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ABSTRACT  

Blood vessel disease is a major contributor to cardiovascular morbidity and mortality and is 

hallmarked by dysfunction of the lining endothelial cells (ECs). These cells play a significant 

role in vascular homeostasis, through the release of mediators to control vessel diameter, 

hence tissue perfusion.  Mesoporous silica nanoparticles (MSNs) can be used as potential 

drug delivery platforms for vasodilator drugs. Here, using an ex vivo model of vascular 

function, we examine the use of titania coating for improved biocompatibility and release 

dynamics of MSN loaded sodium nitroprusside (SNP). MSNs (95 ± 23 nm diameter; pore 

size 2.7 nm) were synthesised and fully characterised. They were loaded with SNP and 

coated with titania (TiO2), using the magnetron sputtering technique. Pre-constricted aortic 

vessels were exposed to drug loaded MSNs (at 1.96 x 1012  MSN mL-1)  and the time course 

of vessel dilation observed, in real time. Exposure of viable vessels to MSNs lead to their 

internalization into the cytoplasm of ECs, while TiMSNs were also observed in the elastic 

lamina and smooth muscle cell layers. We demonstrate that titania coating of MSNs 

significantly improves their biocompatibility and alters the dynamics of drug release.  A slow 

and more sustained relaxation was evident after uptake of TiMSN-SNP, in comparison to 

uncoated MSN-SNP (rate of dilation was 0.08% per min over a 2.5 h period). The use of 

titania coated MSNs for drug delivery to the vasculature may be an attractive strategy for 

therapeutic clinical intervention in cardiovascular disease. 

 

STATEMENT OF SIGNIFICANCE 

Cardiovascular disease is a major cause of mortality and morbidity worldwide, with a total 

global cost of over $918 billion, by 2030. Mesoporous silica nanoparticles (MSNs) have great 

potential for the delivery of drugs that can treat vessel disease. This paper provides the first 

description for the use of titania coated MSNs with increased vascular penetration, for the 

delivery of vasodilator drugs, without compromising overall vessel function. We demonstrate 
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that titania coating of MSNs significantly improves their biocompatibility and uptake within 

aortic blood vessels and furthermore, enables a slower and more sustained release of the 

vasodilator drug, sodium nitroprusside within the vessel, thus making them an attractive 

strategy for the treatment of vascular disease. 

 

Keywords: mesoporous silica nanoparticles; titania; vascular; dilation; artery 

 

1. INTRODUCTION  

Blood vessel disease is a major contributor to cardiovascular disease (CVD) mortality 

and morbidity, with predicted medical costs projected to reach $918 billion by 2030 [1]. An 

early predictor and hallmark of CVD is dysfunction of the lining endothelial cells (ECs) [2]. 

These cells play a significant role in vascular homeostasis, through the release of mediators, 

to control vessel diameter and prevent atherogenesis [3], particularly relevant for small 

vessels which control over 50% of blood perfusion into tissues [4]. Hence, there is an urgent 

need for early therapeutic intervention strategies to preserve and restore vessel health. We 

have previously demonstrated the uptake of nanomaterials by ECs [5, 6], including 

mesoporous silica nanoparticles (MSNs), and their highlighted potential use as drug delivery 

platforms for vasodilator drugs [7]. In particular, MSNs hold great promise as drug delivery 

vehicles [8, 9]. They can be synthesised with a narrow particle size distribution and a regular 

pore structure that can accommodate guest molecules, while the exterior surface can be 

functionalised to allow targeted drug delivery [10, 11]. Manipulation of the synthesis 

conditions and reactant concentrations allows easy tailoring of small diameters that are able 

to enter cells including non-phagocytic cells, such as ECs that line blood vessels. ECs are 

thus an easily accessible target for therapeutic intervention using nanoparticles, when 

injected intravenously. This can be especially attractive for targeted delivery of vasodilator 

drugs for subjects with CVD. However, despite such potential uses, silica nanoparticles have 

previously been shown to affect vascular function, depending on their surface charge, dye 
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doping and size [5, 12, 13]. Silica nanoparticles (SiNPs) can generate reactive oxygen 

species (ROS), such as hydroxyl radical (•OH), superoxide anion ( _

2O ) and hydrogen 

peroxide (H2O2), causing an imbalance between the oxidant and antioxidant processes, thus 

leading to intracellular oxidative stress [14].  Furthermore, increased ROS generation can 

quench nitric oxide leading to attenuated dilator responses. In contrast, nanoparticles of 

certain material composition, such as ceria, have antioxidant properties that protect cells by 

scavenging hydrogen peroxide or superoxide leading to improved dilator function [6].  

