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and Sophia Ananiadou*

Abstract

Background: Text mining (TM) methods have been used extensively to extract relations and events from the
literature. In addition, TM techniques have been used to extract various types or dimensions of interpretative
information, known as Meta-Knowledge (MK), from the context of relations and events , e.g. negation, speculation,
certainty and knowledge type. However, most existing methods have focussed on the extraction of individual
dimensions of MK, without investigating how they can be combined to obtain even richer contextual information. In
this paper, we describe a novel, supervised method to extract new MK dimensions that encode Research Hypotheses
(an author’s intended knowledge gain) and New Knowledge (an author’s findings). The method incorporates various
features, including a combination of simple MK dimensions.

Methods: We identify previously explored dimensions and then use a random forest to combine these with
linguistic features into a classification model. To facilitate evaluation of the model, we have enriched two existing
corpora annotated with relations and events, i.e., a subset of the GENIA-MK corpus and the EU-ADR corpus, by adding
attributes to encode whether each relation or event corresponds to Research Hypothesis or New Knowledge. In the
GENIA-MK corpus, these new attributes complement simpler MK dimensions that had previously been annotated.

Results: We show that our approach is able to assign different types of MK dimensions to relations and events with a
high degree of accuracy. Firstly, our method is able to improve upon the previously reported state of the art
performance for an existing dimension, i.e., Knowledge Type. Secondly, we also demonstrate high F1-score in
predicting the new dimensions of Research Hypothesis (GENIA: 0.914, EU-ADR 0.802) and New Knowledge (GENIA:
0.829, EU-ADR 0.836).

Conclusion: We have presented a novel approach for predicting New Knowledge and Research Hypothesis, which
combines simple MK dimensions to achieve high F1-scores. The extraction of such information is valuable for a
number of practical TM applications.

Keywords: Text mining, Events, Meta-knowledge, Hypothesis, New knowledge

Background
The goal of information extraction (IE) is to automati-
cally distil and structure associations from unstructured
text, with the aim of making it easier to locate informa-
tion of interest in huge volumes of text.Within biomedical
research articles, the textual context of a particular piece
of knowledge often provides clues as to its current status
along the ‘research journey’ timeline. Sentences (1)–(3)
below exemplify a number of different points along the

*Correspondence: sophia.ananiadou@manchester.ac.uk
National Centre for Text Mining, University of Manchester, Manchester, UK

research timeline regarding the establishment of an asso-
ciation between Interleukin-17 (IL-17) and psoriasis. The
association is firstly introduced in (1) as a hypothesis
to be investigated. In (2), which is taken from the same
paper [1], the putative association is backed up by initial
experimental evidence. Sentence (3) comes from a paper
published 10 years later [2], by which time the association
is presented as widely accepted knowledge, presumably on
the basis of many further positive experimental results.

(1) ‘To investigate the role of Interleukin-17 (IL-17) in
the pathogenesis of psoriasis...’
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(2) ‘These findings indicate that up-regulated
expression of IL-17 might be involved in the
pathogenesis of psoriasis.’

(3) ‘IL-17 is a critical factor in the pathogenesis of
psoriasis and other inflammatory diseases.’

There is a strong need to identify different types of emerg-
ing knowledge, such as those shown in sentences (1–2),
in a number of different scenarios. It has been shown
elsewhere that incorporating this type of information
improves the automated curation of biomedical networks
and models [3].
In processing sentences (1)–(3) above, a typical IE

system would firstly detect that Interleukin-17 and IL-17
are phrases that describe the same gene concept and
that psoriasis represents a disease concept. Subsequently,
the system would recognise that a specific association
exists between these concepts. These associations may
be binary relations between concepts, which encode
that a specific type of association exists, or they may be
events, which encode complex n-ary relations between
a trigger word and multiple concepts or other events.
Figure 1 shows the specific characteristics of both a
relation and an event using the visualisation of the brat
rapid annotation tool [4]. The output of the IE system
would allow the location of all sentences within a large
document collection, regardless of their varied phrasing,
that explicitly mention the same association, or those
mentioning other related types of associations, e.g., to
find different genes that have an association with pso-
riasis. The structured associations that are extracted
may subsequently be used as input to further stages
of reasoning or data mining. Many IE systems would
consider that sentences (1)–(3) each conveys exactly the
same information, since most such systems only take
into account the key information and not the wider con-
text. Recently, however, there has been a trend towards
detecting various aspects of contextual/interpretative
information (such as negation or speculation)
automatically [5–8].
In this work, we focus on the automatic assignment

of two interpretative dimensions to relations and events

extracted by text mining tools. Specifically, we aim to
determine whether or not each relation and event cor-
responds to a Research Hypothesis, as in sentence (1), or
to New Knowledge, as in sentence (2). To the best of our
knowledge, this work represents the first effort to apply a
supervised approach to detect this type of information at
such a fine-grained level.
We envisage that the recognition of these two interpre-

tative dimensions is valuable in tasks where the discovery
of emerging knowledge is important. To demonstrate the
utility and portability of our method, we show that it can
be used to enrich instances of both events and relations.

Related work
The task of automatically classifying knowledge con-
tained within scientific literature according to its intended
interpretation has long been recognised as an important
step towards helping researchers to make sense of the
information reported, and to allow important details to be
located in an efficient manner. Previous work, focussing
either on general scientific text or biomedical text, has
aimed to assign interpretative information to continu-
ous textual units, varying in granularity from segments
of sentences to complete paragraphs, but most frequently
concerning complete sentences. Specific aspects of inter-
pretation addressed have included negation [5], specula-
tion [6–8], general information content/rhetorical intent,
e.g., background, methods, results, insights, etc. [9–12]
and the distinction between novel information and back-
ground knowledge [13, 14].
Despite the demonstrated utility of approaches such as

the above, performing such classifications at the level of
continuous text spans is not straightforward. For exam-
ple, a single sentence or clause can introduce multiple
types of information (e.g., several interactions or associa-
tions), each of which may have a different interpretation,
in terms of speculation, negation, research novelty, etc. As
can be seen from Fig. 1, events and relations can struc-
ture and categorise the potentially complex information
that is described in a continuous text span. Following on
from the successful development of IE systems that are
able to extract both gene-disease relations [15–17] and

Fig. 1 An example of two sentences, one containing events and the other containing one relation. The first sentence shows two events. The first
event in the sentence concerns the term ‘activation’ which is a type of positive regulation. The theme of this event is ‘NF-kappaB’, indicating that this
protein is being activated. The next event in the sentence is centered around ‘dependent’ which is a type of positive regulation. This event has the
cause ‘oxidative stress’ and its theme is the first event in the sentence. The example of a relation between two entities is, in contrast to the event,
clearly much more simple. The relation indicates that NPTN is related to Schizophrenia in a relation that can be categorised as ‘Target-Disorder’
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biomolecular events [18, 19], there has been a growing
interest in the task of assigning interpretative informa-
tion to relations and events. However, given that a single
sentence may contain mutiple events or relations, the
challenge is to determine whether and how the interpreta-
tion of each of these structures is affected by the presence
of particular words or phrases in the sentence that denote
negation or speculation, etc.
IE systems are typically developed by applying super-

