportion of variation in 390 

mucosal microbiota explained by GRR was small, it is nevertheless significant. The combination of loci used 391 
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to estimate GRR in the current study does not include more recently detected risk loci and can be expected 392 

to account for a limited proportion of the genetic risk.[38] Therefore, these data will tend to underestimate 393 

the effect of genotype. Furthermore, since other factors known to affect gut microbiota such as diet were 394 

not controlled, this signal of the interaction between genotype and the mucosal microbiota is striking. 395 

The direction of the vector in figure 3 illustrates that FC contributed to the axis separating patients from the 396 

other two groups in the whole, core and rare microbiota, implying that microbial composition in CD is 397 

partly associated with the degree of inflammation. This would support the hypothesis that CD-specific 398 

elements of the dysbiosis may be consequent to intestinal inflammation, through mechanisms such as the 399 

enhanced survival of E. coli in an inflamed environment as proposed above. 400 

When each group was considered separately, the effect of each factor in different groups could be 401 

compared. Several factors were significant in all groups (GRR, gender, proportion of CD4+ naïve T-cells 402 

expressing β7 integrin). Other factors were significant in patients and siblings but not controls: FC and 403 

blood naïve CD4+ T-cell concentration were significant only in patients and siblings, whereas age was 404 

significant only in controls. Disease phenotype was significant in explaining microbial variation within the 405 

CD group as would be predicted from previous studies.[30] However; we have also demonstrated that for 406 

healthy siblings, disease site in their affected relative was significantly associated with the variation in their 407 

own microbiota. This would suggest that specific risk phenotypes are associated with different disease 408 

phenotypes. 409 

Overall these factors accounted for a higher proportion of the variance in the microbial composition in 410 

siblings, compared with controls or patients, indicating that this multidimensional risk phenotype is specific, 411 

and that in low CD-risk individuals the microbial composition is associated with other factors, such as age. 412 

Furthermore, it would appear that in CD the influence of factors associated with the original risk phenotype 413 

is obfuscated by established CD and its surgical and medical management.  414 

CONCLUSION 415 
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Healthy siblings of CD patients, who themselves have elevated risk of CD, have a dysbiosis of the core 416 

mucosal microbiota characterised by reduced diversity and loss of Firmicutes, notably F. prausnitzii. 417 

Genotype determines a proportion of the at-risk mucosal microbial phenotype. Notwithstanding the 418 

limited extent to which known loci account the observed CD-risk,[39] it is also clear that the sibling risk 419 

goes beyond genotype and that non-genetic factors within families contribute to the development of an at-420 

risk microbiota. How and why patients and their siblings acquire the microbiota that marks out this risk is 421 

not known. However, knowledge of the at-risk microbial phenotype illuminates possible pathways in CD 422 

pathogenesis and raises the prospect of intervention to impact human health and influence disease risk.   423 
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FIGURE LEGENDS 430 

Fig. 1. The distribution and abundance of bacterial species within microbiota samples within the (a) CD, (b) 431 

siblings, and (c) healthy control cohort metacommunities. Given is the number of mucosal samples for 432 

which each bacterial taxon was observed to occupy, plotted against the mean abundance across all samples 433 

((a) n =21, r2 =0.62, F1, 227 =366.9, P < 0.0001; (b) n =17, r2 =0.71, F1, 259 =590.1, P < 0.0001; and (c) n 434 

=19, r2 =0.68, F1, 258 =552.6, P < 0.0001).  Core species were defined as those that fell within the upper 435 

quartile (dashed lines), and rare species defined as those that did not. 436 

 437 

Fig. 2. Diversity of whole, core and rare microbiota within the CD (black columns), siblings (grey), and 438 

healthy (white) control cohorts. Given are three indices of diversity; Species richness (S*), Simpson’s index 439 

of diversity (1-D), and Shannon-Wiener index of diversity (H’). Error bars represent the standard deviation 440 

of the mean (CD n =21, siblings n =17, and healthy n =19). Asterisks denote significant differences in 441 

comparisons of diversity at the P < 0.05 level determined by two sample t-tests.  442 

 443 

Fig. 3. Analysis of similarities (ANOSIM) of whole, common, and rare microbiota between subject cohorts.  444 