Titania (titanium dioxide; TiO2) has attracted a great deal of interest due to its 

physicochemical, electrical, and optical performance characteristics, as well as its 

photocatalytic and anticorrosion properties [15, 16]. Recently, TiO2 nanotubes have been used 

as reversible oxygen scavengers via an electrochemical approach. Interestingly, the authors 

showed that the re-uptake of oxygen is rapid when the electrochemical reduction occurs under 

basic conditions, while under acidic conditions the oxygen re-uptake is approximately three 

times orders slower [17]. Wu and colleagues assessed the biocompatibility of amorphous 

titania nanoparticles synthesised by the sol-gel technique and commercially available P25 

consisting of crystalline anatase titania on human breast cancer cells, demonstrating that 

amorphous titania had lower toxicity and excellent biocompatibility (LC50 400 mg mL-1) [18]. 

Hence, surface coating with titania may improve biocompatibility of the MSNs.   

 

In the present study, we synthesised and fully characterised titania coated MSNs and 

examined the effect of coating on the biocompatibility and release dynamics of MSNs loaded 

with the endothelial independent dilator, sodium nitroprusside (SNP) as a model drug. Vessel 

uptake and drug release was examined, in real time, using an ex vivo model of vascular 

function.  The results demonstrate that by titania coating the MSNs surface, they have less 

detrimental influence on vasodilator responses, while demonstrating increased penetrability 

within the vessel wall allowing for a slower and more sustained relaxation response of aortic 

vessels.  
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2. Materials and methods 

2.1. Materials 

Tetraethyl orthosilicate (TEOS), hexadecyltrimethyammonium bromide (CTAB), 

anhydrous dimethylformamide (DMF), sodium hydroxide (NaOH), hydrochloric acid (HCl, 37 

%), methanol (MeOH), acetylcholine chloride (ACh) and sodium nitroprusside (SNP) were 

purchased from Sigma-Aldrich. Salt solutions were prepared using sodium chloride (NaCl), 

potassium chloride (KCl), magnesium sulphate heptahydrate (MgSO4·7H2O), potassium 

phosphate monobasic (KH2PO4), calcium chloride (CaCl2·2H2O), ethylenediaminetetraacetic 

acid dipotassium salt dihydrate (K2EDTA·2H2O) purchased from Fisher-Scientific. 

Physiological Salt Solution (PSS) and high potassium PSS (KPSS; 60 mM KCL) were 

prepared as previously described [13].     

 

2.2. Synthesis and drug loading of mesoporous silica nanoparticles  

MSNs were synthesised using the surfactant template directed method followed by 

removal of the CTAB template [19]. Dried MSNs were drug loaded by mixing in a solution of 

SNP (1 g MSNs dispersed in 50 mL 1x10-4 M drug solution in MeOH) for 48 h. The drug 

loaded particles were collected by centrifugation, dried at 50 °C overnight and stored in a 

glass vial wrapped in aluminium foil; the drug-loaded MSN were assigned the name MSN-

SNP.  The iron concentration in the supernatant originating from the SNP drug was 

quantified by inductively coupled plasma atomic emission spectroscopy (ICP-AES) and the 

quantity of drug loading was calculated.   

 

2.3. Coating mesoporous silica nanoparticles with titania 
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Titania was deposited onto MSNs and drug loaded MSN-SNP using the physical 

vapour deposition technique of reactive magnetron sputtering [20]. A Teer Coatings UDP 450 

coating system fitted with a custom built oscillating mechanism in the coating chamber was 

utilised [21]. MSN powders (10 g) were added to a 250 mm diameter bowl that was vibrated 

by the oscillating mechanism and positioned under the magnetron. The vibrating motion allows 

exposure of all the surfaces of the MSN to the coating flux from the magnetron. Titania was 

deposited for 1 hr using two titanium metal plate targets (99.5% purity), argon (99.998% purity) 

as the working gas and oxygen (99.5% purity) as the reactive gas. The working pressure was 

0.1 Pa. Advanced Energy Pinnacle Plus pulsed DC power supplies were used to power the 

titanium target. The power supply was set to 1000 W per target, pulse frequency of 100 kHz 

and a pulse off time of 4 µs, giving a duty cycle when the magnetron operates of 60%. At this 

power, the target voltage is approximately -300 V and the current is approximately 3.3 A. The 

amount of oxygen was controlled using an optical emission monitor, using conditions known 

to produce stoichiometric TiO2 [22]. The final products were stored as a powder in a foil covered 

glass vial and assigned names of TiMSN (titania coated mesoporous silica nanoparticles) and 

TiMSN-SNP (titania coated SNP loaded mesoporous silica nanoparticles). 