vised or semi-supervised methods to annotated corpora
marked up with relations and events. There have been
several efforts to manually enrich corpora with interpre-
tative information, such that it is possible to train models
to determine automatically how particular types of con-
txtual information in a sentence affect the interpretation
of different events and relations. Most work on enrich-
ing relations and events has been focussed on one or two
specific aspects of interpretation (e.g., negation [20, 21]
and/or speculation [22, 23]). Subsequent work has
shown that these types of information can be detected
automatically [24, 25].
In contrast, work on Meta-Knowledge (MK) captures

a wider range of contextual information, integrating and
building upon various aspects of the above-mentioned
schemes to create a number of separate ‘dimensions’ of
information, which are aimed at capturing subtle dif-
ferences in the interpretation of relations and events.
Domain-specific versions of the MK scheme have been
created to enrich complex event structures in two dif-
ferent domain corpora, i.e., the ACE-MK corpus [26],
which enriches the general domain news-related events

of the ACE2005 corpus [27], and the GENIA-MK cor-
pus [28], which adds MK to the biomolecular interac-
tions captured as events in the GENIA event corpus [22].
Recent work has focussed on the detection of uncer-
tainty around events in the GENIA-MK Corpus. Uncer-
tainty was detected using a hybrid approach of rules and
machine learning. The authors were able to show that
incorporating uncertainty into a pathway modelling task
led to an improvement in curator performance [3].
The GENIA-MK annotation scheme defines five dis-

tinct core dimensions of MK for events, each of which has
a number of possible values, as shown in Fig. 2:

1. Knowledge Type, which categorises the knowledge
that the author wishes to express into one of:
Observation, Investigation, Analysis, Method, Fact or
Other.

2. Knowledge Source, which encodes whether the
author presents the knowledge as part of their own
work (Current), or whether it is referring to previous
work (Other).

3. Polarity, which is set to Positive if the event took
place, and to Negative if it is negated, i.e., it did not
take place.

4. Manner, which denotes the event’s intensity, i.e.,
High, Low or Neutral.

5. Certainty Level or Uncertainty, which indicates how
certain an event is. It may be certain (L3), probable
(L2) or possible (L1).

These five dimensions are considered to be indepen-
dent of one another, in that the value of one dimen-

Fig. 2 The GENIA-MK annotation scheme. There are five Meta-Knowledge dimensions introduced by Thompson et al. as well as two further
hyperdimensions
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sion does not affect the value of any other dimension.
There may, however, be emergent correlations between
the dimensions (i.e., an event with the MK value ’Knowl-
edge Source=Other’ is more frequently negated), which
occur due to the characteristics of the events. Previous
work using the GENIA-MK corpus has demonstrated the
feasibility of automatically recognising one or more of
the MK dimensions [29–31]. In addition to the five core
dimensions, Thompson et al. [28] introduced the notion
of hyperdimensions, (i.e., New Knowledge and Hypothe-
sis) which represent higher level dimensions of informa-
tion whose values are determined according to specific
combinations of values that are assigned to different core
MK dimensions. These hyperdimensions are also repre-
sented in Fig. 2. We build upon these approaches in our
own work to develop novel techniques for the recogni-
tion of New Knowledge and Hypothesis, which take into
account several of the core MK dimensions described
above, as well as other features pertaining to the structure
of the event and sentence.

Methods
Our work took as its starting point the MK hyperdimen-
sions defined by Thompson et al. [28] , since we are also
interested in idenfifying relations and events that describe
hypotheses or new knowledge. However, we found a num-
ber of issues with the original work on these hyperdi-
mensions. Firstly, Thompson et al. [28] did not provide
clear definitions for of ‘Hypothesis‘ and ‘New Knowledge’.
In response, we have formulated concise definitions for
each of them, as shown below. Secondly, by performing
an analysis of events that takes into account these defi-
nitions, we found that it was not possible to reliably and
consistently identify events that describe new knowledge
or hypotheses based only on the values of the core MK
dimensions. As such, we decided to carry out a new anno-
tation effort to mark up both ‘Research Hypothesis’ and
‘New Knowledge’ as independent MK dimensions (i.e.,
their values do not necessarily have any dependence on
the values of other core MK dimensons), and to explore
supervised, rather than rule-based methods, to facilitate
their automated recognition.

Annotation guidelines
The starting point for our novel annotation effort was
our tightened definitions of Research Hypothesis and New
Knowledge; our initial definitions were refined through-
out the process of annotation. As the definitions and
guidelines evolved, we asked the annotators to revisit pre-
viously annotated documents in each new round. Our
final definitions are presented below:

Research Hypothesis: A relation or event is
considered as a Research Hypothesis if it encompasses

a statement of the authors’ anticipated knowledge gain.
This is shown in examples (1) and (2) in Table 1.

New Knowledge: A relation or event is considered as
New Knowledge if it corresponds to a novel research
outcome resulting from the work the author is
describing, as per examples (3) and (4) in Table 1.

Whereas the value assigned to each of the core MK
dimensions of Thompson et al. is completely indepen-
dent of the values assigned to the other core dimen-
sions, our newly introduced dimensions do not maintain
this independence. Rather, Research Hypothesis and New
Knowledge possess the property of mutual exclusivity,
as an event or relation cannnot be simultaneously both
a Research Hypothesis and New Knowledge. We chose
to enrich two different corpora with attributes encoding
Research Hypothesis and New Knowledge, i.e., a subset of
the biomolecular interactions annotated as events in the
GENIA-MK corpus [28], and the biomarker-relevant rela-
tions involving genes, diseases and treatments in the EU-
ADR corpus [23]. Leveraging the previously-added core
MK annotations in the GENIA-MK corpus, we explored
how these can contribute to the accurate recognition
of New Knowledge and Research Hypothesis. Specifi-
cally, we have introduced new approaches for predicting
the values of the core Knowledge Type and Knowledge
Source dimensions, demonstrating an improvement over
the former state of the art for Knowledge Type. We sub-
sequently use supervised methods to automatically detect
New Knowledge and Research Hypothesis, incorporating
the values of Knowledge Type, Knowledge Source and
Uncertainty as features into the trained models.

Table 1 Examples of sentences containing research hypotheses
and new knowledge

ID Example Dimension

1 We examined the possibility
of establishing new cell lines

Research hypothesis

2 We tested the hypothesis that
oral beclomethasone
dipropionate (BDP) would
control gastrointestinal
graft-versus-host disease. . .

Research hypothesis

3 These data demonstrate that
the unexpected expression
of megakaryocytic genes is a
specific property of
immortalized cells. . .

New knowledge

4 We show that Oral BDP
prevents relapses of
gastrointestinal GVHD. . .

New knowledge

5 CTCF is a transcriptional
repressor of the c-myc gene.

—

Key words that help us to determine whether a sentence pertains to New
Knowledge or Research Hypothesis are marked in bold. Some sentences may be
neither Research Hypothesis nor New Knowledge, as shown in Sentence 5
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Corpora
The GENIA-MK corpus consists of one thousand MED-
LINE abstracts on the subject of transcription factors in
human blood cells, which have been annotated with a
range of entities and events that provide detailed, struc-
tured information about various types of biomolecular
interactions that are described in text. In the GENIA-MK
corpus, values for all five core MK dimensions are already
manually annotated for all of the 36,000 events. The MK
annotation effort also involved the identification of ‘clue
words’, i.e., words or phrases that provide evidence for the
assignment of values for particular MK dimensions. For
example, the word ‘suggest’ would be annotated as a clue
both for Uncertainty and Knowledge Type, as it indicates
that the information encoded in the event is stated based
on a speculative analysis of results.
The EU-ADR corpus consists of three sets of 100 MED-

LINE abstracts, each obtained using different PubMed
queries aimed at retrieving abstracts that are likely to con-
tain three specific types of relations (i.e., gene-disease,
gene-drug and drug-disease), the former two of which can
be important in discovering how different types of genetic
information influence disease susceptibility and treatment
response. The original annotation task involved identify-
ing three types of entities, i.e., targets (proteins, genes and
variants), diseases and drugs, together with relationships
between these entity types, where these are present. In
contrast to the richness of the event representations in the
GENIA-MK corpus, each relation annotation in the EU-
ADR corpus consists only of links between entities of two
specific types. Relations were annotated in 159 of the 300
abstracts selected for inclusion in the corpus.

