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Acronyms: AD (Anaerobic Digestion), BI (Biodegradability Index), COD (Chemical Oxygen Demand),  
TS (Total Solids), VS (Volatile Solids). 
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Abstract 

Very recently, integrated biorefinery approaches are being developed with the aim to produce 

high-value products for a variety of industries in conjunction with green energy from 

sustainable biomass. Macroalgae (seaweed) have been regarded as more sustainable 

compared to terrestrial crops, since they do not occupy land for growth. Macroalgal biomass 

changes greatly according to species and harvest season, which affects its chemical energy 

potential. This study was conducted seasonally on five species of brown seaweed over a 

yearlong period to investigate the effects of chemical composition variations, bioproducts 

extraction processes and inoculum acclimatation on methane production. As a result of the 

bioproducts extraction, it was found the seaweed residues exhibit a great potential to produce 

methane. Stoichiometric methane yield and C:N ratio changed in favour of an improved 

digestibility with bioconversion rates greater than 70% in some instances, i.e. achieved by 

Laminaria species and on the West coast Fucus serratus. The two Laminaria species 

investigated also presented the highest CH4 production rate, with Laminaria digitata reaching 

523 mL CH4 gVS-1 and L. saccharina peaking at 535 mL CH4 gVS-1 with acclimatised and 

non-acclimatised sludge respectively. 

Keywords: Macroalgae Residues, Extraction, Integrated Biorefinery, Methane Potential, 
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1. Introduction: 

Seaweed biomass has been under the spotlight as feedstock for biogas production in the 

recent years. Seaweeds (or macroalgae) are regarded as third generation feedstocks for 

biofuels, since their use as energy crops exhibits several advantages when compared to 

terrestrial crops [1]. In particular, they are not quite used as food source on a global scale, 

which minimises the impact on price related to the food versus fuel debate for first generation 

feedstocks, e.g. corn or palm oil. Furthermore, unlike second generation lignocellulosic crops 

such as wood, maize or grass, cultivation of macroalgae does not occupy arable land. This 

translates into multiple benefits for cultivating marine crops. These are low or absent in lignin 

content (recalcitrant to biofuels conversion), no fresh water or nutrients provision is needed 

for growth. Also, faster growing rates than land crops and higher CO2 remediation potential 

have been reported due to a more efficient photosynthesis [2]. Nonetheless, seaweed 

conversion to biofuels encounters several technical challenges such as seasonal variation in 

composition also depending upon geographical location [3] and necessity to undertake 

assessments of the impact of systematic wild-harvesting on marine ecosystems. Hence, 

cultivation techniques need to be improved or re-designed to fulfil specific species’ 

requirements locally. 

The EU has underpinned that seaweed biogas or biomethane as transport fuel may be playing 

a significant role for energy generation in the near future [4]. However, the main obstacle to 

harvesting the seaweed-to-energy potential lies in the vast volumes of biomass required to 

generate meaningful energy contribution to help the shift towards replacement of fossil fuels. 

A very interesting study by Allen et al. [5] on seaweed gaseous biofuels suggests its 

feasibility would be possible if suitable volumes of feedstock are obtained via aquaculture. It 

is yet unknown how this can be achieved sustainably as aquaculture techniques developed so 

far are not cost-effective to justify the use of this resource solely for energy purposes. A 

review by Ghadiryanfar et al. [6], identifies that, despite being more cost-competitive than 

other renewables, biofuels and bioenergy from macroalgae entail higher costs than terrestrial 

biomass due to costly cultivation. In their study, in fact, Roesijadi et al. [7] regards this as a 

key issue. The authors also identify that biogas production from macroalgae is more 

technically-viable than for other fuels however, the cost of marine crops needs to be reduced 

by 75% of the present level to make macroalgal biogas economically-feasible. The feasibility 

of algal biofuels can be significantly enhanced by a high-value co-product strategy [8] using 

an integrated biorefinery approach to produce simultaneously bioproducts and biofuels to 



enable circular economies. A comprehensive review by Jung et al. [9] on potentials of 

macroalgae as feedstock for biorefinery, reports that macroalgal biomass is currently utilized 

to source human food, algal hydrocolloids, therapeutic materials, fertilizer, and animal feed. 

The food industry, whose market share is 83–90% of the total seaweed industry, is the largest 

and accounts for $5 billion worldwide on an annual basis [7]. This means that the remaining 

10-17% used for extraction of bioproducts would be available to explore integrated 

biorefinery opportunities. In fact, when processed for extraction of bioproducts, a significant 

amount of sugar-rich seaweed residue is generated, which can easily be used for feeding 

anaerobic digesters. A study by Tedesco and Stokes [10] has investigated the biogas potential 

from macroalgal biorefined residues in October harvested in Co. Clare, Ireland. The authors 

identified a biogas potential between 182 and 453 mL gVS-1, with best results achieved from 

Laminaria spp. although they have not analysed the effect of seasonal variation on such 

yields. 

Seasonal variation in composition has a major influence in determining the methane potential 

from marine biomass. Therefore, in order to obtain a stable biogas production, investigations 

are needed over a year period to assess the variability of the methane yields achievable and 

plan for complementary co-substrates for digestion. Very few studies have been conducted on 

seasonal composition of macroalgae [11-13]. These, however, have not investigated 

biorefined algal residues but have rather characterised the biomethane potential from freshly 

harvested or drift seaweed biomass. Nizami et al. [14] reported that the selection or 

integration of biorefinery technologies should be based on its waste characterisation. As 

biochemical characterisation changes seasonally in the fresh feedstock, it is expected that 

algal residues will also present a changing composition depending upon harvesting periods. 

Seasonal variation in composition was also found to represent one of the major technical 

challenges for seaweeds in the biobased economy by van Hal et al. [15]. 

Brown macroalgae have been selected for this research as these are mainly used in Irish 

industrial applications across a variety of sectors. Ireland’s seaweed-based industry consists 

of small and medium businesses involved in production of animal nutrition, animal hygiene, 

plant health, soil fertilizers, alginate, cosmetics and nutraceutical products [16]. The Irish 

Fishery Board (BIM), reported that the Irish seaweed production and processing industry will 

be worth €30 million per annum by 2020 [17]. The waste products generated by this growing 

industry are not currently characterised for biofuels production. The literature heavily lacks 

of investigations examining the seasonal biogas potential from the algal waste streams 



derived from the existing bio-industry. Since feasibility studies on biogas generation from 

waste solids and liquids from seaweed processing plants are also relevant to government 

authorities [18], this study aimed at characterising the methane yield response from the most 

common Irish brown seaweed residues generated by the local bioindustry.  