 

2.4. Drug release from titania coated mesoporous silica nanoparticles, in vitro 

The MSN-SNP or TiMSN-SNP drug release rates were determined using the dialysis 

method as previously described [7].  In brief, MSN-SNP or TiMSN-SNP (0.128 g) were 

dispersed in KPSS (4 mL) and placed in the dialysis tubing and sealed. The dialysis tube 

was placed in KPSS (11 mL) and the drug release was determined by measuring the 

concentration of iron in the external solution over time by ICP-AES. The release profile of 

SNP released from the MSN was expressed as the ratio of cumulative drug release to initial 

drug loading versus time (Eq. 1): 
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percentage of drug release = 
𝑀𝑡

𝑀0
× 100 (Eq. 1) 

 

where Mt is the cumulative amount of drug released at time t and M0 is the amount of drug 

loaded in the MSNs. 

 

2.5. Characterisation of mesoporous silica nanoparticles 

The MSNs, TiMSNs  and corresponding drug loaded particle sizes and morphology 

were examined using scanning electron microscopy (SEM, JEOL 5600LV SEM)  and 

transmission electron microscopy (TEM, Philips TechnaiTM 12 Biotwin TEM). The MSNs and 

TiMSNs hydrodynamic size and zeta potential were determined by dynamic light scattering 

(DLS) and laser Doppler velocimetry, respectively (Malvern Zetasizer nano ZS instrument, 

UK). DLS measurements were performed for MSNs suspended in distilled water and in 

KPSS solution. The hydrodynamic size was measured by an infra-red light passing through 

the sample and any resulting scattered light was detected. Nitrogen adsorption isotherms at -

196 °C were measured with a Micromeritics ASAP 2020 instrument. Samples were degassed 

at 90 °C overnight prior to analysis. The surface areas were calculated using the Brunauer-

Emmett-Teller (BET) method and Barrett-Joyner-Halenda (BJH) pore size distributions were 

determined from the desorption branches of the isotherms. Attenuated Total Reflectance 

Infrared Fourier-transform Infrared Spectroscopy analysis (ATR) was used for confirmation of 

template removal (Nicolet Avatar 360 ATR-FTIR). Semi-quantitative chemical analysis was 

performed on MSNs by energy-dispersive X-ray spectroscopy (EDS) using a detector from 

Oxford Instruments to confirm the presence of titania coating. X-ray diffraction (XRD; 

PANalytical X'Pert X-ray diffractometer employing Cu K radiation (40 kV and 30 mA) and a 

PIXcell detector) was used to determine crystal structure of the materials produced and 

confirm the ordered pore structure of the MSNs. 

 



 8 

2.6. Detection of nanoparticle reactive oxygen species (ROS) generation 

 The generation of reactive oxygen species by nanoparticles in solution was detected 

using a dichlorofluorescein (DCF) assay as previously described [23]. Briefly, a 1 mM stock 

solution was prepared by dissolving DCFH-DA powder (Sigma, UK) in MeOH. The solution 

was deacetylated using NaOH and kept in darkness at room temperature for 30 min. Stock 

solution was diluted 1:100 with sodium phosphate buffer to form a working solution. 

Nanoparticles (10 mg) were dissolved in 200 µL of working solution and sonicated for 15 min. 

Solutions were transferred into a 96-well plate. Horseradish peroxidase (HRP) was added to 

each well to initiate the catalytic reaction. Fluorescence kinetics was analysed using a plate 

reader (Synergy, HT) every minute for 20 min (Exc. 485 nm; Em. 530 nm). Solid non-porous 

SiNPs were used as a control. These were synthesised and characterised as described in 

the supplementary material. The working solution, in the absence of HRP, was used as a 

negative control. 

 

2.7. Vascular functional studies 

  Aortic vessels were carefully dissected and isolated from male Wistar rats (150-250 g 

weight; n=26 animals; one vessel from each animal), which were humanly killed by stunning 

followed by cervical dislocation following institutional approval and in accordance with 

guidelines issued by the European Commission Directive 86/609/EEC. The vessels (3-4 mm 

aortic rings) were mounted in an organ bath system filled with gassed PSS solution (95 %O2: 

5% CO2, 35 °C) as previously described [6]. In the first set of experiments, release of the 

SNP drug from the nanoparticles was assessed over a 3 h period. The effect of the MSN-

SNP and TiMSN-SNP was examined by the addition of 1.96×1012 MSN mL-1 (calculated as 

detailed in the supplementary material) to preconstricted vessels, and incubating within the 

organ bath for 10 min at 35 °C. Vessels were then washed in KPSS and tension values 
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(hence degree of dilation/constriction) constantly monitored in real time, using labchart 

software (Powerlab Ltd).   

In a separate set of experiments, vasodilator responses to endothelium-dependent 

and independent agonists were examined by firstly pre-constricting vessels in high 

potassium solution and then adding cumulative doses of acetylcholine (ACh; 0.01-100 µM) or 

SNP (0.01-10 µM), before and after incubation with the range of nanoparticles. 