Annotation of new knowledge and research hypothesis
As an initial step of our work, subsets of GENIA-MK
and EU-ADR were manually enriched with additional
annotations, which identify those events or relations cor-
responding to Research Hypotheses or New Knowledge.
Since high quality annotations are key to ensuring that
accurate supervised models can be trained, we engaged
with a number of experts and carried out an exploratory
annotation exercise prior to the the final annotation effort,
in order to ensure the highest possible inter-annotator
agreement (IAA).
Initially, we worked with two domain experts, a text

mining researcher and amedical professional. They added
the novel MK annotations to events that had been auto-
matically detected in sentences from full-text papers. We
found, however, that there were some issues with this
annotation set-up. Firstly, we found that events denot-
ing Research Hypotheses and New Knowledge were very
sparse in full papers. Secondly, we found that isolated
sentences often provided insufficient context for anno-
tators to determine accurately whether or not the event

described new knowledge or a hypothesis. Finally, we
found that errors in the automatically detected events
were detracting the annotators’ attention from the task at
hand. Based on these findings, we decided not to pursue
this apporach, and instead focussed our anotation efforts
on annotating Research Hypotheses and New Knowledge
in abstracts containing gold-standard, expert-annotated
events and relations, whose quality had previously been
verified. Since abstracts also generally contain denser
and more consolidated statements of New Knowledge
and Research Hypotheses than full papers [32], we also
expected that this approach would produce more useful
training data.
We then employed two PhD students (both working in

disciplines related to biological sciences) to carry out the
next round of annotation work. We held regular meetings
to discuss new annotations and provided feedback as nec-
essary. A subset of the abstracts was doubly annotated by
both annotators, allowing us to evaluate the annotation
quality by calculating IAA using Cohen’s Kappa [33].
Table 2, which shows IAA at three different points dur-

ing the annotation process, illustrates a steady increase
in IAA as time progressed and as more discussions were
held, demonstrating a convergence towards a common
understanding of the guidelines by the two annotators.We
get a final agreement of above 0.8 on most dimensions,
indicating a strong level of agreement [34]. Annotation
of Research Hypothesis in the EU-ADR corpus achieved
slightly lower agreement of 0.761, indicating moderate
agreement between the annotators [34]. At the end of
the annotation process, the annotators were asked to
revisit their earlier annotations tomake revisions based on
their enhanced understanding of the guidelines. Remain-
ing discrepancies were resolved by the lead author after
consultation with both annotators.
Each annotator marked up 112 abstracts from the EU-

ADR corpus (70 of which were doubly annotated), and 100
abstracts from the GENIA-MK corpus (50 of which were
doubly annotated). This resulted in a total of 150 GENIA-
MK abstracts and 159 EU-ADR abstracts annotated with
New Knowledge and Research Hypothesis. Statistics on
the final corpus are shown in Table 3.

Table 2 Inter-annotator agreement across several rounds of
corpus annotation as measured by Cohen’s Kappa

Round 1 Round 2 Round 3

Research Hypothesis EU-ADR 0.486 0.724 0.761

GENIA-MK 0.593 0.859 0.855

New Knowledge

EU-ADR 0.627 0.825 0.842

GENIA-MK 0.772 0.895 0.895

We show that agreement increased throughout the annotation process as we
discussed difficult cases with annotators. We undertook regular meetings with the
annotators to quickly resolve any disagreements
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Baseline method for new knowledge and research
hypothesis
Thompson et al. [28] suggest a method for detecting new
knowledge and hypothesis based on automatic inferences
from core MK values. Their inferences state that an event
will be an instance of new knowledge if the Knowledge
Source dimension is equal to ‘Current’, the Uncertainty
dimension is equal to ‘L3’ (equivalent to ‘Certain’ in our
work, see below) and the Knowledge Type dimension
is equal to either ‘Observation’ or ‘Analysis’. Similarly,
according to their inferences, an event will be an instance
of Hypothesis if the Knowledge Type dimension is equal
to ‘Analysis’ and Uncertainty is equal to either ‘L2’ or ‘L1’
(which are both equivalent to ‘Uncertain’ in our work,
see below).
We use these automated inferences as a baseline for

our techniques. To best reflect the work of Thompson
et al. [28], we use their manually annotated values of
Knowledge Type, Uncertainty and Knowledge Source for
the GENIA-MK corpus. This allows us to compare our
own work with previous efforts, as well as providing a
lower bound for the performance of a rule based system,
which we contrast with our supervised learning system, as
introduced in the next section.

A supervised method for extracting new knowledge and
research hypothesis
We took a supervised approach to annotating events with
instances of our target dimensions of New Knowledge
and Research Hypothesis. According to the previously
mentioned intrinsic links to the core MK dimensions of
Knowledge Source, Knowledge Type and Uncertainty, we
incorporated the values of these dimensions as features
that are used by our classifiers.

Uncertainty
For the Uncertainty dimension, we used an existing sys-
tem [3]. Adopting their treatment of Uncertainty, we differ

Table 3 Statistics comparing our versions of the GENIA-MK and
EU-ADR corpora, both annotated with new knowledge and
research hypothesis labels

GENIA-MK EU-ADR

Base type for annotations Events Relations

Number of annotations 6899 622

Number of abstracts 150 159

Number of new knowledge annotations 2356 (34.2%) 406 (65.3%)

Number of research hypothesis annotations 366 (5.31%) 38 (6.11%)

The GENIA-MK corpus is much more densely annotated than the EU-ADR corpus,
with over ten times more annotated events in the former than annotated relations
in the latter. Research Hypotheses are particularly sparse in both corpora,
constituting just over 5% of all annotated relations and events in each case. There is
a disparity in the proportion of New Knowledge between the two corpora, in part
because the EU-ADR corpus appeared to favour the annotation of relationships
denoting New Knowledge

from Thompson et al. [28] as we use only have 2 levels
(certain and uncertain), as opposed to their three levels
(L3= certain, L2= probable and L1= possible). Since our
development of the original MK scheme, we have exper-
imented and discussed different levels of granularity for
this dimension with domain experts, and have concluded
that the differences between the two different levels of
uncertainty in our original scheme (i.e., L1 and L2) are
often too subtle to be of benefit in practical scenarios.
Therefore, it was decided to focus instead on the binary
distinction between certainty and uncertainty.