Anaerobic digestion (AD) essays have been conducted over a yearlong period during which 

brown seaweed biomass has been wild-harvested seasonally at two opposite sides of the 

island, in order to evaluate the influence of geographical location on composition. These are 

Howth Bay, Co. Dublin on the East coast and a number of bathing beaches in Co. Galway 

and Co. Clare on the West coast. 

The harvested feedstocks underwent bioproducts extraction using room temperature 

extraction procedures provided by the project industry partner (Irish Seaweed Processors 

Ltd.) based in Ireland. The extraction processes used in this research also follow the seaweed 

biorefinery concept proposed by Balina et al. [19] in which polysaccharides, antioxidants, 

pigments and proteins are targeted by the extraction cascade that precedes a biogas 

production step, which utilises the leftover residue as input feed for AD.  The biochemical 

composition (1) was analysed after collection of the biomass and again following bioproducts 

extraction to identify the residual organics content. Effective methane yields (2) and 

biodegradability indices (3) against the theoretical stoichiometric yields were used to evaluate 

the methanogenic potential against the actual methane yields from the feedstocks. As the 

resulting pH of suspended residues solution was highly alkaline, acclimatation (4) of the 

inoculum for improved gas yields was also tested and yields compared with performance of 

non-acclimatised inoculum.  

 

2. Materials and Methods: 

2.1. Substrate collection and inocula 

Biomass of Fucus serratus (FS), Fucus vesiculosus (FV), Ascophyllum nodosum (AN), 

Laminaria digitata (LD), and Laminaria saccharina (LS) was collected seasonally at low tide 

(2015-16) and underwent extraction at room temperature of bio-compounds at laboratory 

scale, as per procedure provided by the industry partner (Irish Seaweed Processors Ltd). The 

extracting procedure adopted by the processing company targets the extraction of alginic 

acid, fucoidan, fucoxantin, laminarin, mannitol, and proteins.  



The collections took place on the East and West coasts of Ireland in order to investigate the 

effect of geographical location on the biomass composition. The harvesting sites were Co. 

Galway and Co. Clare beaches on the West side of the island with collections in May, 

September, November and January, and Howth Bay on the East side with collections in June, 

October, November and January. Samples were harvested and frozen within 24 hours to -

20°C until use. The collections started in May/June 2015 and were completed in January of 

the following year. 

In order to add the necessary fermenting microorganisms to the reactors, the residue samples 

were then incubated with 300 g of digested sewage sludge, provided by the wastewater 

treatment plant of Celtic Anglian Water (CAW) Ltd. The initial sludge’s pH was measured as 

8.1±0.02. Acclimatation was conducted by inoculating reactors with extracted residue of the 

same seaweed species to be subsequently digested and allowing fermentation to occur for 

approximately 10 days before incubation in the reactors. 

 

2.2. Proximate and ultimate analysis 

Dry organic matter or Total Solids (TS) and Volatile Solids (VS) contents were determined 

by using a high-temperature oven via overnight drying of the samples at 105 °C, followed by 

combustion at 575°C of the seaweed residues, as by standard procedure [20]. Tests were 

conducted in duplicate.  

The ultimate analysis was outsourced to Celignis Ltd. (Irish biomass laboratory) to identify 

the elemental composition of the fresh and residual substrates. The carbon, hydrogen, 

nitrogen, and sulphur contents of samples were obtained according to the European Standard 

procedure EN 15104:2011 [21], using an Elementar Vario MACRO Cube elemental analyser. 

The oxygen content was calculated by difference according to the formula in eq. 1: 

 

Oxygen (%) = 100 - Carbon(% Dry Basis) - Hydrogen(% Dry Basis) - Nitrogen(% Dry 

Basis) -Sulphur(% Dry Basis) - Ash(% Dry Basis)      (eq. 1) 

 

 

2.3. Bioproducts extraction methods 

Approximately 200 g of each individual macroalgal species’ fronds were manually chopped 

down to roughly <0.5cm and sealed in a food plastic bag, which was then extensively 

perforated to maximise soaking in the reagent solution. Bags were kept below solvent level 



by the aid of a weight. To simulate the industrial scale extraction process, the biomass species 

were extracted together in series using three separate buckets respectively containing 3L of 

ethanol 99.9% pure, then a mild acid (acetic acid pH 5.5) and finally a 5L solution of 10% 

w/w Na2CO3 (pH 9.5) at room temperature for the duration of 3 hours per extraction step. 

Ambient temperature was selected for the extractions as it has been proven to be almost as 

efficient as high-temperature extractions [22], thus constituting a cheaper alternative for 

seaweed processors to obtain bioproducts. Samples were then manually squeezed for about a 

minute and dried at 105±2 °C overnight in a muffle furnace. They were then cooled down 

and stored in a desiccator until use. The proximate and ultimate analysis on the extracted 

residues was determined by the methods described in the previous section. 

 

2.4 pH measuring and adjustments 

The samples’ pH was measured using a Hanna precision pH meter, model pH 213 prior to 

and after digestion was completed. Furthermore, pH adjustments were required as following 

the last alkaline extraction with 10% w/w Na2CO3, pH of the residues was found above 9. As 

this value is not suitable for a well performing AD process, which has been found to be 7.5 – 

8.5 [23, 24], adjustments were carried out with 0.1N sulphuric acid solution in order to bring 

the initial pH to neutral.  

 

2.5. Batch experiments 

The bioreactors set-up was conducted following procedure VDI 4630 [25]. The reactors 

consisted of borosilicate glass flasks of 500 ml each in capacity. Each bioreactor was filled 

with 300 g of inoculum (digested sewage sludge or acclimatised sludge) and 20 g of seaweed 

residues. Each bioreactor condition was performed in triplicate. The pH of each sample was 

adjusted to neutral prior to incubation with the inoculum. A biogas analyser, model Drager X-

Am 3000, was used to verify anaerobic conditions were created correctly when preparing the 

reactors and to analyse the gas composition at the end of the collection period. An upturned 

measuring cylinder was utilized to derive the biogas volume. The whole system configuration 

is replicated from Montingelli et al. [26]. Water-baths were used to keep the reactors at a 

fixed mesophilic temperature of 38 ± 1 °C for the duration of a retention time of 21 days. A 

control sample of each inocula in double replication was used to determine the inoculum 



contribution to the biogas formation, which has been then subtracted from the biogas co-

digestion volume in order to determine the actual yields of the seaweed residues. 