The uptake and localisation of nanoparticles within the tissue was examined after 

fixing and sectioning aortic vessels using TEM. Vessels were fixed immediately after the 

functional studies, using 2.5 % glutaraldehyde and samples observed using a Tecnai 12 

Biotwin TEM at 80 kV as previously described [13]. The relative amount of nanoparticle 

uptake by the vessels was quantified by measurement of silica concentration using ICP-AES. 

Briefly, vessels were weighed and incubated with nanoparticles (1.96×1012 MSN mL-1 in 

PSS) for 10 min and then rinsed to remove any nanoparticles not taken up. Vessels were 

then digested by placing into a glass vial with high purity (70%) nitric acid (1 mL) and heated 

in an oil bath at 80°C for 2 h. The solution was made up to 5 mL in a volumetric flask with 

Millipore distilled water and analysed. A standard curve was used to quantify the amount of 

silica in the tissues, using standards (Sigma, Poole, UK), in the same background solution as 

that of the tissue solutions. The limit of Si quantification was 50 ng mL-1. The silica 

concentrations were used to calculate the percentage uptake. 

 

2.8. Statistical analysis 

Data are expressed as mean ± standard error of mean  with ‘n’ representing the 

number of vessels. Dilator responses are expressed as percent relaxation. The maximum 

agonist effect (Emax) and concentration inducing 50% of Emax (EC50) were determined from 

each concentration response curve and pD2 was calculated as the –log (EC50). Emax and pD2 

values were calculated using the GraphPad Prism Software 7. Concentration response 
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curves were assessed using statistical package for the social sciences (SPSS; version 19). 

The difference between groups at a given concentration was tested by one-way analysis of 

variance (ANOVA) with Bonferroni corrections; or Dunnetts multiple comparison test for the 

ROS assay. P<0.05 were considered statistically significant [13].  

 

 

3. RESULTS 

 

3.1. Characterisation of mesoporous silica nanoparticles 

The synthesised MSNs had a relatively narrow size distribution with an average 

diameter of 95±23 nm with mostly spherical morphology with some elongation (Fig. 1A). After 

soaking in SNP the particles had a similar appearance with the surface looking slightly 

rougher (Fig. 1B). Small crystallites can be observed on the surface of TiMSNs (Fig. 1C) and 

TiMSN-SNP (Fig. 1D). The TEM image showed that the MSNs (Fig. 1E) had regular, parallel-

aligned pore channels confirming the presence of uniform mesopores. The TiMSN had a 

rough surface with the individual titania nanoparticles on the surface of the MSN with a size 

of ca. 5 nm (Fig. 1F). The average diameter increased to 156±19 nm with an estimated 30.5 

nm titania shell thickness surrounding the MSNs. The EDS of MSN confirms the presence of 

silica (Fig. 1G). The TiMSN contain both silica and titanium (Fig. 1H). The XRD analysis 

showed low angle peaks at 2.8 degrees attributed to [100] reflection from hexagonally 

packed mesopores for both MSN and TiMSN and confirmed the preservation of the pore 

structure after magnetron sputtering and drug loading (Fig. 2A). As expected, no crystalline 

titania peaks (anatase or rutile) were observed. Previous studies have shown that coatings 

deposited using this technique are amorphous in the as-deposited state and require post-

deposition annealing to develop crystalline structures [21]. ATR was used for confirmation of 

template removal (Fig. 2B). The characteristic organic surfactant CTAB peaks at 2853 cm-1 
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and 2923 cm-1 were diminished after acid extraction. Nitrogen adsorption-isotherms of MSN, 

TiMSN and corresponding SNP-loaded samples are shown in Fig. 2C. The isotherm of MSN 

is typical for MCM-41-type materials with a steep step below p/p0 of 0.4 corresponding to 

capillary condensation in the uniform pores. The isotherm is in agreement with the TEM and 

XRD results confirming the regularity of the pores in this sample. An average pore size of 2.7 

nm was determined from the BJH desorption pore-size distribution (Fig. 2C, inset). The pore-

size distribution also indicated the presence of larger pores, which could be related to inter-

particle textural porosity. The regularity of the pores was inferior in TiMSN; the step 

corresponding to the uniform pores was less pronounced and the corresponding peak in the 

pore-size distribution plot was lower and broader. This result is also in agreement with the 

TEM images. Nevertheless, the BET surface areas of the two samples were similar, 1071 m2 

g-1 for MSN and 1194 m2 g-1 for TiMSN. The drug-loaded samples showed similar isotherms 

and similar pore-size distributions (Fig. 2C). The BET surface areas of these samples were 

383 m2 g-1 for MSN-SNP and 426 m2 g-1 for TiMSN-SNP, respectively. The disappearance of 

the steep step below 0.4 relative pressure indicated that the drug was adsorbed within the 

uniform mesopores. It is worth noting that the Ti coating of the latter sample was performed 

on the MSN-SNP sample. The presence of SNP in the uniform pores may explain the 

similarity in the MSN-SNP and TiMSN-SNP isotherms. In the case of TiMSN, an ‘open-pore’ 

MSN sample was used for Ti deposition, which could be the reason for the differences 

observed in the corresponding isotherms. 