Knowledge source
The Knowledge Source dimension distinguishes events
that encode information originating from an author’s own
work (Knowledge Source = Current), from those describ-
ing work from an alternative source (Knowledge Source =
Other). Such information is relevant to the identification
of New Knowledge, as a relation or event that corre-
sponds to information reported in background literature
definitely cannot be classed as New Knowledge. Attri-
bution by citation is a well-established practice in the
scientific literature. Citations can be expressed heteroge-
neously between documents, but are typically expressed
homogeneously within a single document, or a collection
of similarly-sourced documents. We used regular expres-
sions to identify citations following the work ofMiwa et al.
[35], in conjunction with a set of clue expressions that
aim to detect background knowledge in cases where no
citation is given. These include statements such as ‘we
previously showed. . . ’ or ‘as seen in our former work’.
Whereas Miwa et al. use a supervised learning method to
detect Knowledge Source, we found that supervised learn-
ing approaches overfitted to the overwhelming majority
class (Source=Current) in the GENIA-MK dataset. This
meant that we suffered poor performance on unseen data,
such as the EU-ADR corpus. To alleviate this, we sim-
ply used the regular expression feature as described above
as an indicator of Knowledge Source being ‘Other’. A list
of our regular expressions and clue expressions is made
available as part of the Additional files.

Knowledge type
For Knowledge Type, we used an implementation of the
random forest algorithm [36] from theWEKA library [37].
We used the standard parameters of the random forest in
the WEKA implementation. We used ten-fold cross vali-
dation for all experiments, and results are reported as the
macro-average across the ten folds. We treat the identi-
fication of Knowledge Type as a multi-class classification
problem and we took a supervised approach to categoris-
ing relations and events in the two corpora according to
the values of the Knowledge Type dimension. To facili-
tate this, we used the following seven types of features to
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generate information about each event from GENIA-MK
and relation from EU-ADR:

1 Sentence features describing the sentence containing
the relation or event.

2 Structural features, inspired by the structural
differences of events.

3 Participant features, representing the participants in
the relation or event.

4 Lexical features, capturing the presence of clue words.
5 Constituency features, corresponding to

relationships between a clue and the relation or
event, based on the output of a parser.

6 Dependency features, which capture relationships
between a clue and the relation or event based on the
dependency parse tree.

7 Parse tree features, which pertain to the structure of
the dependency parse tree.

These features are further described in Table 4. To gener-
ate these features, we made use of the GENIA Tagger [38]
to obtain part-of-speech (POS) tags, and the Enju parser
[39] to compute syntactic parse trees.

Research hypotheses and new knowledge
We followed a similar approach to predicting Research
Hypothesis and New Knowledge values to that described
above for the recognition of Knowledge Type. We used
the same features and also a random forest classifier. We
incorporated additional features encoding the Knowledge
Source, Knowledge Type and Uncertainty of each relation
and event.
Clue lists, developed by the authors, were used

for the detection of Knowledge Type, Knowledge
Source and Uncertainty. For the detection of New
Knowledge and Hypothesis, a combination of clues
for Knowledge Type, Knowledge Source and Uncer-
tainty was used. The exact clue lists are available in
the Additional files.

Results
In this section, we present our experiments to detect
the core Knowledge Type dimension, in which we deter-
mine the most appropriate feature subset to use, and
also compare our approach to previous work. We then
extend this approach to recognise New Knowledge and
Research Hypothesis, and to evaluate our results in terms
of precision1, recall, 2 and F1-score. 3
Our experiments to predict the correct values for the

Knowledge Type dimension were carried out only using
the events in the GENIA-MK corpus, given that Knowl-
edge Type is only annotated in this corpus and not in
EU-ADR.We performed an analysis of each feature subset
to assess its impact on classifier performance, as shown

Table 4 Types of features used in training the Knowledge Type
classification model

Feature type Features

Sentence SE1: length in words; SE2: length in characters; SE3:
mean number of characters per word; SE4: median
number of characters per word; POS tag ratios (SE5:
noun-to-verb, SE6: noun-to-adjective, SE7: noun-to-
adverb, SE8: verb-to-adjective, SE9: verb-to-adverb;
SE10: adjective-to-adverb)

Structural ST1: whether any participant is an event; ST2: the sen-
tence number containing this event; ST3: whether this
event is a participant in another event; ST4: whether
the event is a noun phrase; ST5: whether the event
is an instance of “regulation”; ST6: total number of
themes; ST7: total number of causes

Participant PA1: POS tag of the first participant; PA2: POS tag of
the first cause; PA3: whether any theme is an event;
PA4: whether any cause is an event; PA5: POS tag of
the word in a governing dependency over the theme;
PA6: POS tag of the word in a governing dependency
over the cause

Lexical L1: distance between nearest clue and event trigger;
L2: whether sentence contains at least one clue; L-
N which clues (in a precompiled list) are matched
within the sentence; features of matched clue (L3:
surface form, L4: POS tag, L5: position relative to trig-
ger, L6: whether in auxiliary form); L7: whether trigger
contains a cue; features of nearest clue (L8: tense,
L9: aspect, L10: voice); L11-L15: whether clue usually
occurs in the context of each Knowledge Type; L16:
number of matched clues;

Constituency Relationships between clue and event trigger (C1: s-
commands, C2: vp-commands, C3: np-commands);
relationships between clue and any event partici-
pant (C4: s-commands, C5: vp-commands, C6: np-
commands); C7: whether scope of any clue is within
the same scope as the trigger

Dependency Direct dependencies (D1: between clue and trigger,
D2: between clue and any event participant); one-
hop dependencies (D3: between clue and trigger,
D4: between clue and any event participant); two-
hop dependencies (D5: between clue and trigger, D6:
between clue and any event participant)

Parse Tree Distances: PT1: between theme and furthest leaf
node; PT2: between cause and furthest leaf node; PT3:
between theme and root node; PT4: between cause
and root node

A detailed explanation of each feature with examples is given in the Additional files

in Table 5. It was established that removing each of the
participant, dependency and parse tree features individ-
ually leads to a small increase in F1-score. However, in
subsequent experiments, we found that removing all three
features does not lead to an additional increase in perfor-
mance. We therefore used all feature subsets except for
the participant features in subsequent experiments, as this
gave us the best overall score. By observing the isolated
performance of each feature subset, we also determined
that the lexical and structural features are both significant
individual contributors to the final classification score.
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Table 5 Effects of each feature subset on the final classification
performance for Knowledge Type

Feature Subset
Only This Feature All Except This Feature

P R F1 P R F1

Constituency — — — 0.815 0.727 0.763

Dependency — — — 0.823 0.728 0.765

Parse Tree 0.428 0.281 0.340 0.823 0.730 0.776

Participant 0.383 0.252 0.243 0.831 0.740 0.776

Sentence 0.474 0.442 0.453 0.785 0.705 0.738

Lexical 0.592 0.449 0.478 0.794 0.722 0.754

Structural 0.558 0.495 0.517 0.791 0.665 0.709

All 0.823 0.725 0.764 0.823 0.725 0.764

Results are only shown in cases where it was possible to produce a reliable model.
The final row denotes the performance of the classifier when using all feature subsets
Values in bold represent the best performing feature subset for each column