 

2.6. Chemical oxygen demand of extracted macroalgae leachates 

The total chemical oxygen demand (tCOD) content is widely used to evaluate the amount of 

organic matter within water and wastewater. This parameter was used in this study to 

estimate the organic matter dissolved in the residue samples. The procedure for tCOD 

analysis was performed according to Hach Lange [27]. The procedure involved a Hach Lange 

standard kit (range 0–1500 mg L−1, Düsseldorf, Germany) and a Hach Lange DR2000 

spectrometer to read the tCOD concentrations in the samples. 

 

2.7 Theoretical methane yields and anaerobic biodegradability index 

Results from the elemental analysis, described in section 2.2., were used to derive the 

stoichiometric methane potential (SMP) of the seaweed species under investigation prior to 

and following the chemical extraction cascade using Buswell’s equation in eq. 2 [28].  

𝐶𝐶𝑐𝑐𝐻𝐻ℎ𝑂𝑂𝑜𝑜𝑁𝑁𝑛𝑛𝑆𝑆𝑠𝑠 +  1/4(4𝑐𝑐 − ℎ − 2𝑜𝑜 + 3𝑛𝑛 + 2𝑠𝑠)𝐻𝐻2𝑂𝑂 = 1/8(4𝑐𝑐 + ℎ − 2𝑜𝑜 − 3𝑛𝑛 − 2𝑠𝑠)𝐶𝐶𝐻𝐻4 +

1/8(4𝑐𝑐 − ℎ + 2𝑜𝑜 + 3𝑛𝑛 + 2𝑠𝑠)𝐶𝐶𝑂𝑂2 + 𝑛𝑛𝑁𝑁𝐻𝐻3 + 𝑠𝑠𝐻𝐻2                                                    (eq. 2) 

A biodegradability index (BI) in eq. 3 was used to estimate the digestion efficiency via 

biochemical methane potential (BMP) essays. The BMP was calculated as % of the SMP 

yield from eq. 2 of the extracted feedstock achieved at the end of the digestion period. 

𝐁𝐁𝐁𝐁 % = 𝐒𝐒𝐒𝐒𝐒𝐒−𝐁𝐁𝐒𝐒𝐒𝐒
𝐒𝐒𝐒𝐒𝐒𝐒

 × 𝟏𝟏𝟏𝟏𝟏𝟏         (eq. 3) 

 

 

3. Results and discussion: 

3.1 Effect of seasonality and harvest location on organics composition 

Results of the proximate analysis on the freshly collected seaweed biomass are reported in 

Table 1, while results for the extracted residues are shown in Table 2.   



 

VS% of TS TS% 

May Jun Sep Oct Nov Jan May Jun Sep Oct Nov Jan 

East 

FS*  82 (0.17) 
 

77 (0.08) 76 (0.23) 70 (0.11)  26 (0.01) 
 

24 (0.14) 18 (0.01) 21 (0.31) 

FV*  74 (0.11) 
 

71 (0.85) 76 (0.01) 66 (0.23)  19 (0.13) 
 

26 (0.02) 22 (0.06) 25 (0.16) 

AN*  74 (0.43) 
 

72 (0.07) 72 (0.17) 66 (0.01)  26 (0.18) 
 

28 (0.04) 25 (0.24) 29 (0.27) 

LD*  76 (0.20) 
 

71 (0.10) 75 (0.18) 66 (0.09)  21 (0.22) 
 

16 (0.13) 14 (0.21) 14 (0.17) 

LS*  73 (0.13)  70 (0.41) 78 (0.00) 72 (0.20)  16 (0.14)  18 (0.21) 19 (0.01) 17 (0.11) 

West 

FS* 79 (0.03) 
 

73 (0.47) 
 

77 (0.02) 70 (0.45) 19 (0.19) 
 

29 (0.11) 
 

22 (0.12) 18 (0.02) 

FV* 73 (0.14) 
 

68 (0.44) 
 

76 (0.41) 76 (0.26) 20 (0.21) 
 

28 (0.07) 
 

24 (0.23) 21 (0.06) 

AN* 73 (0.25) 
 

76 (0.05) 
 

80 (0.15) 75 (0.19) 28 (0.15) 
 

34 (0.13) 
 

30 (0.16) 23 (0.08) 

LD* 73 (0.55) 
 

71 (0.26) 
 

70 (0.05) 66 (0.01) 11 (0.09) 
 

18 (0.16) 
 

15 (0.05) 13 (0.21) 

LS* 70 (0.34)  81 (0.09)  80 (0.04) 72 (0.18) 13 (0.10)  24 (0.22)  26 (0.11) 16 (0.13) 

(*):  FS=Fucus serratus, FV=Fucus vesiculosus, AN=Ascophyllum nodosum, LD=Laminaria digitata, LS=Laminaria saccharina. 

 

Table 1. Dry matter and organic fraction in fresh un-extracted seaweed samples. 

  



 

 

  VS% of TS TS% 

  May Jun Sep Oct Nov Jan May Jun Sep Oct Nov Jan 

East 

FS*  71 (0.12) 
 

76 (0.13) 78 (0.01) 77 (0.01)  16 (0.02) 
 

25 (0.23) 28 (0.27) 22 (0.11) 

FV*  77 (0.05) 
 

77 (0.07) 72 (0.22) 76 (0.05)  21 (0.17) 
 

31 (0.03) 26 (0.13) 24 (0.16) 

AN*  78 (0.04) 
 

73 (0.08) 68 (0.12) 77 (0.03)  19 (0.04) 
 

25 (0.11) 26 (0.18) 23 (0.21) 

LD*  71 (0.11) 
 

74 (0.01) 74 (0.04) 68 (1.14)  14 (0.16) 
 

21 (0.31) 23 (0.01) 15 (0.26) 

LS*  69 (0.16)  74 (0.07) 68 (0.08) 75 (0.16)  11 (0.06)  20 (0.24) 22 (0.08) 17 (0.22) 

West 

FS* 73 (0.09) 
 

77 (0.04) 
 

70 (0.80) 77 (0.17) 25 (0.14) 
 

29 (0.16) 
 

14 (0.22) 24 (0.13) 

FV* 77 (0.09) 
 

75 (0.56) 
 

74 (2.67) 75 (0.35) 30 (0.19) 
 

29 (0.15) 
 

13 (0.29) 24 (0.09) 

AN* 64 (0.04) 
 

71 (0.01) 
 

79 (0.02) 78 (0.08) 33 (0.22) 
 

26 (0.05) 
 

15 (0.04) 28 (0.03) 

LD* 51 (0.35) 
 

72 (0.02) 
 

78 (0.92) 78 (0.04) 16 (0.25) 
 

21 (0.18) 
 

10 (0.07) 21 (0.10) 

LS* 70 (0.01)  72 (0.00)  71 (0.08) 73 (0.15) 15 (0.21)  20 (0.10)  12 (0.15) 16 (0.17) 

(*): FS=Fucus serratus, FV=Fucus vesiculosus, AN=Ascophyllum nodosum, LD=Laminaria digitata, LS=Laminaria saccharina. 