The hydrodynamic diameters of the synthesised MSNs show an overall increase in size 

when compared to the particle sizes observed by electron microscopy (Table 1). A further 

increase in hydrodynamic diameter was evident when uncoated MSNs were dispersed in 

KPSS (188.8 nm vs 247.3 nm in water and KPSS respectively). The titania coating of the 

MSNs caused the size to increase, with some aggregation as evidenced by the presence of 

the second peak. The drug loaded TiMSNs remained stable after being placed in KPSS as 

the hydrodynamic diameter remained similar (250.5 nm vs 313.1 nm in water and KPSS 
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respectively). It is noteworthy that the concentration of NPs held in the solution for DLS 

analysis was 0.02%, while for the organ bath experiment the concentration was far smaller 

and consequently less likely to aggregate. The Zeta potential values for the MSNs and 

TiMSNs demonstrates that they were stable, even after drug loading (Table 1).  

 

3.2. Detection of nanoparticle reactive oxygen species generation 

The generation of ROS by the synthesised MSNs was assessed by measuring the 

relative degree of fluorescence generated by the nanoparticles in solution, using the DCF 

assay. There was a significant reduction in fluorescence by all the MSNs, in comparison to 

the non-porous SiNPs (p<0.001). In addition,  although there was a reduction in the degree 

of fluorescence by the titania coated MSNs, in comparison to uncoated MSNs, this was not 

significant  (Figure 2D).  

3.3. Loading and release of sodium nitroprusside from mesoporous nanoparticles 

The drug loading of the MSN was determined to be 89.1% from the ICP-AES data 

indicating good drug adsorption efficiency within the pore structure. The SNP release profile 

for MSN-SNP and TiMSN-SNP was plotted using the cumulative concentration determined 

from the ICP_AES (Fig. 3A). The time course of SNP release demonstrated that there is a 

rapid initial release from MSN-SNP the first 10 min, whilst there was a lower concentration of 

released SNP and slower initial release for TiMSN-SNP. The initial steep increase is expected 

due to the large concentration gradient and some desorption from the particle exterior surface. 

The TiMSN-SNP shows a retardation of the release due to the SNP percolating past the titania 

surface coating. From 30 min to 240 min there is a shallow gradient for both types of particles 

in the graph indicating slow release. 

 

3.4. Analysis of Release Data 
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The description of release profiles can analysed using different release models [24]. 

Our data were evaluated according to the following equations: 

1) First-order model   𝑙𝑛𝑀𝑡 = 𝑙𝑛𝑀 + 𝑘1 × 𝑡  (Eq. 2): 

2) Higuchi model    𝑀𝑡 = 𝑘𝐻 × 𝑡
1

2   (Eq. 3): 

3) Korsmeyer-Peppas model  
𝑀𝑡

𝑀∞
= 𝑘𝐾𝑃 × 𝑡𝑛  (Eq. 4): 

 

where Mt is the cumulative amount of drug released at time t, M is the initial amount of drug 

present in the solution,  k1 is the first-order release constant, and kH is the Higuchi release 

constant. For the Higuchi model, the following assumptions are made: (i) the drug 

concentration in the MSN is initially much higher than the solubility of the drug; (ii) diffusion 

takes place in a single direction, i.e. perpendicular from MSN pore entrance surface; (iii) the 

MSN pore is much larger than the size of the SNP molecules; (iv) the swelling and 

dissolution of the MSN is negligible; (v) the diffusivity of the SNP is constant; (vi) and perfect 

sink conditions are attained in the release environment. A sink condition is such that the total 

dissolution of the SNP molecule in solution yields a resulting concentration that is much 

lower than that of saturation.  Mt / M∞ is a fraction of drug released at time t, kKP is the 

Korsmeyer-Peppas release constant, and n is the diffusional release exponent indicative of 

the release mechanism. When n < 0.5 then the drug release mechanism follows Fickian 

diffusion model [25] and if 0.5 < n < 0.89 then the release mechanism follows an anomalous 

diffusion model [26]. However, if n = 0.5 then the release mechanism follows Higuchi kinetic 

model [25]. 

 

The kinetics of the delivery was studied to determine the release mechanism by 

fitting the curves of cumulative released SNP % as a function of time to three different 

mathematical models. Assuming that a simple diffusion process occurs, the kinetics of SNP 

release from the pores of the MSN could be explained by the Higuchi model which is based 
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on Fick's Law where the release occurs by the diffusion of drugs within the delivery system. 