In Table 6, we compare the performance of our classi-
fier in predicting each Knowledge Type value with the
results obtained by the state-of-the-art method developed
by Miwa et al. [31]. The results reveal that our approach
achieves an increase in F1-score over Miwa et al. [31] by
a minimum of 0.063 for the Other value, and a maximum
of 0.113 for Method. We also see corresponding perfor-
mance boosts in terms of precision and recall. Although
we observe a small drop in recall for Fact and Method,
this is offset by an increase in precision of 0.210 and 0.299,
respectively.
To further investigate our improvement over Miwa

et al., we swapped our classifier for an SVM, but used all
the same features. The results of this are shown in Table 6.
This experiment allowed us to compare the performance
of our features with the same classification algorithm
(SVM), as used by Miwa et al. We note that using the
SVMwith our features leads to a similar, but slightly worse
performance in terms of F1 score than Miwa et al. on
all categories except for Analysis. However we do note
an increase in Precision for certain categories (Method,
Investigation, Analysis) and Recall for others (Observa-
tion, Analysis). As our features are tuned for performance

with a Random Forest, this experiment demonstrates that
different types of classifiers may require different feature
sets to achieve optimal performance.
To further understand the impact of our feature cate-

gories, we analysed the correlation of each feature with
each Knowledge Type value. This allowed us to determine
the most informative features for each Knowlegde Type
value, as displayed in Table 7. In addition to this, we calcu-
lated the average rank of each feature across all Knowledge
Type values. This measure shows us themost globally use-
ful features. The top features according to average rank are
displayed in Table 8.
For the identification of New Knowledge and Research

Hypothesis, we firstly performed 10-fold cross validation
on each corpus (GENIA-MK and EU-ADR) and for each
dimension of interest, yielding the results in Table 9. In
our presentation of results, we term the negative class
for New Knowledge as “Other Knowledge”, as it covers
a number of categories that we wish to exclude (e.g.,
background knowledge, irrelevant knowledge, support-
ing knowledge, etc.). We were able to classify Knowl-
edge Type for relations in the EU-ADR corpus by setting
the event and participant features to sensible static val-
ues — e.g., the number of participants in a relation is
always 2.

Discussion
In Table 5, we observed the effects of each feature subset
on the overall classification score for Knowledge Type.We
found that the structural, lexical and sentence features had
particularly strong contributions. The structural features
encoded information about the structure of the event and
were particularly useful for identifying events that partici-
pate in other events. The lexical features depended on the
identification of clue words that appeared in the context of
relations and events, which provided important evidence
to determine the most appropriate MK values to assign.
However, the usefulness of this feature is directly tied to
the comprehensiveness of the list of clues associated with
each MK value.

Table 6 A comparison of the Knowledge Type results produced by our classifier against the results of the most directly comparable
work

Knowledge Type
RF— our features Miwa et al. 2012 [31] (SVM) SVM— our features

P R F1 P R F1 P R F1

Observation 0.781 0.853 0.815 0.721 0.723 0.722 0.658 0.744 0.698

Fact 0.847 0.648 0.734 0.637 0.680 0.658 0.506 0.310 0.384

Other 0.788 0.810 0.799 0.770 0.706 0.736 0.727 0.671 0.698

Method 0.832 0.535 0.651 0.534 0.543 0.538 0.641 0.455 0.532

Investigation 0.884 0.763 0.819 0.691 0.755 0.722 0.724 0.714 0.718

Analysis 0.852 0.826 0.838 0.704 0.784 0.742 0.718 0.793 0.754

To enable a more direct comparison, we have also provided our results when using a SVM (the classifier used by Miwa et al.) with our features
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Table 7 The top-10 most informative features for each
Knowledge Type value

# Observation Fact Other Method Investigation Analysis

1 C7 0.313 ST3 0.173 ST3 0.487 ST5 0.203 L-47 0.308 C5 0.364

2 L5 0.263 ST2 0.154 ST1 0.330 ST1 0.135 L-46 0.292 L11 0.343

3 L11 0.255 ST5 0.110 ST5 0.216 L-48 0.100 ST4 0.227 C4 0.301

4 C2 0.252 C7 0.097 L11 0.131 ST3 0.075 L13 0.221 ST3 0.283

5 C5 0.218 L2 0.088 C7 0.127 C7 0.063 ST2 0.209 C2 0.258

6 L16 0.211 L5 0.076 L5 0.119 L14 0.060 ST3 0.202 C7 0.257

7 C1 0.207 L11 0.068 D1 0.108 L9 0.056 SE5 0.195 D1 0.234

8 L2 0.196 SE10 0.064 SE3 0.096 C5 0.051 D1 0.151 ST1 0.227

9 C2 0.178 L-35 0.063 L-28 0.090 SE1 0.046 D2 0.144 C1 0.203

10 L15 0.173 C1 0.061 L2 0.087 C4 0.045 L11 0.141 L5 0.197

These were calculated using Pearson’s correlation between each class label and
each feature. The feature labels are expanded in Table 4, above

In addition to the feature analysis in Table 5, we also
provided additional analysis of each specific feature in
Tables 7 and 8. In line with the results from Table 5, these
tables demonstrate that the structural features were par-
ticularly informative for most classes, as well as the lexical,
dependency and constituency features. It is interesting to
note from Table 7 that no individual feature is particularly
strongly correlated with each class label. This supports
our ensemble approach and indicates that multiple feature
sources are needed to attain a high classification accu-
racy. In addition, we can see that the correlations drop
fairly quickly for all classes - indicating that not all fea-
tures are used for every class. Finally, we can see that
different features occur in each column (with some repeti-
tion), indicating that certain features were more useful for
specific classes.

Table 8 The 10 top ranked features, averaged across all classes
for Knowledge Type

# Feature Average Rank

1 C7 5.50

2 L11 6.17

3 ST3 8.33

4 L5 9.17

5 ST1 11.33

6 C4 12.50

7 D1 14.17

8 ST5 14.67

9 C5 15.33

10 L-5 18.50

This shows which features are globally informative. The feature labels are expanded
in Table 4, above

Table 9 Results of 10-fold cross validation on both datasets for
Research Hypothesis and New Knowledge

P R F1

GENIA-MK Majority Baseline New Knowledge 0.000 0.000 0.000

Other knowledge 0.659 1.000 0.794

Average 0.329 0.500 0.397

Hypothetical 0.000 0.000 0.000

Non-Hypothetical 0.947 1.000 0.973

Average 0.473 0.500 0.486

Rule-based Baseline New Knowledge 0.580 0.767 0.660

Other knowledge 0.855 0.712 0.777

Average 0.717 0.739 0.719

Hypothetical 0.054 0.077 0.063

Non-Hypothetical 0.947 0.924 0.936

Average 0.500 0.500 0.499

Random Forest New Knowledge 0.863 0.920 0.891

Other knowledge 0.823 0.719 0.767

Average 0.843 0.819 0.829

Hypothetical 0.928 0.762 0.836

Non-Hypothetical 0.987 0.997 0.992

Average 0.958 0.880 0.914

EU-ADR Majority Baseline New Knowledge 0.644 1.000 0.784

Other knowledge 0.000 0.000 0.000

Average 0.322 0.5 0.392

Hypothetical 0.000 0.000 0.000

Non-Hypothetical 0.939 1.000 0.968

Average 0.469 0.500 0.484

Random Forest New Knowledge 0.853 0.921 0.884

Other knowledge 0.831 0.692 0.748

Average 0.842 0.807 0.816

Hypothetical 1.00 0.533 0.668

Non-Hypothetical 0.970 1.00 0.9848

Average 0.985 0.767 0.827

We report precision (P), recall (R) and F1-score. In each major row below, the first
two sub-rows represent the macro average of 10-fold cross validation on each class.
The third sub-row represents the average of the two classes above it. We have
included a majority class baseline below for comparison. This was calculated by
assigning every event to the majority class and then calculating the results of
precision, recall and F1 score. The majority class is the negative class for both New
Knowledge and Hypothesis in the GENIA-MK corpus. In the EU-ADR corpus, the
majority class is the positive class for New Knowledge and the negative class for
Hypothesis. In addition, we include results for the rule-based baseline from
Thompson et al. [28], as described previously