 

Table 2 Dry matter and organic fraction in extracted residues 

 



The proximate compositions of fresh samples generally reflect the range values found in the 

studies conducted by Allen et al. [5] and Edward et al. [29] on composition of brown 

seaweeds for AD in August. The first was conducted in the South coast of Ireland, while the 

second study analysed feedstock collected on the East coast of UK near Newcastle. These 

sites are bathed by the same geographical waters (less than 600 km from each other), i.e. the 

Irish Sea and the Northern Sea. Comparing results, however, it can be observed that the 

organic fraction in the dry matter heavily depends on location of harvesting within the same 

season. For example, Allen et al. has identified a VS% content of about 85% in FS collected 

in Southern Ireland in the summer. This value is very close to this study’s findings for the 

same species on East Ireland (82%) however, on the West coast this decreases to an estimated 

76% with a drop of about 9% in organics content. Similarly, comparing VS% in LD with the 

studies by Allen et al. and Edward et al. in the late summer with this study’s findings, three 

different values can be noted at different sites of harvesting: 73% South Ireland [5], 72% East 

UK [29] and around 71% West Ireland. Another example can be identified in the study by 

Tabassum et al. [12], which investigated the seasonal composition and biomethane 

production from AN. In November, the VS% of AN changes depending on geographical 

location of harvesting, e.g. 82% [12], 72% and 80% in the South, East and West of Ireland 

respectively. Again in November, another study on LD’s seasonal characterisation for 

biomethane production by Tabassum et al. [30], reports the organics fraction in biomass 

harvest from the South of Ireland at 75%. This value is maintained in harvest from the East, 

while a drop of 5% is observed feedstock collected in the West. Changes in VS% (of TS) can 

therefore be considered as location’s dependant, and such behaviour is exhibited by all 

species to different extents according to seasons. This is also reflected in the macroalgal 

residues’ composition. In Table 2, it can be observed that the proximate composition of each 

species presents changes from minor to significant in organics content depending on harvest 

location. In November for instance, FV’s variation among locations is about 2%, while AN’s 

can vary by 11%. Large variations in organics are of tremendous significance to the rates of 

biofuel conversion that can be expected, as actual methane yields are positively related to the 

amount of VS in biomass. 

 

In relation to seasons, a study by Marinho-Soriano et al. [31], reports a positive correlation 

between carbohydrates content and temperature, while another study relates higher light 

intensity to increased production of polysaccharides [32]. Also, a study by Black [33] reports 



that sugars concentration is high in the summer period for brown seaweeds. Therefore, in 

freshly harvested feedstocks the highest methane potential is expected in the warmer seasons 

due to the highest amount of VS content, see also Table 1. This has been confirmed by a 

study on seasonal biomethane yields from LD, where July is considered the best month for 

harvest [34]. However, this cannot be systematically the case as the concentration of 

inhibitors, such as polyphenols and salt accumulation, has been found to affect the actual 

conversion to methane [12].  

From Table 2, a seasonal variation in organics can also be observed in the macroalgal 

residues. However, the final composition of the residues cannot solely be attributed to the 

starting composition, which is certainly also dependent on seaweed species, harvesting 

location and extraction procedures, including possible interactions between such factors. We 

suggest possible explanations for gain or loss of VS% found in the residues involve factors 

such as formations of pH gradients during the process, different plant’s membrane 

permeability and residual vitality of the plant, which determines the stock’s susceptibility to 

the extractions. Furthermore, since feedstocks were extracted all at once to replicate the 

industrial process, partial migration and/or retention of organics from the reagent solutions 

cannot be excluded. Overall it can be stated that highest values of VS are more recurrent in 

the colder months for all species. 

 

 

3.2 Effect of bioproducts extraction cascade on suitability for AD 

Outcomes of the ultimate analysis on fresh un-extracted and extracted biomass species are 

reported in Table 3, showing the weight in % of C, H, N, S and O in the samples against each 

species across harvest periods. When missing, values have been interpolated between the 

previous and the following period recorded, assuming linear correlation. The combined effect 

of seasonal variation, harvest site and extraction procedures on the C:N ratio and residues’ 

tCOD concentrations is reported in Table 4. 

 

 



 

 

Fresh samples Extracted residues 

Period 
East West East West 

FS h FV h AN h LD h LS h FS h FV h AN h LD h LS h FS h FV h AN h LD h LS h FS h FV h AN h LD h LS h 