In this case, the cumulative released amount of the drug is proportional at square root of 

time. Under some experimental situations the release mechanism can deviate from Fickian 

diffusion, following an anomalous transport (non-Fickian release).  In these cases, a more 

generic equation can be used. According to the Korsmeyer-Peppas model, where 

exponential drug release relates to elapsed time, the n value could be obtained from the 

slope of the straight line of log cumulative amount of drug release (%) versus log time. The 

release constants were calculated from the slope of the appropriate plots, and regression 

coefficient (R2) by linear regression analysis. The correlation coefficient (R2) was used as an 

indicator of the best fitting, for each of the considered models. The model with the highest 

co-efficient of determination (R2) indicates the most appropriate model for the release profile 

data [27]. The release regression values (correlation coefficient values) are shown in Table 2 

 

A good linear fit was observed for MSN-SNP and TiMSN-SNP for both Higuchi and 

Korsmeyer-Peppas models (Fig. 3), indicating that the delivery of SNP from the pores is a 

diffusive process. The best fit with R2 is the values from the Higuchi plot (0.9722 for MSN-

SNP and 0.9553 for TiMSN-SNP), thus the drug release of SNP was proportional to the 

square root of time. The SNP drug gradually dissolves into surrounding fluid and then the 

drug slowly diffuses from the mesoporous silica capillary channels in accordance with a 

dissolution-filling approach. The rate of release for the MSN-SNP was higher than the 

TiMSN-SNP as indicated by the KH values of 3.715 and 2.434 % min0.5, respectively.  

 

 

 

3.5. Detection of mesoporous silica nanoparticles within vascular tissue 
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Exposure of aortic vessels to the nanoparticles led to their rapid uptake. MSNs and 

TiMSNs were internalised into the cytoplasm of the endothelial cells lining aortic vessels 

(Fig.4A, B). MSNs identified freely within the cytoplasm and were surrounded by a 

transparent membrane structure suggesting their uptake via endocytosis. The titania coated 

particles were also observed in the smooth muscle cells and the elastic lamina layer (Fig. 4C, 

D). None were observed in the nuclei of cells or adventitial layer. The amount of 

nanoparticles taken up into the tissue was quantified by ICP-AES, and found to be 13% and 

14% for TiMSN and TiMSN-SNP; 10% and 11%  for MSN and MSN-SNP respectively, after 

10 min incubation at 35 °C. 

 

3.6. Sodium nitroprusside release from mesoporous silica nanoparticles, ex vivo 

Pre-constricted aortic rings were exposed to MSN-SNP and TiMSN-SNP in the organ-

bath system and incubated for 10 min before washing off (Fig. 4E).  The time course of vessel 

dilation could be observed in real time by monitoring the change in vessel tension. There was 

an initial rapid relaxation response (phase 1 at 0-10 min) that is likely to be due to release of 

the adsorbed SNP on the surface. After washout, vessels constricted rapidly and this is likely 

to be due to removal of the free SNP from the KPSS solution (Phase 2 at 10-30 min). 

Thereafter, vessels dilated slowly (phase 3 at 30-70 min) likely due to release of the SNP from 

within the MSNs that are taken up by the vessel. This was calculated from the slope to be 

12.36% for the TiMSN-SNP. The final phase at 70-180 min is a slow sustained minimal dilation 

for the TiMSN-SNP. Although the magnitude of the dilator response was significantly higher 

after incubation in MSN-SNP (maximal at 75.46% vs 55.73% after 1 h incubation in MSN-SNP 

and TiMSN-SNP respectively), likely due to release of surface adsorbed SNP from the MSN-

SNP, there was a continued slow sustained dilator response in the Ti-MSN-SNP incubated 

vessels. The overall rate of dilation, due to TiMSN-SNP over a 2.5 h period was 0.08% per 

min. No relaxation was evident after the washout period for the MSN-SNPs. Any minimal 
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dilation/constriction is dictated by the amount of SNP released in relation to the overall KPSS 

concentration in the water bath. 

 

3.7. Influence of mesoporous nanoparticles on vasodilator responses of aortic vessels 

All vessels constricted to high potassium solution (60 mM KCl). All pre-constricted 

vessels dilated to the endothelial-dependent agonist (ACh) and the endothelial-independent 

agonist (SNP) in a dose dependent manner. There was a significant rightward shift in the 

concentration-response curve (Fig.4F) and reduced maximal dilation to ACh following MSN 

incubation (Emax 38.52 ± 1.95%; pD2 3.32 ± 4.09 µM; n=5; vs Emax 52.40 ± 1.05%; pD2 0.52 ± 

0.31 µM; n=4, for MSN and control responses respectively, p<0.05). Incubation in TiMSN led 

to a significant improvement in dilator responses as compared to MSN alone with no effect on 

the Emax and pD2 (Emax 40.60 ± 0.55%; pD2 0.51 ± 0.18 µM; n=4; vs Emax 52.40 ± 1.05%; pD2 

0.52 ± 0.31 µM; n=4, for TiMSN and control responses, respectively). 