For the classification of New Knowledge and Hypothe-
sis, we incorporated features denoting the existing meta-
knowledge values of the event for Knowledge Source,
Knowledge Type and Uncertainty. Knowledge Source
indicates whether an event is current to the research in
question, or whether it describes background work. This
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may be especially helpful for the detection of new knowl-
edge, since it is clear that any background work cannot
be classified as new knowledge. Knowledge Type classi-
fies events as falling into one of six categories, i.e., Fact,
Method, Analysis, Investigation, Observation or Other.
The Investigation category may have contributed to the
classification of Hypothetical events, whereas Observa-
tion and Analysis may have helped to contribute to the
detection of New Knowledge events. The Fact, Method
and Other categories could have helped the system to
determine that events did not convey either hyperdimen-
sion. Finally, Uncertainty describes whether an author
presented their results with confidence in their accuracy,
or with some hedging (e.g., use of the words may, possi-
bly, perhaps, etc.). This dimension could have helped to
contribute to the classification of hypotheses (where an
author states that an event may occur) and new knowl-
edge, where we expect an author to be certain about their
results.
We compared our results to those of Miwa et al. (2012)

in Table 6, where we showed a consistent improvement of
precision, recall and F1-score across all categories. Their
system used support vector machines (SVMs) for classi-
fication, with a set of features similar to our lexical and
structural features. However, our work used an enhanced
set of features as well as a random forest classifier, which
is typically robust in high dimensional classification prob-
lems [36]. These two factors contributed to our system’s
improved performance. Our system yielded an average
increase in precision of 0.156, but only yielded an aver-
age increase in recall of 0.04. This implies that the use of
a random forest and additional features mainly helped to
ensure that the system returned results which are consis-
tently correct. For both the ‘Fact’ and ‘Method’ Knowledge
Type values, our system yielded a slight dip in recall com-
pared to previous work. However, this was coupled with
an increase in precision of 0.210 and 0.298, respectively.
To understand the relative contributions made by our

switches in both feature set and type of classifier, com-
pared to previous work, we analysed the performance of
our system when using an SVM with our features instead
of a Random Forest. We attained a similar performance to
Miwa et al. using our feature set and SVM, although some
values were lower than those reported by Miwa et al. This
implies that our decision to use a different type of classi-
fier to Miwa et al. (i.e., Random Forest instead of SVM)
was the main reason behind our improved performance.
Different feature sets are better suited to different types
of classifiers, and our feature set was carefully selected (as
documented in Table 5) to be performant with a Random
Forest. Miwa et al.’s features were equally selected to per-
form well with an SVM. We have shown similar results
in prior work for a task on detecting metaknowledge for
negated bio-events [29], where we showed that tree-based

methods, including the Random Forest, outperformed
other techniques such as the SVM for detecting the nega-
tion dimension of metaknowledge.
We illustrated our results for the identification of the

novel dimensions New Knowledge and Research Hypoth-
esis in Table 9. These showed strong performance across
both corpora and association types (events and relations).
The results for the GENIA-MK corpus (events) outper-
formed those for the EU-ADR corpus (relations). This was
most likely due to the difference in size between the cor-
pora. There are over ten times more annotated events in
the subset of GENIA-MK that we annotated than rela-
tions in the subset of EU-ADR (6899 events vs. 622 rela-
tions). The fact that we annotated all of the 159 abstracts
available in the EU-ADR corpus and only 150 abstracts
fromGENIA-MK indicates that event structures are more
densely packed in GENIA-MK than relations in EU-ADR.
In particular, the EU-ADR corpus yielded a poor recall

value for Research Hypotheses. There were only 38 exam-
ples of relations annotated as Research Hypothesis in
the EU-ADR corpus. Our annotators reported that sev-
eral relations occuring in hypothetical contexts appeared
to have been missed by the original annotators of the
EU-ADR corpus, which may be the cause of this spar-
sity. However, adding additional relations to the corpus
was beyond the scope of the current work. The preci-
sion for the prediction of Research Hypothesis in the
EU-ADR corpus was 1.00, indicating that of those rela-
tions automatically classified as Research Hypothesis, all
were indeed Research Hypotheses (i.e., there were no false
positives). It is usually the case in minority class situations
that a classifier will tend towards classifying instances as
the majority class (i.e., favouring false negatives over false
positives), so this result is expected. We chose not to per-
form subsampling of the majority class, as the density of
Research Hypotheses or New Knowledge in our training
data is reflective of the density we would expect in other
biomedical abstracts.
Our corpus has focussed on identifying Research

Hypotheses and New Knowledge in biomedical abstracts.
However, it has been shown elsewhere that full texts
contain more information than abstracts alone [40].
Whilst our future goal is to additionally facilitate the
recognition of New Knowledge and Research Hypothesis
in full papers, our decision to focus initially on abstracts
was motivated by the findings of our earlier rounds of
annotation. These initial annotation efforts revealed that
the density of the types of MK that form the focus of
the current paper are very low in full papers and are
consequently difficult for annotators to reliably identify.
Therefore we chose to use abstracts, where the density
was higher, since the availability of as many examples
as possible of relevant MK was important for the devel-
opment of our methods. We noted that abstracts fairly
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consistently mention the main Research Hypotheses and
New Knowledge outcomes from a paper. However, fur-
ther informationmay be available in the full paper that has
not been mentioned in the abstract. To access this infor-
mation we will need to further adapt our techniques and
develop annotated corpora of full papers — this is left for
future work.

Error analysis
Finally, we present an analysis of some common errors
that our systemmakes and strategies for overcoming these
in future work. In the following sentence, the event cen-
tred on “regulation” was marked as Non-Hypothetical
by the annotators, but our system recognised it as a
Hypothetical event.
To continue our investigation of the cellular events

that occur following human CMV (HCMV) infection, we
focused on the regulation of cellular activation following
viral binding to human monocytes.

Event ID: E1
Trigger: regulation
Theme: activation following viral binding
Cause: N/A
Clue: focused

It is likely that this event was marked as a hypoth-
esis by the system because of the words ‘investigation’
and ‘focused’ that occur before it. However in this case,
the main hypothesis that the annotators have marked
is on the event centred on ‘occur’ preceding the event
centred around ‘focused’. To overcome this in future
work, we could implement a classification strategy that
takes into account MK information that has already been
assigned to other events that occur in the context of
the focussed event. A conditional random field or deep
learning model could be used for sequence labelling to
accomplish this.
The second error, which concerns the event centred

on “effects” in the following sentence, was marked as
Hypothetical by our annotators, but was classified as
Non-Hypothetical by our system.
MATERIAL AND METHODS: In the present study, we

analyzed the effects of CyA, aspirin, and indomethacin. . .

Event ID: E2
Trigger: effects
Theme: Cya, aspirin, and indomethacin
Cause: N/A
Clue: present study

This event is clearly stating the subject of the authors’
investigation, and so should be marked as hypothesis. It
is likely that our system was confused by the preceding
section heading, which led it to believe that this was part

of the background or methods, and not a statement of the
authors’ intended research goals. To overcome this, we
could identify these section headings automatically and
either exclude them from the text to be analysed, or use
them as extra features in our classification scheme.
In our third example error, the event in the sentence

below is centred on the phrase “result in decreased”. The
event was marked as new knowledge by the annotators,
but the system was not able to recognise it as such.
Down-regulation of MCP-1 expression by aspirin may

result in decreased recruitment of monocytes into the
arterial intima beneath stressed EC.