%Ca,c 

MAY      39.2 37.2 37.8 40.1 36.0      40.4 40.4 37.4 29.8 31.4 

JUNE 46.8 39.2 39.3 39.1 39.0 40.6* 38.3* 39.8* 38.1* 37.4* 37.1 39.5 40.8 38.9 37.1 40.7* 40.0* 38.4* 33.0* 34.0* 

SEPT 41.8* 39.2* 38.6* 36.6* 37.1* 42.1 39.5 41.9 36.1 38.7 38.7* 40.1* 39.7* 37.9* 37.7* 41.1 39.6 39.4 36.2 36.7 

OCT 38.4 38.5 37.5 32.5 32.2 39.6* 38.7* 40.7* 34.0* 37.5* 40.3 40.6 38.5 36.8 38.4 39.4* 39.8* 40.9* 36.7* 36.7* 

NOV 36.8 39.1 37.8 34.2 35.2 37.2 38.0 39.6 31.8 36.3 40.8 38.3 36.6 37.5 35.5 37.7 40.0 42.4 37.2 36.6 

JAN 35.2 35.5 36.5 29.8 32.5 36.1 37.8 39.3 29.9 32.8 40.7 40.1 40.6 36.5 38.4 42.9 40.2 44.3 41.4 40.5 

%Ha,d 

MAY      5.3 4.5 5.2 4.4 4.5      4.5 4.9 5.4 3.1 4.2 

JUNE 5.7 1.6 4.5 1.8 4.9 5.0* 4.5* 5.1* 4.3* 4.6* 3.7 4.5 4.2 4.5 4.0 4.6* 4.7* 5.0* 3.9* 4.2* 

SEPT 5.3* 3.2* 4.7* 3.3* 4.8* 4.7 4.4 5.0 4.2 4.8 4.4* 4.7* 4.5* 4.7* 4.5* 4.8 4.6 4.6 4.8 4.3 

OCT 5.0 4.8 4.9 4.7 4.6 4.9* 4.5* 5.0* 4.5* 4.9* 5.0 5.0 4.7 4.9 5.1 4.7* 4.9* 5.0* 5.3* 4.5* 

NOV 5.3 4.8 4.6 4.6 5.8 5.0 4.6 5.1 4.7 5.0 4.6 4.2 4.3 6.1 5.9 4.7 5.1 5.4 5.8 4.8 

JAN 4.4 4.4 4.5 4.7 4.3 4.2 4.4 4.8 4.1 4.1 4.5 4.7 4.6 4.3 4.6 4.6 4.7 4.8 4.8 4.7 

%Na,e 

MAY      2.1 2.2 1.5 3.0 2.7      1.9 1.8 1.3 1.4 2.3 

JUNE 2.3 4.6 2.0 5.3 2.0 1.7* 1.6* 1.1* 2.2* 1.8* 2.2 1.6 1.8 1.8 1.7 1.6* 1.3* 1.0* 1.2* 1.5* 

SEPT 2.0* 3.1* 1.6* 3.5* 2.1* 1.3 0.9 0.8 1.3 0.8 1.9* 1.6* 1.5* 1.7* 1.7* 1.4 0.9 0.7 0.9 0.7 

OCT 1.7 1.6 1.3 1.7 2.3 1.3* 1.2* 0.8* 1.4* 1.1* 1.6 1.7 1.2 1.6 1.7 1.2* 1.2* 0.7* 1.2* 1.0* 

NOV 2.0 2.2 1.6 1.9 2.7 1.3 1.5 0.8 1.4 1.3 1.5 1.9 1.3 1.4 1.4 1.1 1.6 0.7 1.5 1.3 

JAN 1.9 2.3 1.8 2.1 3.2 2.1 2.7 1.6 2.4 3.0 1.8 2.0 1.3 1.7 1.7 2.0 1.7 1.2 2.0 1.9 

%Sa,f 

MAY      1.1 2.3 1.5 1.1 0.8      0.8 2.9 2.5 0.3 0.8 

JUNE 1.4 4.2 1.7 1.1 0.8 1.5* 1.9* 1.7* 1.1* 0.8* 1.2 2.3 2.1 0.6 0.4 1.1* 2.1* 2.0* 0.5* 0.6* 

SEPT 1.6* 3.2* 1.9* 1.5* 1.0* 1.9 1.6 1.8 1.0 0.8 1.2* 2.0* 1.9* 0.8* 0.5* 1.4 1.3 1.6 0.7 0.5 

OCT 1.9 2.3 2.2 2.0 1.2 1.7* 1.6* 1.6* 1.2* 0.8* 1.3 1.8 1.7 1.0 0.7 1.3* 1.6* 1.7* 0.6* 0.5* 

NOV 1.0 3.6 1.9 0.5 1.0 1.4 1.6 1.4 1.4 0.9 0.9 1.0 0.9 0.4 0.3 1.3 1.9 1.7 0.5 0.6 



JAN 1.3 1.8 1.2 0.5 0.9 1.7 1.5 1.9 1.2 1.0 0.9 1.2 0.9 0.7 0.5 1.6 2.1 0.9 1.4 0.4 

%Oa,b,g 

MAY      31.9 27.0 27.0 24.4 26.4      0.8 2.9 17.3 0.3 0.8 

JUNE 25.5 24.6 27.0 28.5 26.4 27.6* 24.3* 26.7* 26.6* 31.3* 27.3 28.9 29.4 25.0 25.9 1.1* 2.1* 9.4* 0.5* 0.6* 

SEPT 27.8* 24.4* 26.7* 29.4* 28.2* 23.3 21.7 26.5 28.8 36.3 14.3* 15.3* 15.5* 13.0* 13.3* 1.4 1.3 1.6 0.7 0.5 

OCT 30.1 24.2 26.4 30.3 30.0 27.7* 25.8* 29.8* 29.9* 36.3* 1.3 1.8 1.7 1.0 0.7 1.3* 1.6* 1.7* 0.6* 0.5* 

NOV 31.2 26.7 26.4 34.1 33.2 32.1 29.8 33.2 30.9 36.3 0.9 1.0 0.9 0.4 0.3 1.3 1.9 1.7 0.5 0.6 

JAN 27.3 22.2 22.2 29.0 31.1 25.9 29.8 27.8 28.0 31.3 0.9 1.2 0.9 0.7 0.5 1.6 2.1 0.9 1.4 0.4 
a Molecular weight: C=12.01, H=1.01, N=14.00, S=32.07, O=15.99. 
b Oxygen content was calculated by difference according to (eq.1). 
c standard deviation range across measurements 0.00-0.30. 
d  standard deviation range across measurements 0.01-0.13. 
e standard deviation range across measurements 0.00-0.07. 
f standard deviation range across measurements 0.00-0.59. 
g standard deviation range across measurements 0.00-0.65. 
h FS=Fucus serratus, FV=Fucus vesiculosus, AN=Ascophyllum nodosum, LD=Laminaria digitata, LS=Laminaria saccharina. 
* estimated averaged values among periods. 

 
Table 3 Elemental composition in % of dry matter (TS) of the seaweed sp. samples by season and harvest location 

 

 



 

 