 

Vessel incubation in MSN or TiMSN had no overall influence on endothelial 

independent (SNP) dilator responses. However, there was a significant improvement at 0.1 

µM concentration only, after incubation in TiMSN (figure 4G). 

 

 

 

4. Discussion 

The key findings of this study are that coating of MSNs with titania, 1) enables a slow 

and more sustained release of payload, and 2) increases their biocompatibility and uptake 

within blood vessels. We utilised SNP as a vasodilator drug and an ex vivo model of 

vascular function to demonstrate blood vessel dilation, in real time.  



 17 

Using modelling, we show a slower rate of drug release from the TiMSN-SNP than 

from MSN-SNP. Furthermore, we demonstrate that the release of SNP from the pores of 

MSNs follows Fickian diffusion (for both coated and uncoated nanoparticles), where drug 

release is proportional to the square root of time, according to the Higuchi model. Rapid uptake 

of MSNs by the vessel wall, led to vessel relaxation that was significantly greater after uptake 

of MSN-SNP than TiMSN-SNP, due to the higher rate of release of surface adsorbed SNP 

from the MSN-SNP nanoparticles.  In contrast, the slow and sustained dilation evident after 

uptake of TiMSN-SNP, may be due to their increased penetrability into the elastic lamina and 

smooth muscle cell layers, where the local release of nitric oxide acted directly on smooth 

muscle cells to induce dilation. Previous studies have demonstrated that titania nanoparticles 

have a high affinity towards phosphate species [18] and are able to penetrate the phospholipid 

bilayer, rather than adsorb on the cell membrane surface, which may account for our 

observation of increased uptake of TiMSNs into the vessel wall [28]. Additionally, titania has 

catalytic and oxygen scavenging properties due to an interstitial oxygen defect [15]. However, 

some studies have demonstrated that the limiting step of oxygen uptake by metal oxides is 

dependent on thermally activated diffusion of bulk oxygen vacancies (VO) and that these 

vacancies are removed by adsorbed oxygen [29, 30]. Recent research describes the major 

defect transport mechanism that occur in metal oxides, in particular TiO2, to be VO and metal 

interstitials [17, 30]. The lower reduction levels found in TiO2 at low pH leading to failure in 

oxygen uptake maybe caused by hydrogen evolution competing with oxygen extraction. Thus, 

protons intercalation occurs instead of the occurrence of oxygen extraction within TiO2 lattice 

[17]. Shkrob and colleagues demonstrated that polyhydroxylated compounds are readily 

oxidised by holes scavengers contained within TiO2. The scavenging efficiency is known to 

increase in accordance to anchoring hydroxyl groups [32]. Titania’s catalytic activity can cause 

cellular reactivity and interactions with enzymes including extracellular metalloproteinases [16; 

33]. This may also explain the increased penetrability of titania coated nanoparticles through 

the elastic lamina.  

 



 18 

We demonstrate that titania coating of MSNs improves biocompatibility and prevents 

their detrimental effects on endothelial-dependent dilator responses of arteries. We used 

amorphous titania, which is known to be more biocompatible and less toxic than the 

crystalline anatase form [18]. The attenuated ACh responses induced by MSN uptake may 

be related to the protruding surface hydroxyl groups on MSNs reacting with intracellular H2O2 

to produce ROS (•OH) as well as the generation of ROS at the nanoparticle surface. The 

silica nanoparticles have been shown to interact with endoplasmic reticulum NADPH 

(nicotinamide adenine dinucleotide phosphate reduced) oxidases, as well as 

activatingmembrane NADPH oxidases, which catalyses the production of superoxide anion 

[34; 35]. Herein, we demonstrate that MSNs generate significantly less ROS than dense 

SiNPs. Furthermore, MSNs have been shown to be intrinsically less toxic than nonporous  

SiNPs where surface coating has further been shown to improve their biocompatibility [35]. 

Therefore, the production of intracellular and extracellular ROS by MSNs can reduce 

vasodilator capacity, through quenching the naturally occurring vasodilator molecule nitric 

oxide.  Exposure of vessels to MSNs coated with titania prevented their attenuated effects 

and significantly improved the endothelial dependent dilator responses. We suggest that this 

may be due to the reduced amount of ROS being generated by the surface of MSNs after 

titania coating once they are taken up into the vessel wall. Polyhydroxylated compounds are 

readily oxidised by holes scavengers contained within TiO2. The scavenging efficiency is 

known to increase in accordance to anchoring hydroxyl groups [32]. Our findings 

demonstrate that while there was a highly significant reduction in fluorescence levels by 

MSNs in comparison to solid non-porous SiNPs, this was not significantly altered after titania 

coating. We measured relative fluorescence levels in solution using the DCF assay which 

cannot be used as a direct measure of hydrogen peroxide and other ROS moieties [36; 37]. 