Event ID: E3
Trigger: result in decreased
Theme: recruitment of monocytes
Cause: Down-regulation of MCP-1 expression

by aspirin
Clue: N/A

We believe that the cause of this classification errors is
the unusual event trigger - themajority of events only have
a single verb as their trigger. To help the system to better
determine cases in which such events denote new knowl-
edge, it would be necessary to further increase our corpus
size, such that the training set includes a wider variety
of trigger types. A further factor affecting the inability
of the system to determine the new knowledge classifi-
cation may have been be the lack of an appropriate new
knowledge clue. In this case, the annotators most likely
determined this as an example of new knowledge due
to information from the wider context of the discourse.
We could improve our classifier by looking for clues in a
wider window, or by looking for discourse clues that might
indicate that the author is drawing their conclusions.
The final example below concerns an event (centred on

the verb “enhanced”), which was marked as ‘other knowl-
edge’ by the annotators, but which the system determined
to be an example of new knowledge.
Taken together, these data indicate that the unexpected

expression of megakaryocytic genes is a specific property
of immortalized cells that cannot be explained only by
enhanced expression of Spi-1 and/or Fli-1 genes

Event ID: E4
Trigger: expression
Theme: megakaryotic genes
Cause: N/A
Clue: indicate
Event ID: E5
Trigger: enhanced
Theme: expression of Spi-1 and. . .
Cause: E4
Clue: N/A
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In this example, the event is somewhat problematic as
regards the assignment of MK. Although it is clear both
that the sentence is a concluding statement, and that
there is some new knowledge contained within it, the
annotators chose not to mark the event with the trig-
ger “enhanced” as new knowledge, indicating that they
did not consider it to convey the main aspect of new
knowledge in this sentence. Interestingly, however, both
annotators agreed with the system that the event centred
on the first instance of “expression” should be marked as
an instance of new knowledge. The presence of the clue
‘indicate’ may be affecting the system’s classification deci-
sion in both cases. A human annotator can distinguish
that indicate is most relevant to ‘expression’, rather than
‘enhanced’, whereas our system was unable to make this
distinction.

Conclusions
We have presented a novel application of text mining
techniques for the discovery of Research Hypotheses and
New Knowledge at the level of events and relations. This
constitutes the first study into the application of super-
vised methods to assign these interpretative aspects at
such a fine-grained level. We firstly showed that by apply-
ing a Random Forest classifier using a new feature set,
we were able to achieve a better performance than previ-
ous efforts in detecting Knowledge Type.We subsequently
showed that the core MK dimensions of Knowledge Type,
Knowledge Source and Uncertainty could feed into the
training of classifiers that can predict whether events
and relations represent Research Hypotheses and New
Knowledge, with a high degree of accuracy. Our tech-
niques can be incorporated into a system that allows
researchers to quickly filter information contained within
the abstracts of research articles, as shown in previous lit-
erature [3]. Ourmethods generally favour precision on the
positive class (i.e., Research Hypothesis or New Knowl-
edge). Specifically, we attain a precision of between 0.863
and 1.00 on all of the corpus experiments. This demon-
strates that our approach is successful in avoiding the
identification of false positives, thus allowing researchers
to be confident that instances of Research Hypothesis or
New Knowledge identified by our method will usually
be correct.

Endnotes
1 the proportion of results returned by the system which

are correct.
2 the proportion of correct results returned by the sys-

tem as a fraction of all the correct results that should have
been found.

3 the balanced harmonic mean between precision and
recall, providing a single overall measure of performance.
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4. Stenetorp P, Pyysalo S, Topić G, Ohta T, Ananiadou S, Tsujii J. BRAT: a
web-based tool for NLP-assisted text annotation. In: Proceedings of the
Demonstrations at the 13th Conference of the European Chapter of the
Association for Computational Linguistics. Association for Computational
Linguistics; 2012. p. 102–107.

5. Agarwal S, Yu H, Kohane I. BioNØT: A searchable database of biomedical
negated sentences. BMC Bioinformatics. 2011;12(1):420. https://doi.org/
10.1186/1471-2105-12-420.

6. Medlock B, Briscoe T. Weakly supervised learning for hedge classification
in scientific literature. In: Proceedings of the 45th Annual Meeting of the
Association of Computational Linguistics. Prague, Czech Republic:
Association for Computational Linguistics; 2007. p. 992–9. http://www.
aclweb.org/anthology/P07-1125.

7. Vincze V, Szarvas G, Farkas R, Móra G, Csirik J. The BioScope corpus:
biomedical texts annotated for uncertainty, negation and their scopes.
BMC Bioinformatics. 2008;9(11):1–9.

8. Malhotra A, Younesi E, Gurulingappa H, Hofmann-Apitius M.
‘HypothesisFinder:’ a strategy for the detection of speculative statements
in scientific text. PLOS Comput Biol. 2013;9(7):1–10. https://doi.org/10.
1371/journal.pcbi.1003117.

9. Ruch P, Boyer C, Chichester C, Tbahriti I, Geissbühler A, Fabry P, Gobeill J,
Pillet V, Rebholz-Schuhmann D, Lovis C, et al. Using argumentation to
extract key sentences from biomedical abstracts. Int J Med Inform.
2007;76(2):195–200.

10. Teufel S, Carletta J, Moens M. An annotation scheme for discourse-level
argumentation in research articles. In: Proceedings of the Ninth
Conference on European Chapter of the Association for Computational
Linguistics. EACL ’99. Stroudsburg: Association for Computational
Linguistics; 1999. p. 110–7. https://doi.org/10.3115/977035.977051.

11. Mizuta Y, Collier N. Zone identification in biology articles as a basis for
information extraction. In: Proceedings of the International Joint
Workshop on Natural Language Processing in Biomedicine and Its
Applications. JNLPBA ’04. Stroudsburg: Association for Computational
Linguistics; 2004. p. 29–35. http://dl.acm.org/citation.cfm?id=1567594.
1567600.

12. Burns G, Dasigi P, de Waard A, Hovy EH. Automated detection of
discourse segment and experimental types from the text of cancer
pathway results sections. Database. 2016;2016:122. https://doi.org/10.
1093/database/baw122.

13. Liakata M, Saha S, Dobnik S, Batchelor C, Rebholz-Schuhmann D.
Automatic recognition of conceptualization zones in scientific articles
and two life science applications. Bioinformatics. 2012;28(7):991. https://
doi.org/10.1093/bioinformatics/bts071.

14. Simsek D, Buckingham Shum S, Sandor A, De Liddo A, Ferguson R. Xip
dashboard: visual analytics from automated rhetorical parsing of scientific
metadiscourse. In: 1st International Workshop on Discourse-Centric
Learning Analytics. Leuven; 2013.

15. Bundschus M, Dejori M, Stetter M, Tresp V, Kriegel HP. Extraction of
semantic biomedical relations from text using conditional random fields.
BMC Bioinformatics. 2008;9(1):207.