Given is the ANOSIM test statistic (R) and probability (P) that two compared groups are significantly 445 

different at the P < 0.05 level (* denotes P < 0.001 and ** P < 0.0001). ANOSIM R and P values were 446 

generated using the Bray-Curtis measure of similarity. R scales from +1 to -1. +1 indicates that all the most 447 

similar samples are within the same groups. R = 0 occurs if the high and low similarities are perfectly mixed 448 

and bear no relationship to the group. A value of -1 indicates that the most similar samples are all outside 449 

of the groups.  450 

 451 
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Fig. 4. Canonical correspondence biplots for (a) whole, (b) core, and (c) rare microbiota. Red crosses  452 

represent microbiota samples from the CD cohort, yellow filled triangles for the siblings cohort, and green 453 

diamonds for the healthy cohort. In each instance, the 95 % concentration ellipses are given for the CD 454 

(red), siblings (yellow), and healthy (green) cohort microbiota. Biplot lines for clinical variables that 455 

significantly accounted for variation within the microbiota at the P < 0.05 level (see Table 3) show the 456 

direction of increase for each variable, and the length of each line indicates the degree of correlation with 457 

the ordination axes. CCA field labels: Calprotectin, Gender, “% Memory T-cells” – Proportion of blood T-cell 458 

with memory phenotype (%), “CD4+ T-cells” – Blood concentration of naïve CD4+ T-cells (cells /ml), “β7 459 

integrin” – Proportion of CD4 naïve T-cells expressing β7 integrin (%),“GRR” – genotype relative risk, 460 

(cumulative genotype relative risk (GRR) for each participant was calculated across 72 CD-risk loci (detected 461 

using the Illumina Infinium Immunochip), participants were categorised into reduced, average, elevated or 462 

high genotype risk with reference to a population distribution model of CD-risk). Percentage of community 463 

variation explained by each axis is given in parentheses.  464 

  465 
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Supplementary table S1. List of exclusion criteria by group 

All participants Patients Siblings  Controls 
Unable to consent due to 
mental illness/ dementia/ 
learning disability 
 

Evidence of active CD as 
defined by a CDAI of greater 
than 150 

Previous diagnosis 
of IBD 

Previous diagnosis 
of IBD 

Current infection with an 
enteric pathogen 
 

Purely perianal CD Symptoms fulfilling 
Rome III criteria for 
IBS 

Symptoms fulfilling 
Rome III criteria for 
IBS 

Use of antibiotics within the 
last month 
 

Change in dose of oral steroids 
within the last 4 weeks 

 A first or second 
degree relative with 
IBD 

Consumption of any probiotic 
or prebiotic within the last 
month 
 

Dose of steroids exceeding 
10mg prednisolone per day or 
equivalent 

  

Pregnancy or lactation 
 

Change in dose of oral 5-ASA 
products within the last 4 
weeks 

  

Participant requiring 
hospitalization 
 

Commencement of 
azathioprine or methotrexate 
within the last 4 months, or 
change in dose of these drugs 
within the last 4 weeks 

  

Significant hepatic, renal, 
endocrine, respiratory, 
neurological or cardiovascular 
disease as determined by the 
principal investigator 
 

Infusion of biological therapies 
(e.g. infliximab) within the last 
3 months* 

  

A history of cancer with a 
disease free state of less than 
two years 
 

Use of rectal 5-ASA or steroids 
within the last 2 weeks 

  

CRP greater than 5mg/L at 
screening, as measured by the 
local laboratory 
 

Use of NSAIDs within the last 2 
weeks 

  

 Imminent need for surgery   
 Short bowel syndrome   
 Previous proctocolectomy   
* No patient had been previously exposed to biological therapies 



Supplementary methods 

Peripheral blood T-cell flow cytometry 

The fluorescently labeled antibodies used were: anti-CD3 Pacific Blue (clone OKT3, Biolegend, San 

Diego, CA,USA), anti-CD45RA PE-Cy7 (clone L48, BD Bioscience, Franklin Lakes, NJ, USA), anti-CD8 

PerCP-Cy5.5 (clone SK1, BD Bioscience) and anti-CD4 APC (clone RPA-T4, BD Bioscience), anti-β7 PE 

(clone FIB504, BD Pharmingen). 