It remains plausible, therefore, that titania coating may scavenge a range of ROS moieties, 

including superoxide anion, as well as reduce the capacity of the MSNs to activate NADPH 

oxidases within the cells [32]. The phenomenon of reduced oxidative stress induced by 

nanoparticles of various material composition such as ceria has also been previously 



 19 

demonstrated by scavenging superoxide anions [3]. For example, an intrinsic peroxidase-like 

activity of superparamagnetic iron oxide nanoparticles has been shown to induce 

proliferation of mesenchymal stem cells as well as the acceleration of the cell cycle process 

by the removal of intracellular H2O2 [38]. This phenomenon might have been implicated in 

this current study favouring the protective role of the titania coating of MSNs in reducing 

oxidative stress. Uptake of MSNs and TiMSNs by aortic vessels had no overall effect on 

endothelial independent dilator responses, indicating that smooth muscle cell sensitivity to 

nitric oxide was unaffected by uptake. 

While our study has examined the uptake and vasodilator effects of SNP-loaded 

TiMSNs by isolated aortic vessels under static conditions, ex vivo, we have previously 

demonstrated that SiNPs (of similar diameter) are rapidly taken up by ECs lining the 

vasculature in isolated vessels (under both static and flow conditions), and also in vivo, after 

intravenous administration [5]. No uptake was evident when SiNPs were added to vessels at 

4 oC [12]. Our TEM images suggest that the MSNs were taken up actively by endocytosis 

into the vessel. These MSNs thus have the potential of being surface tagged to target ECs 

and hence can be used for localised delivery, in vivo. 

 

5. Conclusions 

Using an ex vivo model of vascular function, we demonstrate that titania coated 

MSNs enable a slow and sustained release of the SNP vasodilator drug.  In addition, we 

demonstrate that while the MSNs offer efficient drug loading due to their high degree of 

porosity, the use of amorphous titania to coat their surface, significantly improves their 

biocompatibility and prevents detrimental effects on vessel dilator function than uncoated 

MSNs. These features and the increased penetrability into the vessel wall make titania 

coated MSNs an attractive drug delivery modality for the treatment of vascular disease.  
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FIGURE CAPTIONS 

 

Figure 1: Mesoporous silica nanoparticle characterisation. SEM images of A) MSN, B) MSN-

SNP, C) TiMSN and D) TiMSN-SNP. TEM images of E) MSN, and F) TiMSN. EDS analysis 

confirms the presence of silica (G) and titanium (D) for MSNs and TiMSNs, respectively.   

 

Figure 2:  Chemical analysis of the synthesized mesoporous silica nanoparticles. A) XRD 

patterns of the samples of MSN (blue line) and TiMSN (red line), A and R represent the 

position of anatase and rutile peaks, respectively. B) ATR spectra of MSN and MSN template 

extracted. C) Nitrogen adsorption-desorption isotherms of MSN, TiMSN and corresponding 

SNP-loaded samples. Close symbols, adsorption; open symbols, desorption. The inset 

shows corresponding pore-size distributions. D)  DCF assay assessment of the relative 

fluorescence generated by the nanoparticles; *p<0.001; error bars=standard error of mean.  

 

Figure 3: Drug release by the mesoporous silica nanoparticles. A) Percent release profile of 

sodium nitroprusside from mesoporous nanoparticles using atomic absorption spectroscopy. 

Drug release kinetic models of MSN-SNP and TiMSN-SNP in PBS B) First order, C) Higuchi 

and D) Koresmeyer–Peppas. 

 

Figure 4: The influence of nanoparticle uptake on aortic vessel dilation. TEM microscopy 

images of sections from fixed aortic vessels after a 10 min incubation period with A) MSN 

showing uptake within an endothelial cell and B) TiMSN showing uptake within an endothelial 

cell C) TiMSN within smooth muscle cells and D) TiMSN in elastic lamina. E) Timecourse of 

aortic vessel dilation in response to uptake of  sodium nitroprusside loaded mesoporous 

nanoparticles. ‘n’ is number of vessels. error bars=standard error of mean. The influence of 

both MSN and TiMSN on endothelium-dependent (F) and independent (G) vasodilator 
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responses. The control is incubation in PSS alone.  ‘n’ is number of vessels. *=p<0.05, 

**=p<0.01 #=p<0.001, error bars=standard error of mean.  
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