   
MAY JUNE SEPT OCT NOV JAN 

FS* 

East 
C:N initial     20.3       22.3   18.1   18.5   

C:N Residual     16.9       24.4   27.0   22.5   

tCOD Res [g/l]     12.7±0.001     29.3±0.003 39.5±0.001 25.1±0.001 

West 
C:N initial 19.0       32.7       29.7   16.9   

C:N Residual 21.7       29.4       25.3   21.2   

tCOD Res [g/l] 22.1±0.002     22.6±0.001     20.9±0.002 18.5±0.001 

FV* 

East 
C:N initial     8.5       23.4   17.8   15.6   

C:N Residual     24.7       24.0   20.7   19.6   

tCOD Res [g/l]     16.6±0.002     27.4±0.004 20.4±0.001 9.0±0.002 

West 
C:N initial 17.2       41.8       25.3   14.2   

C:N Residual 22.3       44.7       25.3   24.2   

tCOD Res [g/l] 23.2±0.007     18.6±0.001     15.8±0.003 23.3±0.002 

AN* 

East 
C:N initial     19.7       29.2   23.9   20.6   

C:N Residual     24.7       33.2   27.5   31.7   

tCOD Res [g/l]     17.1±0.003     18.7±0.003 11.2±0.001 18.2±0.001 

West 
C:N initial 25.9       51.1       49.5   24.3   

C:N Residual 29.8       60.2       59.7   36.0   

tCOD Res [g/l] 27.4±0.006     15.9±0.0011     17.5±0.004 16.1±0.001 

LD* 

East 
C:N initial     7.4       18.8   18.2   14.0   

C:N Residual     21.6       22.6   25.9   22.1   

tCOD Res [g/l]     32.4±0.001     51.0±0.001 35.5±0.001 18.2±0.001 

West 
C:N initial 13.2       27.5       22.2   12.4   

C:N Residual 23.2       40.5       23.9   21.1   

tCOD Res [g/l] 18.5±0.001     28.2±0.008     34.9±0.003 24.6±0.001 

LS* 

East 
C:N initial     19.5       14.3   12.9   28.1   

C:N Residual     21.8       22.1   24.5   22.9   

tCOD Res [g/l]     20.7±0.001     35.3±0.002 28.1±0.001 17.4±0.001 

West 
C:N initial 13.2       47.2       27.7   10.9   

C:N Residual 13.5       53.6       27.8   21.9   

tCOD Res [g/l] 14.8±0.008     21.4±0.001     33.3±0.001 25.4±0.000 
(*): FS=Fucus serratus, FV=Fucus vesiculosus, AN=Ascophyllum nodosum, LD=Laminaria digitata, LS=Laminaria saccharina. 

 
Table 4. Seasonal and geographical variation of C:N ratio and tCOD measurements. 

 

The extraction procedure has generally caused an increase in C:N ratio across the samples, 

which in most cases means an improved suitability for AD. For example, FS harvested on the 

East coast naturally presents a value of 8.5 which is too low for a stable digestion. After 

extraction this increases to 24.7, which instead is in the range of what the literature [35] 



suggests to promote stable yields and avoid inhibition. This would indicate that seaweed 

residues following alike-extraction procedures would be more suitable for biogas conversion 

than fresh or drift seaweed substrates alone. In the actual anaerobic fermentation trials in co-

digestion, the C:N parameter fell within the ideal range as adjusted by the carbon and 

nitrogen content of the sludges used as inocula. 

 

The tCOD concentrations in Table 4 for the residues are above those obtained from seaweed 

leachate by Nkemka and Murto [36], which found a value of about 10 g L-1 in tCOD after 

removal of heavy metals. Montingelli et al. has investigated the biomethane potential of a 

mixture of brown seaweeds at three different harvesting periods [13] to estimate the benefits 

of mechanical pretreatments. In the compositional analysis of the untreated seaweed mix, 

which presented the highest values, the authors report soluble COD (sCOD) values up to 7.6 

g L-1  in May, 12.43 g L-1  in November, and 12.80 g L-1 in March, these indicate higher 

values in tCOD. The values obtained in this research are more in line with the tests conducted 

by Gurung et al. [37] on fresh samples of seaweeds among other substrates. Fresh mixtures of 

green and brown algae resulted in a tCOD of 26 ± 0.1 g L-1 and 31 ± 0.1 g L-1 respectively. 

The results show a positive correlation between tCOD content and methane yield however, 

there appears to be an upper limit to the benefit of increasing organics in the digester, due to 

overload or inhibition by other toxic compounds. In our study higher concentrations indicate 

a significant amount of organic matter is present following the extractions and it is available 

to be converted to biogas via AD. The high values recorded in some species’ leachates can 

also be the result of the organic solvents used, which could have been retained within the 

plant cells. 

 

Table 5 shows the results of the SMP calculations described by eq. 2, section 2.7. It also 

reports the average seasonal value of the C:N ratio. This is higher than for fresh biomass 

(Table 3), which highlights an improvement towards a better digestibility for the residual 

samples (C:N>20). This makes the macroalgal residues a more flexible substrate for co-

digestion with other biowaste, with the exception of AN and Laminaria spp. harvested in 

September and November on the West coast. These are too high in C:N (>30), refer to Table 

4, and will therefore need to be balanced by co-digestion with nitrogen-rich substrates. As 

noted for variation in VS% in section 3.1, also a gain/loss effect in SMP can be observed if 

compared with the fresh feedstock.  



The SMP values obtained for AN are in line with values found by Tabassum et al. [12], 

which calculated the potential methane yield variations according to seasons, while for the 

other species are in agreement with values found by Allen et al. [5] for all other species in the 

summer period. This demonstrates the extracted residues have great potential to be used as 

substrates in AD systems. From Table 5, the highest average SMP of the residues is provided 

by the Laminaria spp. (about 525 mL CH4 gVS-1) harvested on the East coast, while the most 

promising residual substrate on the West would be AN with an average of 567 mL CH4 gVS-

1. Feedstock being equal, the site of harvest again can be seen affecting the seasonal SMP 

values for the fresh as well as the residues. For example, values from residues of FS in 

November differ by about 8%, favouring collection from the West rather than the East coast. 
 

  

SMP (fresh) 
[mL CH4 gVS-1] 

SMP (residues) 
[mL CH4 gVS-1] 

  
MAY JUNE SEPT OCT NOV JAN MAY JUNE SEPT OCT 

NO
V 

JA
N 

East 

FS   601 
 

465 469 471   473 
 

518 490 501 

FV   352 
 

523 464 519   493 
 

503 496 498 

AN   494 
 

502 497 547   485 
 

509 531 500 

LD   361 
 

419 413 436   550 
 

481 555 526 

LS   363   425 447 398   514   516 575 493 

West 

FS 486 
 

563 
 

457 476 552 
 

507 
 

531 525 

FV 493 
 

574 
 

469 448 495 
 

504 
 

533 509 

AN 536 
 

542 
 

469 495 627 
 

546 
 

535 561 

LD 533 
 

468 
 

422 410 576 
 

496 
 

487 505 

LS 356   435   418 393 397   484   507 555 
Average Seasonal C:N 17.7 15.1 40.1 21.6 24.5 17.5 22.1 21.9 45.7 25.3 28.8 24.3 
FS=Fucus serratus, FV=Fucus vesiculosus, AN=Ascophyllum nodosum, LD=Laminaria digitata, LS=Laminaria 
saccharina.   
 