Isotype-matched controls for mIgG1κ PE-Cy7 (clone MOPC-21, BD Pharmingen), rat IgG2a PE (clone 

R35-95, BD Bioscience), mIgG1 PE (clone MOPC-21, BD Bioscience), rIgM FITC (clone R4-22, BD 

Pharmingen) and mIgG1 FITC (clone MOPC-21, BD Pharmingen) were used to set positive and 

negative regions for gating during analysis. Anti-CD8 FITC (clone LT8, AbD Serotec, Kidlington, UK), 

anti-β7 PE (clone FIB504, BD Pharmingen), anti-CD8 PerCP-Cy5.5 (clone SK1, BD Bioscience), anti-

CD45RA PE-Cy7 (clone L48, BD Bioscience) anti-CD3 PB (clone OKT3, Biologend) and anti-CD4 APC 

(clone RPA-T4, BD Bioscience) conjugated antibodies were used for off-line compensation. 

 

Gut mucosal microbiota 

DNA extraction protocol 

Biopsy DNA extraction was carried out using a phenol/chloroform based method, as follows: 

Guanidinium thiocyanate–EDTA–sarkosyl (500 μL) and PBS (500 μL), pH 8.0, were added to biopsy 

samples. Cell disruption was achieved using a Fastprep-24 Instrument (MP Biomedicals Europe, 

Illkirch, France) 6.5 m/s, 60 s, followed by incubation at 90 °C for 1 min and −20 °C for 5 min. Cell 

debris was pelleted by centrifugation at 12 000 × g for 2 min at 4 °C. Supernatant was transferred to 

a fresh microfuge tube. NaCl (to a final concentration of 0.5 mol/L and polyethylene glycol (to a final 

concentration of 15%) were added and DNA precipitated at 4 °C for 30 min. DNA was pelleted by 



centrifugation at 12 000 × g for 2min at 4 °C and resuspended in 300 μL of sterile distilled water. 

Samples were heated at 90 °C for 30 s and vortexed. Phenol/chloroform (1:1) (300 μL) was added, 

and samples were vortexed for 20 s before centrifugation at 12 000 × g at 4 °C for 3min. The upper 

phase was then transferred to a fresh microfuge tube. Total DNA was then precipitated by the 

addition of an equal volume of isopropanol, a 0.1-volume 10 mol/L ammonium acetate, and 1 μL of 

GenElute linear polyacrylamide (Sigma-Aldrich, Gillingham, UK) and incubated at −20 °C for 25 min. 

DNA was pelleted by centrifugation at 12 000 × g at 4 °C for 5 min. Pelleted DNA was then washed 3 

times in 70% ethanol, dried, and resuspended in 50 μL of sterile distilled water. DNA extracts were 

quantified using the Picodrop Microlitre Spectrophotometer (GRI, Braintree, UK). Negative controls, 

consisting of sterile water, were included in the PMA treatment, DNA extraction, and PCR 

amplification steps. 

16S rRNA gene sequencing 

Bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP) was performed as described 

previously using Gray28F 5'-TTTGATCNTGGCTCAG-3' and Gray519r 5'-GTNTTACNGCGGCKGCTG-3').1 

A single-step 30 cycle PCR using HotStarTaq Plus Master Mix Kit (Qiagen, Valencia, CA) performed 

under the following conditions: 94°C for 5minutes, followed by 28 cycles of: 94°C for 30 seconds, 

53°C for 40 seconds, and 72°C for 1 minute. Amplification was followed by a final elongation step at 

72°C for 5 minutes. Following PCR, all amplicon products from different samples were mixed in equal 

concentrations and purified using Agencourt Ampure beads (Agencourt Bioscience Corporation, MA, 

USA). Samples were sequenced utilizing Roche 454 FLX titanium instruments and reagents following 

manufacturer’s guidelines.  

Sequence data analysis was carried out. Here, the Q25 sequence data derived from the sequencing 

process was processed using standard analysis pipeline processes (MR DNA, Shallowater, USA). 

Sequences were depleted of barcodes and primers then short sequences, 200 bp removed, as were 

sequences with ambiguous base calls removed, and sequences with homopolymer runs exceeding 6 



bp, sequences were denoised and chimeras removed.2-8 Operational taxonomic units were defined 

after removal of singleton sequences, clustering at 3% divergence (97% similarity). Final OTUs were 

taxonomically classified using BLASTn against a curated databased derived fromGreenGenes, NCBI 

and RDP databases.9 Normalized and de-noised files were then rarefied and run through QIIME10 to 

generate alpha and beta diversity data. Additional statistical analyses were performed with 

NCSS2007 (NCSS, UT) and XLstat 2012 (Addinsoft, NY). 
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