16. Bravo A, Piñero J, Queralt-Rosinach N, Rautschka LIM. Furlong: Extraction
of relations between genes and diseases from text and large-scale data
analysis: implications for translational research. BMC Bioinformatics.
2015;16(1):55.

17. Verspoor KM, Heo EG, Kang KY, Song M. Establishing a baseline for
literature mining human genetic variants and their relationships to
disease cohorts. BMC Med Inf Decis Mak. 2016;16(1):68.

18. Nedellec C. Learning language in logic-genic interaction extraction
challenge. In: Proceedings of the ICML-2005 Workshop on Learning
Language in Logic (LLL05); 2005. p. 31–7.

19. Kim JD, Pyysalo S, Ohta T, Bossy R, Nguyen N, Tsujii J. Overview of
BioNLP shared task 2011. In: Proceedings of the BioNLP Shared Task 2011
Workshop. Portland: Association for Computational Linguistics; 2011.
p. 1–6.

20. Pyysalo S, Ginter F, Heimonen J, Björne F, Boberg F, Järvinen F,
Salakoski T. BioInfer: a corpus for information extraction in the biomedical
domain. BMC Bioinformatics. 2007;8(1):50.

21. Sanchez-Graillet O, Poesio M. Negation of protein—protein interactions:
analysis and extraction. Bioinformatics. 2007;23(13):424. https://doi.org/
10.1093/bioinformatics/btm184.

22. Kim JD, Ohta T, Tsujii J. Corpus annotation for mining biomedical events
from literature. BMC Bioinformatics. 2008;9(1):1–25.

23. Van Mulligen EM, Fourrier-Reglat A, Gurwitz D, Molokhia M, Nieto A,
Trifiro G, Kors JA, Furlong LI. The EU-ADR corpus: annotated drugs,
diseases, targets, and their relationships. J Biomed Inform. 2012;45(5):
879–84.

24. Björne J, Ginter F, Salakoski T. University of Turku in the BioNLP’11 shared
task. BMC Bioinformatics. 2012;13(11):4.

25. Kilicoglu H, Bergler S. Biological event composition. BMC Bioinformatics.
2012;13(11):7.

26. Thompson P, Nawaz R, McNaught J, Ananiadou S. Enriching news
events with meta-knowledge information. Lang Resour Eval. 20161–30.
https://doi.org/10.1007/s10579-016-9344-9.

27. Walker C, Strassel S, Medero J, Maeda K. ACE 2005 multilingual training
corpus. Philadelphia: Linguistic Data Consortium; 2006.

28. Thompson P, Nawaz R, McNaught J, Ananiadou S. Enriching a
biomedical event corpus with meta-knowledge annotation. BMC
Bioinformatics. 2011;12(1):1–18.

29. Nawaz R, Thompson P, Ananiadou S. Negated BioEvents: Analysis and
identification. BMC Bioinformatics. 2013;14(1):14. https://doi.org/10.1186/
1471-2105-14-14.

30. Nawaz R, Thompson P, Ananiadou S. Something old, something new:
identifying knowledge source in bio-events. Int J Comput Linguist Appl.
2013;4(1):129–44.

31. Miwa M, Thompson P, McNaught J, Kell DB, Ananiadou S. Extracting
semantically enriched events from biomedical literature. BMC
Bioinformatics. 2012;13:108. https://doi.org/10.1186/1471-2105-13-108.
Highly Accessed.

32. Nawaz R, Thompson P, Ananiadou S. Meta-knowledge annotation at the
event level: Comparison between abstracts and full papers. In:
Proceedings of the Third Workshop on Building and Evaluating Resources
for Biomedical Text Mining (BioTxtM 2012); 2012. p. 24–31.

33. Cohen J. A coefficient of agreement for nominal scales. Educ Psychol
Meas. 1960;20(1):37–46. https://doi.org/10.1177/001316446002000104.

34. McHugh ML. Interrater reliability: the kappa statistic. Biochemia medica.
2012;22(3):276–82.

35. Miwa M, Sætre R, Kim JD, Tsujii J. Event extraction with complex event
classification using rich features. J Bioinforma Comput Biol. 2010;8(01):
131–46.

36. Breiman L. Random forests. Machine Learning. 2001;45(1):5–32.
37. Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH. The

WEKA data mining software: An update. SIGKDD Explor Newsl. 2009;11(1):
10–18. https://doi.org/10.1145/1656274.1656278.

38. Tsuruoka Y, Tateishi Y, Kim JD, Ohta T, McNaught J, Ananiadou S, Tsujii J.
Developing a robust part-of-speech tagger for biomedical text. Berlin,
Heidelberg: Springer; 2005, pp. 382–92. Advances in Informatics: 10th
Panhellenic Conference on Informatics, PCI 2005, Volas, Greece,
November 11-13, 2005.

39. Miyao Y, Tsujii J. Feature forestmodels for probabilistic HPSG parsing. Comput
Linguist. 2008;34(1):35–80. https://doi.org/10.1162/coli.2008.34.1.35.

40. Schuemie MJ, Weeber M, Schijvenaars BJA, van Mulligen EM,
van der Eijk CC, Jelier R, Mons B, Kors JA. Distribution of information in
biomedical abstracts and full-text publications. Bioinformatics.
2004;20(16):2597–604. https://doi.org/10.1093/bioinformatics/bth291.

https://doi.org/10.1007/BF02832018
https://doi.org/10.4049/jimmunol.1300976
https://doi.org/10.4049/jimmunol.1300976
https://doi.org/10.1093/bioinformatics/btx466
https://doi.org/10.1186/1471-2105-12-420
https://doi.org/10.1186/1471-2105-12-420
http://www.aclweb.org/anthology/P07-1125
http://www.aclweb.org/anthology/P07-1125
https://doi.org/10.1371/journal.pcbi.1003117
https://doi.org/10.1371/journal.pcbi.1003117
https://doi.org/10.3115/977035.977051
http://dl.acm.org/citation.cfm?id=1567594.1567600
http://dl.acm.org/citation.cfm?id=1567594.1567600
https://doi.org/10.1093/database/baw122
https://doi.org/10.1093/database/baw122
https://doi.org/10.1093/bioinformatics/bts071
https://doi.org/10.1093/bioinformatics/bts071
https://doi.org/10.1093/bioinformatics/btm184
https://doi.org/10.1093/bioinformatics/btm184
https://doi.org/10.1007/s10579-016-9344-9
https://doi.org/10.1186/1471-2105-14-14
https://doi.org/10.1186/1471-2105-14-14
https://doi.org/10.1186/1471-2105-13-108
https://doi.org/10.1177/001316446002000104
https://doi.org/10.1145/1656274.1656278
https://doi.org/10.1162/coli.2008.34.1.35
https://doi.org/10.1093/bioinformatics/bth291

	Abstract
	Background
	Methods
	Results
	Conclusion
	Keywords

	Background
	Related work

	Methods
	Annotation guidelines
	Corpora
	Annotation of new knowledge and research hypothesis
	Baseline method for new knowledge and research hypothesis
	A supervised method for extracting new knowledge and research hypothesis
	Uncertainty
	Knowledge source
	Knowledge type
	Research hypotheses and new knowledge


	Results
	Discussion
	Error analysis

	Conclusions
	Additional files
	Additional file 1
	Additional file 2
	Additional file 3
	Additional file 4
	Additional file 5
	Additional file 6
	Additional file 7
	Additional file 8
	Additional file 9
	Additional file 10

	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors' contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher's Note
	References