Table 5 Stoichiometric methane potential (SMP) of fresh and extracted seaweeds by harvesting site 

 

The use of Laminaria spp. harvested in the East of Ireland and AN in the West would 

therefore improve the biomethane rates achievable from the macroalgal residues. Theoretical 

yields calculated from the chemical composition of macroalgae using eq.2 can be high 

however, practical yields of biogas from the anaerobic digestion of seaweed are considerably 

below the theoretical maximum [38]. This appears to be due to hydrolysis of complex 

polysaccharides such as alginates, which is regarded as the rate limiting step for AD of 

seaweed [39]. As part of these polysaccharides has been partially removed by the bioproducts 

extraction procedure, higher biodegradability should be possible in the actual fermentation 

(BMP). 



3.3 Effect of inoculum acclimatation on methane production 

The final pH was measured at the end of every digestion period for all reactors and it was 

found ranging between 7.5 and 7.9. Therefore, in this study such parameter did not affect the 

digestion significantly. Results from the BMP trials set up as described in section 2.5 are 

presented in Table 6 and include the derived BI values in relation to each type of inoculum 

used.  Practical yields from AD of fresh harvested seaweeds have been reported between 140 

and 400 mL CH4 gVS-1 [7, 40]. A study on Sargassum and Gracilaria spp. reported instead a 

greater yields range between 280 and 400 mL CH4 gVS-1, with bioconversion rates of 58-

95% [41]. These values are in line for most methane yields obtained in this study from the 

macroalgal residues, demonstrating the high value of these as bioresource for energy 

generation. In particular, methane yields between 47-535 mL CH4 gVS-1 are observed when 

co-digesting with sludge, while rates between 27-523 mL CH4 gVS-1 result from co-digestion 

with acclimatised sludge. Bioconversion greater than 70% was achieved on the Laminaria 

spp. regardless of the harvest site as well as FS harvest from the West coast. Furthermore, the 

two Laminaria species also presented the highest average CH4 production rate achieved with 

harvest from both locations, see average values in Table 6. 

 

In particular, the best results were obtained from LD residue from the East coast with 

acclimatised sludge (499 mL CH4 gVS-1), while on the West coast they are achieved co-

digesting LS residue with non-acclimatised sludge (504 mL CH4 gVS-1). Good performance 

of the inoculum could be caused by sugars being available in their simpler forms due to 

partial hydrolysis occurred as well as part of the alginic acid being lost for these species 

during the extraction. Also, a very interesting study by Sutherland et al. [39], investigated 

seven different microbial inocula and a mixture of these to test the efficiency at degrading 

Laminaria hyperborea seaweed and produce methane through AD. The authors conclude that 

higher bacterial charge in the inoculum should lead to higher methane yields due to 

acclimatation to digest phycocolloids, which can explain the higher rates for LD. 

As expected from the SMP indicators, both Laminaria species resulted in the highest BMP 

yields however, AN harvest has been converted to only half of its potential, resulting in a BI 

of 0.53 in the spring. The actual CH4 yield from fresh AN from Scandinavian waters, was 

also found at its maximum in May by Ometto et al. [42] however, this was extremely low 

(70-80 Nml/gVSadd) compared to our findings. This could be due to a significant difference 

found in proximate composition (>10%TS) and highly variable content in polyphenols for 

AN according to seasons which peaks in the spring [12]. Insoluble fibers and polyphenols are 



known to be difficult to degrade and potentially inhibiting for AD [43]. Also, 

biodegradability of biomass can be affected by several other factors like crystalline structure, 

the extent of cellulosic polymers, the surface properties of biomass, the amount of lignin 

content, the presence of hemicellulosic materials and the strength of fibers [44]. Other 

relevant studies were conducted on factors affecting the microbial digestion of an industrial 

seaweed-based residue of AN post alginate extraction [45, 46]. The residue characterised by 

these showed an alkaline pH of the substrate prior to digestion and the authors identified that 

the digestibility was influenced by soluble/insoluble matter and inocula’s metabolite 

inhibition, which are critical features for the digestion of the residues. They concluded that 

similar organic residues require a carefully chosen inoculum and a minimum initial insoluble 

content (65–70%) and/or a maximum soluble content (25-30%) of dry weight. 

 

 

 

 



 

 

  
BMP – Sludge 

[mL CH4 gVS-1] BI – Sludge inoculum BMP – Acclimatised Sludge 
[mL CH4 gVS-1] BI – Acclimatised Sludge 

  MAY JUNE SEPT OCT NOV JAN Average MAY JUNE SEPT OCT NOV JAN MAY JUNE SEPT OCT NOV JAN Average MAY JUNE SEPT OCT NOV JAN 

East 

FS*  248±11  317±14 293±17 143±13 250  0.52  0.61 0.60 0.28  63±18  246±18 283±10 226±64 205  0.13  0.47 0.58 0.45 

FV*  189±15  18±18 180±18 52±28 110  0.38  0.04 0.36 0.10  154±18  66±16 111±22 97±17 107  0.31  0.13 0.22 0.19 

AN*  209±9  172±19 106±12 173±29 165  0.43  0.34 0.20 0.35  167±29  142±20 181±27 256±21 187  0.34  0.28 0.34 0.51 

LD*  184±15  320±12 91±6 404±12 250  0.33  0.66 0.16 0.77  499±17  340±43 127±6 495±20 365  0.91  0.71 0.23 0.94 

LS*  285±12  471±15 218±24 243±32 304  0.55  0.91 0.38 0.49  88±16  433±16 255±35 385±28 290  0.17  0.84 0.44 0.78 

West 

FS* 279±19  129±18  416±21 125±27 223 0.51  0.25  0.78 0.24 363±21  161±19  271±16 198±14 248 0.66  0.32  0.51 0.38 

FV* 47±25  167±17  327±10 176±26 223 0.09  0.33  0.61 0.35 192±25  159±14  27±6 156±4 134 0.39  0.31  0.05 0.31 

AN* 334±32  96±15  340±24 92±23 176 0.53  0.18  0.64 0.16 144±58  113±19  123±22 141±29 130 0.23  0.21  0.23 0.25 

LD* 187±9  368±7  132±41 147±11 216 0.33  0.74  0.27 0.29 523±17  304±18  158±21 240±35 306 0.91  0.61  0.32 0.47 

LS* 320±11  177±9  504±11 535±5 405 0.81  0.37  0.99 0.97 236±25  110±13  312±19 436±23 273 0.59  0.23  0.61 0.79 

(*): FS=Fucus serratus, FV=Fucus vesiculosus, AN=Ascophyllum nodosum, LD=Laminaria digitata, LS=Laminaria saccharina. 

 

Table 6 Biochemical methane potential (BMP) and biodegradability indices (BI) obtained with and without acclimatation



Seasonal BIs are plotted for each species in Figures 1-5 against tCOD [10-2 g L-1] 

concentrations and ash-to-volatile (A:V) ratio in % within the samples, to help evaluate the 

interactions between composition and digestion performance. It can be noticed that in many 

instances the BIs’ trend follows the distribution of the tCOD parameter, e,g. Figure 3(a). In 

other cases, these appear to follow the trend exhibited by the result of both indicators’ 

influence, e.g. Figure 3(b). From Figures 2(b)) and 5(b), it can be observed that the A:V ratio 

appears fairly stable with low variations, hence this is assumed not to be significant on the 

final methane yield. Higher values of A:V ratio in the sample resulted in reduced BI due to 

higher insoluble matter, particularly when coupled with low tCOD concentrations in the 

reactor. This is particularly evident in Figure 3(a) and these conditions are responsible for the 

lowest yield in November. 

Higher BIs are instead observed in presence of lower A:V ratio and higher tCOD 

concentrations. This can be seen clearly for FS in Figure 1(a), AN in Figure 3(b) and LD 

from both harvest sites, Figure 5. However, in the case of LD such parameters’ combination 

has resulted in the lowest methane conversion achieved across the digestion periods. In 

November, when A:V ratio is at its minimum and tCOD is high, the final BI is below 0.32; 

refer to Figure 4(a) and (b). This appears to be due to an overload of organics in the reactors. 

Another study by Tabassum et al. [30], reports seasonal BI rates from fresh LD between 0.44 

to 0.72 when seeding with dairy slurry, grass silage and seaweed, with biodegradation peaks 

achieved in the summer. In this investigation, the best BI values for LD were instead 

achieved in the spring with values above 0.9 with acclimatised sludge, producing about 34% 

extra methane compared to Tabassum et al.’s best results. In January high degradation was 

achieved (as high as May) with acclimatised inoculum, despite an increase in ash content for 

this period. This exhibits high tolerance for salts and other insoluble fibers during digestion. 

To summarise the outcomes of the BMP trials, on an annual basis acclimatation has been 

found effective at improving yields from AN and LD residues harvested in the East of 

Ireland, with increased average yields of 12% and 32% respectively over non-acclimatised 

seeding. For harvest collected instead on the West coast, acclimatation is recommendable 

when digesting FS and LD residues, with an advantage of 10% and 30% extra methane 

production. Benefits of inoculum acclimatation are species dependant as well as composition 

being affected by harvest location. Co-seeding with a portion of acclimatised inoculum could 

be extremely beneficial to digest residues that performed closely in BMP values with 

different inocula, like for example FS harvested in the West (Figure 1(b)). In this case, the 



addition of acclimatised inoculum will increase the BI by more than 20% on an annual basis, 

which will generate generous extra methane yields. Another study by Xia et al. [47] identified 

a change in process design via a two-stage digestion of marine feedstock can improve the 

quality of the biogas produced, as opposed to a single stage fermentation. Two-stage 

digestion has also been found to be increasing the methane production from AN residues after 

alginate extraction with yields of 237 mL CH4 gVS-1 [48]. Further optimisations to improve 

biodegradability and increase methane production from seaweeds involve particle size 

reduction to maximise surface area available to enzymatic action. Previous published work 

by Tedesco et al. [49-51] has regarded mechanical comminution of fresh macroalgae with 

final CH4 rates up to 53% higher than untreated biomass, particularly from Laminaria spp., 

when 80% of the particles were <1.6 mm2. However, since mechanical size reduction is 

costly, the viability of integrating a pretreatment step will need to be assessed on a case by 

case basis. Similar work on pretreatment was conducted by Rodriguez et al. [52] on freshly 

harvested seaweed Pelvetia canaliculata in a multi-objective optimization using a response 

surface methodology with a composite central design. Inoculum-to-substrate (ISR) ratio was 

varied in addition to pretreatment time, where digested sludge was used for seeding. The best 

results were achieved with the highest ratio (1:0.3), meaning higher inoculum shares would 

lead to an improved digestion of fresh seaweed. We believe this to be the case also for the 

macroalgal waste streams analysed in this study, as generally there is a positive correlation 

between greater BIs (%) and higher bacterial charge in the reactor. 

 

  



 

 

Figure 1 Biodegradability index (BI) variation of Fucus serratus in relation to tCOD content and A:V ration on samples harvested in the (a) East and (b) West coast of Ireland  
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Figure 2 Biodegradability index (BI) variation of Fucus vesiculosus in relation to tCOD content and A:V ration on samples harvested in the (a) East and (b) West coast of Ireland  
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Figure 3 Biodegradability index (BI) variation of Ascophyllum nodosum in relation to tCOD content and A:V ration on samples harvested in the (a) East and (b) West coast of Ireland  
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Figure 4 Biodegradability index (BI) variation of Laminaria digitata in relation to tCOD content and A:V ration on samples harvested in the (a) East and (b) West coast of Ireland  
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Figure 5 Biodegradability index (BI) variation of Laminaria saccharina in relation to tCOD content and A:V ration on samples harvested in the (a) East and (b) West coast of Ireland 
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4. Conclusion: 

The potential of macroalgal biorefinery to produce bioenergy in the final step of the 

bioresource valorisation’s chain is substantially unexploited. This study attempts to evaluate 

the feasibility of fermenting waste solids from seaweed processing plants to generate biogas 

on site. Seaweed residues from five spp. harvested from the East and West coastlines of 

Ireland were characterised and studied for anaerobic digestion.  Factors examined were 

seasonal biochemical variation in relation to bioproducts extraction, which significantly 

affected the change in fermentable solids. Inoculum acclimatation was also tested to enhance 

the reactors performance.  The results showed that acclimatation of inoculum is 

recommended for digestion of Ascophyllum nodosum harvested from the East coast, Fucus 

serratus from the West coast and generally for Laminaria digitata, with overall enhanced 

methane yields between 10-30% on an annual basis. 

Important correlations were identified for seasonal biodegradability rates, whose trends were 

found to follow the distribution of the tCOD and/or the ash:volatile-solids parameter, 

depending on species and geographical harvest location. High average methane yields on an 

annual basis are estimated between 107-405 mL gVS-1 from the residues, demonstrating the 

worthiness of anaerobic digestion for macroalgal waste streams in this integrated biorefinery 

configuration. The use of organic solvents at ambient temperature for the extraction cascade 

allows for production of bioproducts and simultaneously enriches the residual substrates, 

improving suitability for biogas production. This would aid towards an enhanced efficiency 

of commercial plants through maximised exploitation of the seaweed resource. 
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